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Abstract: In this paper, we study two existing quantitative models of the hypothalamic-
pituitary-adrenal (HPA) axis from a control systems theory viewpoint, that is, we suppose that
we can act on the dynamics of the HPA axis throughout some parameters, which are the system
inputs. In particular, we will focus on flatness and Liouvillian properties of the considered control
systems of the HPA axis. We first study the minimal three-dimensional model Bangsgaard and
Ottesen [2017] which is shown to be flat, and then we consider the more involved and important
model proposed in Rao and Androulakis [2019, 2020], with seven states, for which we prove
that flatness no longer holds. The more involved model satisfies however a similar but weaker
property than flatness: it is a Liouvillian system.
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1. INTRODUCTION

The Hypothalamic-Pituitary-Adrenal (HPA) axis describes
the interactions between the hypothalamus, the pituitary
gland and the adrenal glands. This HPA axis is a major
neuroendocrine system which controls reactions to stress
and regulates many body processes, including digestion,
the immune system, mood and emotions, sexuality, and
energy storage and expenditure, see, e.g., Carroll et al.
[2007], Conrad et al. [2009], Hankins et al. [2008], Pari-
ante and Lightman [2008]. Therefore, understanding the
interplay between its various elements is an interesting and
important problem and several mathematical models have
been proposed in the literature as a useful tool for a better
comprehension of the different phenomena as well as for
pointing out different ways in which malfunctioning may
occur; see, e.g., the survey by Androulakis [2021] and the
references therein. Once appropriate models are developed,
it is important to analyze their mathematical and struc-
tural properties. In this paper, we study two existing quan-
titative models of the HPA axis, in the form of ordinary
differential equations, from control systems theory view-
point, that is, we suppose that we can act on the dynamics
of the state variables throughout some system parameters,
which play the role of the inputs. We first consider the
minimal three-dimensional model proposed in Bangsgaard
and Ottesen [2017] with state variables the concentrations
of corticotropin releasing hormone, adrenocorticotropic
hormone and cortisol, and as control variable the param-
eter modeling the strength of the auto-up-regulation of
corticotropin releasing hormone concentration. Then we
study the more involved, very insightful and representative
model proposed in Rao and Androulakis [2019, 2020], with
seven states, incorporating the transcription and transla-
tion of the glucocorticoid receptor and the dynamics of the
nuclear translocation of the activated complex inducing a
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negative feedback. We will see it as a three-input control
system with inputs the parameters modeling the effects of
chronic stress on the HPA axis (namely, kp3 feedforward
adrenal sensitivity, Kp1 hypothalamic negative feedback,
and Kp2 pituitary negative feedback). These parameters
can indeed be considered as slowly varying inputs, through
neural plasticity mechanism.

An important property of control systems is that of
differential flatness (which we shall simply call flatness
in the sequel). The notion of flatness was introduced in
control theory in the 1990’s, by Fliess et al. [1995, 1999],
and has attracted a lot of attention because of its multiple
applications for several important control problems (like
constructive controllability or how to steer the system,
trajectory generation and trajectory tracking, how to
reconstruct non measured variables from the outputs,
etc.). Flat systems form a control systems class whose
set of trajectories can be parametrized by m functions
(forming a flat output) and their time-derivatives, m being
the number of controls. Therefore the time-evolution of all
state and control variables can be determined from that
of the flat output (and its derivatives) without integration
yielding a parametrization of all the system’s trajectories.

The literature on flatness properties of control systems in
neuroscience is very limited. The only publications that we
are aware of are Rigatos [2013], where two cases of lumped
parameter oscillators were studied, and our recent work
Nicolau and Mounier [2022], where flatness of networks
of two synaptically coupled excitatory-inhibitory neural
modules is analysed. In this paper, we study flatness of
the considered HPA axis models and show that while the
minimal model is flat, the involved model is not. The
increased detail model however exhibits an interesting
property that can be seen as an extension of flatness:
it is a Liouvillian control system. Liouvillian and flat
systems share a similar property: in order to derive the



trajectories of a Liouvillian system, we use time-derivatives
of an output (the Liouvillian output) but we also need
integration of differential equations whose solutions are
analytically known, see, e.g., Chelouah [1997].

The paper is organized as follows. In Section 2, we recall
the definitions of flat and Liouvillian systems. In Section 3,
we give our main results: we show that the single-input
three-dimension model is flat, while the increased detail
model is never flat, but is always Liouvillian. We provide
proofs of our main results in Section 4.

2. DEFINITIONS

Consider the nonlinear control system

Ξ : ẋ = F (x, u),

where x is the state defined on a open subset X of Rn, u
is the control, taking values in an open subset U of Rm,
and ẋ denotes the time-derivative ẋ = dx

dt . The dynamics
functions Fi, 1 6 i 6 n, are smooth (the word smooth
will always mean C∞-smooth, away from singularities) and
rk ∂F

∂u = m. Fix an integer l > −1 and denote U l = U×Rml
and ūl = (u, u̇, . . . , u(l)). For l = −1, the set U−1 is empty
and ū−1 in an empty sequence.

2.1 Flatness and feedback linearization The fundamental
property of flat systems is that all their solutions can be
parametrized by a finite number of functions and their
time-derivatives. Although flatness is a relatively recent
notion, introduced in control theory in the 1990’s, Fliess
et al. [1995, 1999], it actually has a long history and
a similar notion, of systems of undetermined differential
equations integrable without integration, goes back to
Hilbert [1912] and Cartan [1914]. Indeed, the control
system Ξ : ẋ = F (x, u) can be seen as an underdetermined
differential system consisting of n equations ẋi = Fi(x, u),
for 1 6 i 6 n, and n + m variables (n states and m
controls). The difference between the number of variables
and the number of equations gives the number of degrees
of freedom of the system. It follows that m functions can
be chosen freely. In the context of control systems, one
usually chooses freely the input (u1(t), . . . , um(t)), then
integrates in order to compute the state x(t). But is it
the only way to do it? In order to answer this question,
consider the following simple single-input system:

ẋ1 = x2
ẋ2 = u.

(1)

We can choose freely u(t), then integrate it once to
compute x2(t), and then integrate it a second time to
compute x1(t). Let us now choose freely x1(t), differen-
tiate it once to get x2(t), and then differentiate x2(t)
to obtain u(t). It follows that system (1) admits two
parametrizations: one via the input, for which we have
to integrate twice (which is, in the general case of ẋ =
F (x, u), difficult, and sometimes, even impossible analyti-
cally), and one via the state x1 for which we have to dif-
ferentiate twice (which is always possible in a simple way).
Hence there are underdetermined differential systems (aka
control systems) which are solvable without integration
(namely flat control systems).

Definition 1. The system Ξ : ẋ = F (x, u) is flat at
(x∗, ū∗l) ∈ X × U l, for l > −1, if there exists a neigh-
borhood Ol of (x∗, ū∗l) and m smooth functions ϕi =
ϕi(x, u, u̇, . . . , u

(l)), 1 6 i 6 m, defined in Ol, having the

following property: there exist an integer r and smooth
functions γi, 1 6 i 6 n, and δj , 1 6 j 6 m, such that

xi = γi(ϕ, ϕ̇, . . . , ϕ
(r−1)) and uj = δj(ϕ, ϕ̇, . . . , ϕ

(r)) (2)
for any Cl+r-control u(t) and corresponding trajec-
tory x(t) that satisfy (x(t), u(t), . . . , u(l)(t)) ∈ Ol, where
ϕ = (ϕ1, . . . , ϕm) and is called a flat output.

It is commonly accepted, see Fliess et al. [1999], Lévine
[2009], that flatness is a local and generic property, that
is, the desired description (2) is local and holds out of
singular states and singular values of controls. In our
study, all functions ϕi depend on x only, i.e., we have
ϕi = ϕi(x), for all 1 6 i 6 m, and ensure flatness around
any nominal point x∗ of the state space (that is, there are
no singularities for flatness).

Not all control systems are flat (and the first who gave a
counter-example was Hilbert [1912]), but a class of systems
that are well known to be flat is the static feedback
linearizable one. The control system Ξ : ẋ = F (x, u)
is said to be locally static feedback linearizable if it can
be transformed via a local diffeomorphism z = φ(x)
and an invertible feedback transformation u = ψ(x, v)
to a linear controllable system Λ : ż = Az + Bv. The
diffeomorphism φ(x) is simply a change of coordinates,
while the feedback ψ(x, v) plays the role of a change of
coordinates in the control space depending on the state.
The problem of static feedback linearization was solved
by Jakubczyk and Respondek [1980] and, independently,
by In general, a flat system is not linearizable by static
feedback, with the exception of the single-input case for
which flatness is equivalent to static feedback linearization
(thus the conditions of Theorem 3, stated in Appendix A,
are also necessary and sufficient for flatness), see Charlet
et al. [1991], Pomet [1995]. Flat systems can be seen as
a generalization of static feedback linearizable systems.
Namely they are linearizable via dynamic, invertible and
endogenous feedback, see Fliess et al. [1995], Pomet [1995]
for definitions of those notions. We will see that in our
analysis, flatness of the considered systems always reduces
to the study of flatness for a single-input system or
subsystem, so to static feedback linearization.

2.2 Triangular Liouvillian systems Liouvillian systems
can be seen as an extension of flat systems Chelouah [1997,
2010], Crespo et al. [2021], see also Kiss et al. [2002] for an
application to motion planning for robotic manipulation.
We have seen in Section 2.1 that the main property of
flat systems is that all state and control variables of the
system can be directly expressed, without any integration
of differential equations, in terms of the flat output and a
finite number of its time-derivatives. So called Liouvillian
systems share a similar property, but in order to derive
the trajectories of a Liouvillian system, we also need
integrations of differential equations whose solutions are
known analytically. Before giving a formal definition, let
us illustrate this remark through the following example,
see Chelouah [1997]:

ẋ1 = x2 + a(x)
ẋ2 = x3
ẋ3 = u,

(3)

where the smooth function a is given either by a(x) = x21
or by a(x) = x22 or by a(x) = x23. It is easy to see
that in the first two cases, the above system is flat with
ϕ = x1 being a flat output, but if a(x) = x23, then (3)



is not flat (it does not satisfy the necessary and sufficient
conditions of Theorem 3, see Appendix A). However, in
the latter case, system (3) contains the flat subsystem
ẋ2 = x3, ẋ3 = u, for which ϕ = x2 is a flat output, and
the trajectory of x1 can be obtained by integrating the
differential equation ẋ1 = ϕ(t) + ϕ̇(t)2 (which is linear in
the x1-variable), i.e., we have x1(t) =

∫
ϕ(t) + ϕ̇(t)2dt.

It follows that a differential parametrization of all the
system variables is no longer possible, but, instead, an
integral-differential parametrization could be established.
The Liouvillian property is thus slightly weaker than
flatness: a system is Liouvillian if there exists an output
(that we call Liouvillian output), of the same dimension
as the input, and some functions for which we have
to solve some (linear) differential equations, such that
all the system variables can be expressed in terms of
the Liouvillian output and those fuctions and a finite
number of their time-derivatives (see Definition 2 for a
formal definition). It follows that flatness based control
approaches can be extended up to solving a finite number
of (linear) differential equations (which is, in general,
simpler than integrating the system differential equations).

The notion of Liouvillian systems is defined in Chelouah
[1997], Crespo et al. [2021], Srinivasan [2020] using differ-
ential algebra. We adopt here a slightly different formula-
tion (see also Kiss et al. [2002] for a related definition). In
what follows, the Liouvillian output (which is the analo-
gous of a flat output) is denoted by ϕ = (ϕ1, . . . , ϕm) and
the functions for which we have to solve some differential
equations are denoted by ξk; there are p of them, with
p > 1, i.e., ξ = (ξ1, . . . , ξp). For 0 6 k 6 p and integers
ν > 0 and η > 0, denote

(ξ
ν

k , ϕ
η) = (ξ1, . . . , ξ

(ν)
1 , . . . , ξk, . . . , ξ

(ν)
k , ϕ1, . . . , ϕ

(η)
1 , . . . ,

ϕm, . . . , ϕ
(η)
m ),

where there are no ξ-functions if k = 0. The above notation
is used in relation (4) of Definition 2 below. Notice the
double bar associated to the ξ-functions: the first bar
indicates that among (ξ1, . . . , ξp) we consider (ξ1, . . . , ξk)
only, while the second bar is related to the order of the
time-derivatives. When we write ϕ η, all components of the
output ϕ = (ϕ1, . . . , ϕm) are taken into account (notice
that there is no lower-index associated to ϕ) and the bar
is related to the order of the time-derivatives.

Definition 2. A strongly accessible 1 system Ξ : ẋ =
F (x, u) is triangular Liouvillian at (x∗, ū∗l) ∈ X ×U l, for
l > −1, if there exists a neighborhood Ol of (x∗, ū∗l), m
smooth functions ϕi = ϕi(x, u, u̇, . . . , u

(l)), 1 6 i 6 m,
and a finite number p > 1 of smooth functions ξk =
ξk(x, u, u̇, . . . , u(l)), 1 6 k 6 p, given by the differential
equations

ξ
(µk)
k + aµk−1

k (ξ
ν

k−1, ϕ
η) · ξ(µk−1)

k + · · ·

+a0k(ξ
ν

k−1, ϕ
η) · ξk = bk(ξ

ν

k−1, ϕ
η), 1 6 k 6 p,

(4)
for some integers µk > 1, ν > 0 and η > 0, and smooth
functions a0k, . . . , a

µk−1
k , bk, such that all functions ϕi

and ξk are differentially independent, defined in Ol, and
have the following property: there exist integers q and r

1 See Sussmann and Jurdjevic [1972] for that notion (implying, in

particular, that for each k, equation (4) cannot involve ξ
(j)
k

only and

that at least one aj
k

or bk explicitly depends on some ξ
ν

k−1 or ϕ η .

and smooth functions γi, 1 6 i 6 n, and δj , 1 6 j 6 m,
such that

xi = γi(ϕ, . . . , ϕ
(r), ξ, . . . , ξ(q))

uj = δj(ϕ, . . . , ϕ
(r), ξ, . . . , ξ(q))

(5)

for any sufficiently smooth control u(t) and corresponding
trajectory x(t) that satisfy (x(t), u(t), . . . , u(l)(t)) ∈ Ol.
The m-tuple ϕ = (ϕ1, . . . , ϕm) is called a Liouvillian
output.

The denomination “triangular Liouvillian” comes from the
fact that the (linear) differential equations (4), to be solved
in order to compute the functions ξk, have a triangular
structure. Indeed, notice first, that for fixed k, equation (4)
is linear with respect to ξk and its time-derivatives and,
second, that its functional coefficients a0k, . . . , a

µk−1
k and bk

depend on ξk−1 = (ξ1, . . . , ξk−1) and their successive time-
derivatives and they never involve (ξk, . . . , ξp) (but can
depend on all ϕi, 1 6 i 6 m, and on a finite number of
their successive time-derivatives).

3. MAIN RESULTS

Our main results are given by Theorems 1 and 2 below,
analyzing flatness of two different models of the HPA
axis. We start our study by considering a minimal three-
dimensional model with one input (Theorem 1), and then a
representative more involved model with seven states and
three inputs (Theorem 2).

3.1 Minimal three-dimensional model Consider first the
following minimal model of the HPA axis containing the
basic components of a mathematical structure capturing
the macroscopic elements of the HPA axis (see Bangsgaard
and Ottesen [2017]):

dCRH

dt
= a0 + C(t)

a1

1 + a2(CORT )2
·

CRH

µ+ CRH
− ω1CRH

dACHT

dt
=

a3CRH

1 + a4CORT
− ω2ACHT

dCORT

dt
= a5(ACHT )2 − ω3CORT.

(6)

The state variables are given by the concentrations of cor-
ticotropin releasing hormone (CRH), adrenocorticotropic
hormone (ACTH) and cortisol (CORT), respectively, each
of them evolving on R∗+. Hence the above dynamical model
expresses the sequential activation “CRH → ACTH →
Cortisol”. The parameter a1 represents the strength of
the auto-up-regulation of CRH, and following Bangsgaard
and Ottesen [2017], can be considered as an input of
the (control) system. All remaining parameters are sup-
posed to be nonzero and constant (we refer the reader
to Bangsgaard and Ottesen [2017] for their interpretation
and possible values), while C(t) is a periodically extended
bell-like function describing the circadian rhythm. In order
to simplify notations, we will denote the states by xcr, xac
and xco, the control by u, and use the notation ẋ for the
time-derivative of x, that is, the above system becomes:

ẋcr = a0 +
C(t)

1 + a2x2co

xcr
µ+ xcr

u− ω1xcr

ẋac =
a3xcr

1 + a4xco
− ω2xac

ẋco = a5x
2
ac − ω3xco.

(7)

As explained in Section 2, we work locally, around a
given x∗ = (x∗cr, x

∗
ac, x

∗
co) ∈ (R∗+)3. According to the



next theorem, the minimal HPA axis model is always flat
around any x∗ ∈ (R∗+)3.

Theorem 1. The following equivalent conditions hold:

(F1) System (6), and equivalently, (7), is locally static
feedback linearizable, around any x∗ ∈ (R∗+)3 and
can be transformed into

ż1 = z2
ż2 = z3
ż3 = v.

(8)

(F2) System (6), and equivalently, (7), is flat around any
x ∈ (R∗+)3 and ϕ = xco = CORT is a flat output.

System (7) is a single-input control system, thus as ex-
pected, we recover the results of Charlet et al. [1991]
according to which, a single-input control system is flat
if and only if it is static feedback linearizable. Moreover,
the linearizing output (that is, z1 the top variable of
the z-chain of (8)) and the flat output coincide (i.e.,
the diffeomorphism transforming (7) into (8) is such that
z1 = xco = CORT ).

From Theorem 1 it follows that the original system (7)
is equivalent to the dynamics of the flat output xco,
obtained by differentiating two times the last equation
of (7). More precisely, we get a relation of the form

x
(3)
co = α(xco, ẋco, ẍco)+β(xco, ẋco, ẍco)u, where, in order to

obtain the functions α and β we have to replace xac and xcr
by their expressions in terms of the flat output xco and
its successive time-derivatives (see flatness description (2)
of Definition 1, and relations (11) and (12) in the proof
of Theorem 1). After applying the invertible feedback
transformation α + βu = v, we get the trivial linear

dynamics x
(3)
co = v, which, for instance, may be used for

stabilized tracking of a given reference trajectory xco,r(t),
see, e.g., Martin et al. [1996, 2002].

3.2 Increased detail seven-dimensional model We con-
sider now the following HPA axis model of increased
detail incorporating the transcription and translation of
the glucocorticoid receptor (GR) and the dynamics of the
nuclear translocation of the activated complex inducing
the negative feedback (see Androulakis [2021], Rao and
Androulakis [2020]):

dCRH

dt
=

kp1Kp1

Kp1 +DR(N)
− Vd1

CRH

Kd1 + CRH
·
(

1 +
L

1 + L

)
dACHT

dt
=

kp2Kp2CRH

Kp2 +DR(N)
− Vd2

ACTH

Kd2 +ACTH
dCORT

dt
= kp3ACTH − Vd3

CORT

Kd3 + CORT
dGRmRNA

dt
= ksyn,GRm

(
1 −

DR(N)

IC50GRm+DR(N)

)
− kdegGRmRNA

dGR

dt
= ksyn,GRGRmRNA + rfkreDR(N) − konCORT ·GR

−kdeg,GRGR
dDR

dt
= konCORT ·GR− kTDR

dDR(N)

dt
= kTDR− rfkreDR(N).

(9)

The binding of released CORT to cytosolic GR leads
to the formation of the receptor-glucocorticoid complex
(DR). DR(N) represents the nuclear activated receptor
glucocorticoid complex, whileGRmRNA is theDR(N) own
transcription. The lumped effects of light on the HPA
axis are captured by the term L. We send the reader

to Rao and Androulakis [2019] for a detailed presen-
tation and discussion of the model and its parameters.
The above system can be considered as a three-input
control system with inputs the hypothalamic negative
feedback Kp1, the pituitary negative feedback Kp2, and
the feedforward adrenal sensitivity kp3. The parameters
that are not modeled as inputs of the control system are
supposed to be non zero and constant. Each state variable
is assumed to evolve on R∗+. As for the minimal model,
we denote the state of the above system by x = (xcr, xac,
xco, xgrm, xgr, xdr, xdrn) = (CRH, . . . ,DR(N)) ∈ (R∗+)7

and the nominal point around which we work by x∗ =
(x∗cr, . . . , x

∗
drn) ∈ (R∗+)7.

Theorem 2. Consider system (9) controlled by Kp1,Kp2,
and kp3, around any x∗ ∈ (R∗+)7. The following conditions
hold:

(C1) System (9) is not locally static feedback linearizable
around x∗.

(C2) System (9) is not flat at x∗.
(C3) System (9) is triangular Liouvillian at x∗, with ϕ =

(xcr, xac, xdrn) as a Liouvillian output.

Moreover, (C1) and (C2) are equivalent around x∗.

For a better understanding, we simplify the notation for
the indices associated to the model parameters (compare
relations (9) and (10)) and apply the invertible feedback
transformation:

u1 =
kp1Kp1

Kp1 + xdrn
− Vd1

xcr
Kd1 + xcr

·
(

1 +
L

1 + L

)
,

u2 =
kp2Kp2xcr
Kp2 + xdrn

− Vd2
xac

Kd2 + xac
,

u3 = kp3xac − Vd3
xco

Kd3 + xco
,

to bring (9) into

ẋcr =u1 ẋgrm = ks4

(
1− xdrn

IC + xdrn

)
− kdxgrm

ẋac =u2 ẋgr = ks5xgrm + rfkrexdrn − konxco · xgr
−kd5xgr

ẋco =u3 ẋdr = konxco · xgr − kTxdr
ẋdrn = kTxdr − rfkrexdrn.

(10)
The structural properties that we are studying are invari-
ant with respect to feedback transformations, so flatness
and Liouvillian characters of system (9) are equivalent to
those of (10). Moreover, using the above form, it is easy to
see that conditions (C1) and (C2) are equivalent. Indeed,
notice that system (10) actually consists of two decoupled
subsystems: a first linear subsystem whose state and con-
trol variables are (xcr, xac) and (u1, u2), respectively, and
a second nonlinear subsystem with state (xco, . . . , xdrn)
and control u3. Therefore system (10) is static feedback
linearizable if and only if the single-input nonlinear sub-
system is static feedback linearizable, if and only if it is flat.
When proving Theorem 2, we show that the single-input
nonlinear subsystem does not satisfy the necessary and
sufficient conditions of Theorem 3, thus we deduce that
system (10) is never flat. According to (C3), it is however
triangular Liouvillian, with (xcr, xac, xdrn) a Liouvillian
output. We will see when proving condition (C3) that
ξ = (xgrm, xgr) is a pair of functions for which we have



so solve two (linear) differential equations that respect the
triangular structure (4) of Definition 2. Indeed, in order
to compute xgrm we have to solve a linear differential
equation depending on ϕ3 only. The differential equation
associated to xgr is also linear, it involves ϕ3, ϕ̇3 and ϕ̈3,
but also xgrm (so it has to be solved after computing xgrm
by integrating its corresponding differential equation). All
remaining state and control variables can be expressed in
terms of ϕ and ξ and a finite number of their successive
time-derivatives.

4. PROOFS

4.1 Proof of Theorem 1. Proof of (F1). In order to show
that system (7) is locally, around x∗, static feedback
linearizable, one can, for instance, check the necessary and
sufficient conditions of Theorem 3, stated in the appendix,
for the drift f(x) and control vector field g(x) of (7) (i.e.,
in compact form, we rewrite (7) as ẋ = f(x)+g(x)u). The
system being in small dimension, it is actually immediate
that the following change of coordinates 2 z1 = h(x) =
xco, z2 = Lfh(x) and z3 = L2

fh(x) is valid around

any x∗ ∈ (R∗+)3, and that, followed by the invertible
static feedback transformation v = L3

fh(x)+(LgL
2
fh(x))u,

brings system (7) into form (8).

Proof of (F2). It is easy to see that ϕ = xco is a flat
output of system (7) around any x∗ ∈ (R∗+)3. Indeed, we
have ϕ̇ = a5x

2
ac − ω3ϕ which locally yields

xac =

√
ϕ̇+ ω3ϕ

a5
= γ2(ϕ, ϕ̇), (11)

(we use the lower index 2 to denote γ2 because xac is
the second component of the state vector x). From the
equation of ẋac, we deduce that

xcr = (γ̇2(ϕ, ϕ̇) + ω2γ2(ϕ, ϕ̇)) · 1 + a4ϕ

a3
= γ1(ϕ, ϕ̇, ϕ̈),

(12)
and finally, ẋcr gives

u= (γ̇1(ϕ, ϕ̇, ϕ̈) + ω1γ1(ϕ, ϕ̇, ϕ̈) − a0) ·
1 + a2ϕ2

C(t)
·
µ+ γ1(ϕ, ϕ̇, ϕ̈)

γ1(ϕ, ϕ̇, ϕ̈)
= δ(ϕ, ϕ̇, ϕ̈, ϕ(3)).

We have just expressed all state and control variables
with the help of ϕ = xco and its time-derivatives. Hence
representation (2) of Definition 1 holds and the system is
thus flat with ϕ = xco being a flat output at x∗.

Finally, the equivalence of (F1) and (F2) follows from Charlet
et al. [1991].

4.2 Proof of Theorem 2 The structural properties
claimed by conditions (C1)-(C3) of Theorem 2 are feed-
back invariant (that is, do not depend on invertible static
feedback transformations 3 of the form u = α(x)+β(x)v),
it follows that if they hold for system (10), then they
are also satisfied for the original one (9). We thus show
Theorem 2 for system (10).

Proof of (C1). In order to check whether system (10) is
locally, around x∗, static feedback linearizable, we have to
2 Where the Lie derivative Lfh, expressed in a coordinate system

(x1, . . . , xn) by Lfh =
∑n

i=1
∂h
∂xi

fi(x), evaluates the change of

the scalar smooth function h(x) along the vector field f(x), and
Lk+1
f

h = Lf (Lkfh), for k > 1.
3 We consider control-affine feedback transformations because the
studied system is a control-affine one.

verify the necessary and sufficient conditions of Theorem 3,
see Appendix A, for the drift f(x) and control vector
field g(x) of (10) (i.e., in compact form, we rewrite (10)
as ẋ = f(x) + g(x)u). By a straighforward computa-
tion, we have D0 = span { ∂

∂xcr
, ∂
∂xac

, ∂
∂xco
}, D1 = D0 +

span {− ∂
∂xgr

+ ∂
∂xdr
}, andD2 = D1+span { ∂

∂xgr
− kT
kd5

∂
∂xdr

+
kT
kd5

∂
∂xdrn

} = D1 + span {ζ1}, for which we denote the new

direction of D2 (added with respect to D1) by ζ1. The
above distributions are clearly of constant rank (3, 4 and
5, respectively) and involutive (all generating vector fields
being constant). From D2, we calculate

D3 =D2 + span {(− kT
kd5

ks4IC

(IC + xdrn)2
)

∂

∂xgrm
+ (−kd5

+
kT
kd5

rfkre)
∂

∂xgr
+
k2T
kd5

∂

∂xdr
− kT
kd5

(kT + rfkre)
∂

∂xdrn
},

=D2 + span {ζ2},
where, similarly to ζ1, now ζ2 denotes the new direction
of D3 not belonging to D2. We have

[ζ1, ζ2] = −2

(
kT
kd5

)2
ks4IC

(IC + xdrn)3
∂

∂xgrm
6∈ D3,

hence the distribution D3 is not involutive. It follows that
the system is not static feedback linearizable.

Proof of (C2). In order to show that system (10) is not
flat, notice that the dynamics associated to xgrm, xgr, xdr
and xdrn are completely independent on xcr, xac and ui,
1 6 i 6 3, see the hand-right side of (10). So system (10)
actually consists of two decoupled subsystems whose states
and controls are (xcr, xac) and (u1, u2), and (xco, . . . , xdrn)
and u3, respectively. The first subsystem is clearly flat
and, the two subsystems being decoupled, it follows that
flatness of (10) is actually equivalent to that of the second
subsystem, which is a single-input control system and
is flat if and only if it is static feedback linearizable.
By repeating the proof of condition (C1) with D0 being
replaced byD0 = span { ∂

∂xco
}, we conclude that the second

subsystem is not static feedback linearizable and thus not
flat. It follows that (10) is not flat either.

Proof of (C3). We show next that ϕ = (xcr, xac, xdrn)
is a Liouvillian output for system (10). The first two
equations of (10) give u1 = ϕ̇1 and u2 = ϕ̇2, respectively.

From ẋdrn = ϕ̇3, we express xdr as xdr =
ϕ̇3+rfkreϕ3

kT
=

γ6(ϕ3, ϕ̇3). Then ẋdr = γ̇6(ϕ3, ϕ̇3) allows us to calculate

xco ·xgr = γ̇6−kT γ6
kon

= λ(ϕ3, ϕ̇3, ϕ̈3). The dynamics of xgrm
reads

ẋgrm + kdxgrm = ks4
IC

IC + ϕ3
,

which is a linear differential equation in xgrm depending
on ϕ3. It follows that ξ1 = xgrm has to be computed
by solving this differential equation. Once ξ1 = xgrm has
been computed, the linear (with respect to xgr) differential
equation

ẋgr + kd5xgr = ks5ξ1 + rfkreϕ3 − konλ(ϕ3, ϕ̇3, ϕ̈3)

gives ξ2 = xgr. From xco · xgr = λ(ϕ3, ϕ̇3, ϕ̈3), we can
calculate xco = γ3(ϕ3, ϕ̇3, ϕ̈3, ξ2) and finally, from ẋco, we

get u3 = δ3(ϕ3, . . . , ϕ
(3)
3 , ξ2, ξ̇2). The system is thus proven

to be triangular Liouvillian with ϕ = (xcr, xac, xdrn) a
Liouvillian output and ξ = (xgrm, xgr) the variables for
which we need to solve two linear differential equations
with a triangular structure.



5. CONCLUSIONS AND FUTURE WORK

In this paper, we studied flatness and Liouvillian proper-
ties of two existing quantitative models of the HPA axis.
We showed that the minimal three-dimensional model
controlled by the strength of the auto-up-regulation of
CRH is always flat, while the more involved model with
seven states and three inputs is never flat. We proved that
although not flat, the involved model however exhibits an
interesting property: it is a triangular Liouvillian control
system. Based on the Liouvillian character of the involved
model, our future work will include trajectory tracking
(more precisely, maintenance of the homeostatic glucocor-
ticoid rhythms) of CRH, CORT and ACTH, robust to
stress and light perturbations. In addition to the dynamics
described by (9), we could also consider a slow actuator
dynamics accounting for the neural plasticity behind the
time-evolution of the parameters Kp1, Kp2 and kp3.

A. STATIC FEEDBACK LINEARIZATION

The problem of static feedback linearization was solved
by Jakubczyk and Respondek [1980] and, independently,
by Hunt and Su [1981], who gave geometric necessary and
sufficient conditions that we recall in Theorem 3 below.
Consider the following control-affine system 4 :

Σ : ẋ = f(x) +

m∑
i=1

uigi(x), x ∈ X ⊂ Rn, u ∈ U ⊂ Rm.

Define the following sequence of distributions D0 =
span {g1, . . . , gm} andDj+1 = Dj+[f,Dj ] = span {gi, adfgi,
. . . , adj+1

f gi, 1 6 i 6 m}, where j > 0, adfgi denotes

adfgi = [f, gi], where the bracket represents the Lie

bracket 5 , and adj+1
f gi = [f, adjfgi].

Theorem 3. The following conditions are equivalent:

(FL1) Σ is locally static feedback linearizable, around
x∗ ∈ X;

(FL2) Σ is locally static feedback equivalent, around x∗ ∈
X, to the Brunovský canonical form

(Br) :

{
żji = zj+1

i

żρii = vi,

where 1 6 i 6 m, 1 6 j 6 ρi− 1, and
∑m
i=1 ρi = n;

(FL3) For any j > 0, the distributions Dj do not depend
on u, are of constant rank, around x∗ ∈ X,
involutive, and Dn−1 = TX.

The Brunovský canonical form (Br), see Brunovsky [1970],
consists of m independent chains of integrators zi =
(z1i , . . . , z

ρi
i ), for 1 6 i 6 m, of lengths, respectively,

ρ1, ρ2, . . . , ρm, and is clearly flat with (ϕ1, . . . , ϕm) =
(z11 , . . . , z

1
m) a flat output.
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Charlet, B., Lévine, J., and Marino, R. (1991). Sufficient conditions
for dynamic state feedback linearization. SIAM J. Control Optim.,
29(1), 38–57.

Chelouah, A. (1997). Extensions of differential flat fields and
Liouvillian systems. In Proceedings of the 36th IEEE Conference
on Decision and Control, volume 5, 4268–4273 vol.5.

Chelouah, A. (2010). Diffieties and Liouvillian Systems. CoRR,
abs/1010.3909. URL http://arxiv.org/abs/1010.3909.

Conrad, M., Hubold, C., Fischer, B., and Peters, A. (2009). Model-
ing the hypothalamus–pituitary–adrenal system: homeostasis by
interacting positive and negative feedback. Journal of Biological
Physics, 35(2), 149–162.

Crespo, T., Hajto, Z., and Mohseni, R. (2021). Real Liouvillian
extensions of partial differential fields. Symmetry, Integrability
and Geometry: Methods and Applications, 17(0), 95–16.
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