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Instability conditions for reaction-diffusion-ODE systems
Mathieu Bajodek, Hugo Lhachemi, Giorgio Valmorbida

Abstract—This paper analyzes the stability of a reaction-
diffusion equation coupled with a finite-dimensional controller
through Dirichlet boundary input and Neumann boundary out-
put. Going against the flow, we intend to propose numerical
certificates of instability for such interconnections. From one
side, using spectral methods, an analytical condition based on
root locus analysis can determine the instability regions in the
parameters space and can sometimes be tested. On the other side,
using Lyapunov direct and converse approaches, two sufficient
conditions of instability are established in terms of linear matrix
inequalities. The novelties lie both in the type of system studied
and in the methods used. The numerical results demonstrate the
performance of the different criteria set up in this paper and
allow us to conjecture that these conditions seem to be necessary
and sufficient.

Index Terms—Distributed parameter systems, Stability of lin-
ear systems, Reaction-diffusion, Semidefinite programming.

I. INTRODUCTION

Physical phenomena of heat, particles, or electric charge
flows are modeled by reaction-diffusion equations [30]. In
these systems, the inputs and outputs often appear at the
boundaries. Therefore, to stabilize or regulate the state of a
reaction-diffusion system, boundary measurements and actua-
tion are imposed. Moreover, for practical reasons, stabilizing
control laws are often required to be finite-dimensional and
linear. The interconnection between the system and the con-
troller thus leads to a non-standard linear infinite-dimensional
system, which makes its stability analysis a tough task [26],
[27]. This paper studies this class of interconnections aiming
at developing numerical methods for the stability analysis and
proposes conditions allowing us to conclude on the stability in
the space of the system’s parameters, namely the reaction and
diffusion coefficients as well as the finite-dimensional terms.

Sufficient conditions for the stability of interconnections
between a partial differential equation (PDE) and an ordinary
differential equation (ODE) can be obtained by structuring
Lyapunov functional as the sum of two quadratic terms, one
associated to the infinite-dimensional part [29] and another
one related to the ODE dynamics [32]. Such an approach,
imposing negative derivatives along the trajectories of the
coupled system, leads to pessimistic stability estimates. To
these limited Lyapunov functional structures, crossed terms
between PDE and ODE variables can be introduced with
particular parametrizations of the Lyapunov functional [34]
using Legendre [3], spectral [33] or Fourier [23] terms. In [22],
an input-to-state analysis based on the small-gain theorem
is also presented. These techniques reduce conservatism and
simplify the design approach, although they remain only
sufficient conditions for stability.

The authors are with Université Paris Saclay, CNRS, CentraleSupelec,
INRIA, Laboratoire des signaux et systèmes, 91190 Gif Sur Yvette, France
(e-mail: mathieu.bajodek@centralesupelec.fr).

On a different vein, backstepping methods aim to design
state feedback controllers with boundary actuation by fixing
an inherently stable target system [25], [37]. Nevertheless,
the panel of target systems is limited and the technique,
in general, requires an additional step of discretization of
the control [1] and may lack the robustness addressed by
dynamical finite-dimensional controllers [22]. To get free of
instability phenomena or loss of robustness, an anticipation
stage to the design process is needed and studied in this paper.

In this paper, we approach the stability analysis of reaction-
diffusion PDE and ODE interconnections from a different
angle by proposing sufficient conditions of instability for
the system. Therefore, we establish conditions to identify
unstable systems thus allowing us to determine regions of
parameters yielding unstable trajectories [7], [26]. Combined
with sufficient stability conditions, our result enables us to
obtain inner and outer approximations of the stability regions
in the state of parameters. The study of instability conditions
has been considered for transport PDE coupled with an ODE
(time-delay systems) [13], [15], [28], [35], which inspired
us to include the case of reaction-diffusion PDE and ODE
interconnected systems. Our study will look in particular at
spectral or quasi-spectral projection methods.

Section II presents our linear reaction-diffusion-ODE sys-
tem and its characteristics. From one side, Section III deals
with spectral analysis. In the Laplace domain, using a Riesz
decomposition of our operator, the stability relies on the
location of the roots of the characteristic equation [10] (as
for time-delay systems [35]). On the other side, Section IV
uses Lyapunov analysis. In the time domain, the existence of
a positive Lyapunov operator is crucial [12] (as for time-delay
systems [24], [28]). Direct and converse Lyapunov instability
conditions are then proposed with the help of projections on
sub-spaces of the infinite-dimensional state space. Section V
is finally devoted to two examples. Particular attention is paid
to the simple case of scalar systems for illustrative purposes.

Notation: In this paper, the set of natural, real, complex
numbers, real matrices of size n×m and of symmetric positive
definite matrices of size n are denoted by N, R, C, Rn×m and
Sn+, respectively. For any s ∈ C, Re(s) and Im(s) represent
its real and imaginary parts and i =

√
−1. The notation enj

stands for the j-th vector of the canonical basis of Rn. For
any square matrix M , M ≻ 0 means that M belongs to
S+n and He(M) = M + M⊤, where M⊤ is the transpose
of matrix M . Denote also its determinant det(M), adjugate
adj(M) and kernel ker(M). Moreover, A∗ will be used for the
adjoint of operator A. We also consider functions cosh(σ) =
eσ+e−σ

2 , sinh(σ) = eσ−e−σ

2 and sinhc(σ) = eσ−e−σ

2σ . We
finally set H := Rn × L2(a, b) and H2 := Rn × H2(a, b),
where L2 is the space of square integrable functions and
H2 the second order Sobolev space. In H, define the scalar



2

product by ⟨[ x1
z1 ]|[

x2
z2 ]⟩ = x⊤

1 x2 +
∫ b

a
z⊤1 (θ)z2(θ)dθ and the

associated norm ∥[ xz ]∥
2
= |x|2 +

∫ b

a
|z(θ)|2dθ, where | · | is

the Euclidean norm. Lastly, introduce the Kronecker function

δθp(z) :=

{
0 if θ ̸= θp

z(θp) if θ = θp
and the notation span(S)

for linear combinations of the vectors in the set S.

II. PROBLEM STATEMENT

A. Reaction-diffusion and ODE interconnected system

Consider one reaction-diffusion equation interconnected
through the boundaries to a set of nx ODEs

ẋ(t) = Ax(t) +B∂θz(t, θo),

∂tz(t, θ) = (ν∂θθ + λ)z(t, θ), ∀θ ∈ (0, θi),[
z(t,0)
z(t,θi)

]
=
[
Cx(t)

0

]
,

(1)

for all t ≥ 0, where matrices A ∈ Rnx×nx , B ∈ Rnx×1,
C ∈ R1×nx and where scalars λ ∈ R, ν > 0, θi > 0 and
θo ∈ [0, θi].

This interconnection is representative of a control loop of a
reaction-diffusion system, where the PDE part is the plant and
the ODE part corresponds to the dynamics of the controller.
We associate the following linear operator to system (1)

A =

[
A Bδθo∂θ
0 ν∂θθ + λ

]
, (2)

on the domain D given by

D :=
{
[ xz ] ∈ Rnx×H2(0, θi) |

[
C −δ0
0 −δθi

]
[ xz ] = 0

}
. (3)

In the Laplace domain, an irrational transfer function can
describe the reaction-diffusion part. Indeed, considering zero
initial conditions, we have{

sZ(s, θ) = (ν∂θθ + λ)Z(s, θ), ∀θ ∈ (0, θi),[
Z(s,0)
Z(s,θi)

]
=
[
CX(s)

0

]
.

(4)

Solving this reaction-diffusion equation with respect to the
Laplace variable s, the distributed transfer function from
CX(s) to Z(s, θ) is given by

G(s, θ)=

[
e
√

s−λ
ν θ

e−
√

s−λ
ν θ

]⊤[
1 1

e
√

s−λ
ν θi e−

√
s−λ
ν θi

]−1 [
1
0

]
,

=

sinh

(√
s−λ
ν (θi − θ)

)
sinh

(√
s−λ
ν θi

) , ∀θ ∈ [0, θi],

(5)

for all s ∈ C\
{
−ν(kπθi )

2 + λ
}
k∈N

leading to the follow-
ing transfer function from the input CX(s) to the output
∂θZ(s, θo)

H(s) = ∂θG(s, θo) = −
cosh

(√
s−λ
ν (θi − θo)

)
θisinhc

(√
s−λ
ν θi

) . (6)

Let ∆(s) := det(sInx
−A−BH(s)C). The point spectrum

of operator A are solutions to

∆(s) = 0. (7)

Remark 1: Compared to time-delay systems [35], the
transfer function of the transport equation e−hs (or delay
h > 0) is the irrational transfer function H(s) in (6), which
is holomorphic on the set C\

{
−ν(kπθi )

2 + λ
}
k∈N

, namely a
meromorphic function. ⌟

B. Riesz decomposition

We focus here on the modal decomposition of the operator
A to deduce the existence and analytic properties of the
semigroup generated by A on the infinite-dimensional state
space H := Rnx × L2(0, θi).

Lemma 1: The point spectrum of operator A in (2), namely
the roots of ∆(s) as in (7), are isolated and of finite algebraic
multiplicity.
Proof : The proof is given in [38, Lemma 2] or [14,
Lemma 1]. It relies on the existence of a sufficiently large
scalar µ such that (µ−A)−1 exists and is compact in H. □

The point spectrum of A will be denoted by {sk}k∈N in the
sequel.

Remark 2: As a consequence of Lemma 1, there is a finite
number of roots {sk}k∈N contained in any compact subset of
C. ⌟

Lemma 2: There is a set of generalized characteristic
functions1 {Fk}k∈N of A in (2), which forms a Riesz basis
for H.
Proof : The proof is similar to [38, Theorem 1]. It consists in
considering the ODE as an external perturbation of the PDE.
The characteristic roots of (1) are solution of (7) and verify

sinhc

(√
s− λ

ν
θi

)
=R(s) cosh

(√
s− λ

ν
(θi − θo)

)
, (8)

for some rational fraction R(s), whose numerator and de-
nominator are of degrees nx − 1 and nx respectively. The
detailed expression of R(s) can be obtained similarly to [38,
Appendix 1], but is not needed here. Only the property
R(s) = O

s→∞
( 1s ) will be used. Denoting σ =

√
s−λ
ν θi, we

obtain

(eσ − e−σ)=σ(eσ + e−σ)R
(
ν(σ/θi)

2 + λ
)cosh(σ θi−θo

θi

)
cosh(σ)

.

(9)
Hence, arranging the terms in (9) gives

e2σ =
1 + σR

(
ν(σ/θi)

2 + λ
) cosh(σ θi−θo

θi

)
cosh(σ)

1− σR
(
ν(σ/θi)

2 + λ
)cosh(σ θi−θo

θi

)
cosh(σ)

, (10)

1A generalized characteristic function Fk associated to the characteristic
root sk is non null and satisfy (sk −A)δFk = 0, for a positive integer δ.
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and letting σ → ∞ yields

e2σ = 1 + O
σ→∞

(
1

σ

)
. (11)

From Rouché’s theorem [9, Theorem 5.3.8], we show that
there exists an integer n from which the roots {σk}k≥n of (7)
are algebraically and geometrically simple and expressed as

σk =

√
sk − λ

ν
θi = ikπ + O

k→∞

(
1

k

)
. (12)

Following Appendix A, the corresponding normalized charac-
teristic functions SF := {Fk}k≥n of A in D are expressed
as

Fk :=

[
adj((ν(σk/θi)

2+λ)Inx−A)B i sinh(σk)

Cadj((ν(σk/θi)
2+λ)Inx−A)B

i sinh
(
σk

θi−θ

θi

)
]
.

(13)
Using Taylor’s expansion of sinh, equations (12),(13) lead to
the following θ-uniform asymptotic behavior

Fk =
[

0

sin
(
kπ

θi−θ

θi

) ]
+ O

k→∞

(
1

k

)
. (14)

Consider now the sequence SE := {enx
1 , · · · , enx

nx
, Ek}k∈N

where
Ek :=

[
0

sin
(
kπ

θi−θ

θi
)
) ]

. (15)

This canonical sequence SE forms a complete orthogonal basis
of H. By comparing the sequences SE and SF on H, we obtain

∞∑
k=n

∥Ek − Fk∥2 ≤
∞∑

k=n

O
k→∞

(
1

k2

)
< ∞. (16)

Modified Bari’s theorem in [20, Thm 6.3] concludes the
proof. □

As a consequence of Lemma 2, system (1) with an initial
condition

[
x(0)
z(0)

]
in H is well-posed. More precisely, the

operator A in (2) generates a holomorphic semigroup for
H [10, Theorem 3.2.14].

C. Problem statement

Recall first the definition of asymptotic stability [21].
Definition 1: The equilibirum of system (1) is globally

asymptotically stable if the two following properties hold.
(i) Lyapunov stability: For all ε > 0, there exists δ > 0 such

that, for any ∥[ x0
z0 ]∥ ≤ δ, we have

∥∥∥[ x(t)
z(t)

]∥∥∥ ≤ ε, ∀t ≥ 0.
(ii) Global attractivity: For any [ x0

z0 ] ∈ H, the solution[
x(t)
z(t)

]
∈ H converges to the origin as t → ∞.

In [22, Chapter 8], stability properties are discussed for
reaction coefficient λ < 0 and state matrix A Hurwitz. In [2],
[3], cases of unstable PDE and unstable ODE are respectively
studied and present numerical formulations to verify sufficient
conditions of stability.

In the rest of the paper, we focus on necessary conditions
of stability and aim at obtaining numerical conditions of in-
stability. Using spectral and temporal approaches, respectively
in Sections III and IV, we determine when the assumptions

(i)-(ii) in Definition 1 do not hold. In other words, we wish
to solve the following problem.

Problem 1: Determine sets on the space of parameters
(A,B,C, ν, λ, θi, θo) ∈ Rnx×nx × Rnx×1 × R1×nx × R4 in
which system (1) is not globally asymptotically stable.

III. SPECTRAL ANALYSIS

Stability properties are often characterized by the poles’
location. Root locus analysis enables to study the charac-
teristic roots in terms of variation of the system parame-
ters. For transport-ODE interconnections (time-delay systems),
the literature abounds [8], [35] and numerical solutions are
proposed [6], [17]. Here, we follow a similar path to study
reaction-diffusion-ODE systems.

A. Spectral condition

From [10, Theorem 3.2.8], the following general theorem
is stated.

Theorem 1: System (1) is globally asymptotically stable if
and only if all the solutions of (7) have a strictly negative real
part.
Proof : We denote by {Fk}k∈N and {F∗

k}k∈N the generalized
characteristic functions associated to the characteristic roots
{σk}k∈N of A and {σ∗

k}k∈N of A∗, such that {Fk}k∈N
and {F∗

k}k∈N are biorthogonal. We also denote by δk the
dimension of the k-th generalized characteristic space, which
verify δk = 1, for any k ≥ n according to the proof of
Lemma 2. The semigroup T (t) generated by the operator A
is then given by

T (t)[ x0
z0 ] =

n−1∑
k=1

δk∑
d=0

αk,dt
deskt ⟨[ x0

z0 ]|F∗
k ⟩ Fk

+

∞∑
k=n

eskt ⟨[ x0
z0 ]|F∗

k ⟩ Fk, t ≥ 0,

(17)

for some scalars αk,d and for any [ x0
z0 ] in H. The trajectories

given by
[
x(t)
z(t)

]
= T (t)[ x0

z0 ] satisfy both items (i) and (ii) in
Definition 1 if and only if sup

k∈N
Re(sk) < 0, which concludes

the proof. □

B. Modified spectral condition

With the change of variable σ =
√

s−λ
ν θi, the characteristic

equation (7) rewrites as

det((νσ2 + λ)Inx
−A−BH̄(σ)C) = 0, (18)

where the function H̄ is given by

H̄(σ) :=
σ

θi

[
eσθo/θi

−e−σθo/θi

]⊤ [
1 1
eσ e−σ

]−1 [
1
0

]
. (19)

Corollary 1: System (1) is globally asymptotically stable if
and only if all the solutions σ of (18) satisfy

(Re(σ/θi))
2−(Im(σ/θi))

2
< −λ

ν
. (20)
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Stable
roots

Unstable
roots Re(s)

Im(s)

(a) Stability condition before
the change of variable.

Re(σ)

Im(σ)

(b) Stability condition after the
change of variable, for λ = 0.

Re(σ)

Im(σ)

(c) Stability condition after the
change of variable, for λ < 0.

Re(σ)

Im(σ)

(d) Stability condition after the
change of variable, for λ > 0.

Fig. 1: Illustration of Theorem 1 and Corollary 1.

Proof : Assume that σ = Re(σ)+ iIm(σ) is solution of (18).
Then, s−λ

ν = Re(σ/θi)
2 − Im(σ/θi)

2 +2iRe(σ/θi)Im(σ/θi)
is solution of (7). From Theorem 1, Re(s) < 0 is a necessary
and sufficient condition of asymptotic stability. Since ν > 0,
it can therefore be rewritten equivalently as in (20). □

Even though Theorem 1 and Corollary 1 present necessary
and sufficient conditions for global asymptotic stability of
system (1) (see Fig. 1), they require the knowledge of the
entire point spectrum of A, which is difficult to obtain in
general. On the other hand, it is possible to compute a subset
of the point spectrum. Therefore, Theorem 1 or Corollary 1
will only be used as sufficient instability conditions, that is,
if at least one characteristic root has a positive real part, then
the origin of (1) is unstable.

Remark 3: The conditions in Theorem 1 or Corollary 1 are
similar to the ones detailed in [4] for fractional differential
systems. ⌟

Remark 4: In practice, note that the solutions of (18)
are related to the eigenvalue problem of a neutral time-delay
system. The characteristic equation (18) is then easier to study
than (7). Indeed, matrix pencils [18] or discretization [5]
techniques can be used to plot the root locus graphic. ⌟

IV. LYAPUNOV ANALYSIS

The stability analysis of linear infinite-dimensional systems
can also be studied by Lyapunov methods [11], [12]. For
transport-ODE interconnections, a necessary and sufficient
condition of stability is based on the positivity of a converse
Lyapunov operator written in terms of the Lyapunov delay
matrix [24]. Approximate solutions and numerical tests using
a finite number of parameters are then proposed [19], [28].
This section presents a similar formulation to obtain instability
certificates for reaction-diffusion-ODE systems.

A. Lyapunov functional

For any [ xz ] ∈ H, let us introduce the quadratic functional

V([ xz ]) = x⊤Px+ 2

∫ θi

0

x⊤Q(θ)z(θ)dθ

+

∫ θi

0

∫ θi

0

z⊤(θ1)T (θ1, θ2)z(θ2)dθ1dθ2.

(21)

with P ∈ Snx
+ , T (θ1, θ2) = T⊤(θ2, θ1) and bounded functions

Q ∈ L2(0, θi)
nx and T ∈ L2((0, θi)× (0, θi)).

For any [ xz ] ∈ D, its time derivative along the trajectories
of system (1) is given by

1

2
V̇([ xz ])=x⊤P (Ax+B∂θz(θo))+∂θz

⊤(θo)

∫ θi

0

B⊤Q(θ)z(θ)dθ

+ x⊤
∫ θi

0

(A⊤Q(θ)z(θ)+Q(θ)(ν∂θθ + λ)z(θ))dθ

+

∫ θi

0

∫ θi

0

z⊤(θ1)T (θ1, θ2)(ν∂θ2θ2 + λ)z(θ2)dθ1dθ2. (22)

This last expression will be used below in the proof of
Theorem 2.

Theorem 2: System (1) is globally asymptotically stable if
and only if there exist scalars γ1, γ2 > 0 and a Lyapunov
functional V of the form (21) satisfying{

γ1 ∥[ xz ]∥
2 ≤ V([ xz ]), ∀[ xz ] ∈ H,

V̇([ xz ]) ≤ −γ2 ∥[ xz ]∥
2
, ∀[ xz ] ∈ D.

(23a)

(23b)

Proof : The sufficiency is verified by application of
the Lyapunov theorem in the Hilbert space H as in [11,
Corollary 2]. The necessity follows from [11, Theorem 1].
Indeed, assuming that the system is asymptotically stable,
the converse Lyapunov operator P solution of the Lyapunov
equation A∗P + PA = −I is expressed as

P[ x0
z0 ] = −

∫ ∞

0

T ∗(t)T (t)[ x0
z0 ]dt, (24)

where T is the semigroup generated by A. Using the expres-
sion (17) of T leads to

P[ x0
z0 ] =

∞∑
k=1

∞∑
k′=1

Ik,k′ ⟨[ x0
z0 ]|F∗

k ⟩ ⟨Fk|F∗
k′⟩ Fk′ , (25)

where the integral Ik,k′ is given by

Ik,k′ = −
∫ ∞

0

βk,k′(t)e(sk+s∗
k′ )tdt,

with

βk,k′(t) =


δk∑
d=0

δk′∑
d′=0

(
αk,dt

d
)(
α∗
k′,d′td

′
)

if k < n or k′ < n,

1 if k ≥ n and k′ ≥ n,

and with scalars αk,d introduced in (17). The biorthogonality
of the generalized characteristic functions {Fk}k∈N of A,
{F∗

k}k∈N of A∗ simplifies the expression

P[ x0
z0 ] =

∞∑
k=1

Ik,k ⟨[ x0
z0 ]|F∗

k ⟩ Fk, (26)



5

where the integral is computed with integration by parts

Ik,k =


δk∑
d=0

δk∑
d′=0

(−1)d+d′
αk,dα

∗
k,d′

(2Re(sk))d+d′+1
if k < n,

− 1

2Re(sk)
otherwise.

Therefore, the converse Lyapunov functional

V([ x0
z0 ]) = ⟨[ x0

z0 ]|P[ x0
z0 ]⟩ , ∀[ x0

z0 ] ∈ H, (27)

can be written in the form (21). On one side, [11, Theorem 2]
ensures the boundedness of P and gives Re(sk) < 0 for
all k ∈ N which guarantees the positivity of P and the
validity of (23a). On the other side, along the trajectories of
system (1), the inequality (23b) holds. This completes the
proof. □

B. Direct Lyapunov condition

For a given integer n ∈ N, consider a set of linearly
independent functions {φk}k∈{0,...,n−1} in L2(0, θi) which is

(P1) orthonormal with the usual L2(0, θi) scalar product,
(P2) closed under differentiation.

For instance, sets of Legendre polynomials {lk}k∈N or trigono-
metric functions {cos(kπ θ

θi
), sin(kπ θ

θi
)}k∈N satisfy properties

(P1)-(P2).
In this subsection, we intend to perform a projection

of the infinite-dimensional spaces H and D (3) into the
finite-dimensional subspace spanned by the sequence Sn :=
{enx

1 , · · · , enx
nx
, φk}k∈{0,...,n−1}, that are

Hn := span(Sn) ⊂ H, Dn := Hn ∩ D ⊂ D.

For any (x, z) ∈ Hn, using the orthonormal property (P1),
the state z can be decomposed in a finite number of terms as
follows

z(θ)=

n−1∑
k=0

φk(θ)

∫ θi

0

φk(τ)z(τ)dτ=Φ⊤
n (θ)

∫ θi

0

Φn(τ)z(τ)dτ,

(28)
with Φn = [ φ0 ··· φn−1 ]

⊤ ∈ Rn×1, the Lyapunov functional
in (21) is equal to

V([ xz ]) =
[

x∫ θi
0 Φn(τ)z(τ)dτ

]⊤
Ψ+

n

[
x∫ θi

0 Φn(τ)z(τ)dτ

]
, (29)

with matrices

Ψ+
n =

[
P Qn

Q⊤
n Tn

]
∈ R(nx+n)×(nx+n), P ∈ Snx

+ ,

Qn =

∫ θi

0

Q(θ)Φ⊤
n (θ)dθ ∈ Rnx×n,

Tn =

∫ θi

0

∫ θi

0

Φn(θ1)T (θ1, θ2)Φ
⊤
n (θ2)dθ1θ2 ∈ Sn+.

(30)

For any (x, z) ∈ Hn, using the differentiation property (P2),

Φ′
n(θ) = ∆nΦn(θ), ∀θ ∈ [0, θi], (31)

for some differentiation matrix ∆n ∈ Rn×n with known
coefficients, the Lyapunov functional’s derivative (22) is equal
to

V̇([ xz ]) =
[

x∫ θi
0 Φn(τ)z(τ)dτ

]⊤
Ψ−

n

[
x∫ θi

0 Φn(τ)z(τ)dτ

]
, (32)

with matrices

Ψ−
n = He

([
Ψxx Ψxz

0 Ψzz

])
∈ R(nx+n)×(nx+n),

Ψxx = PA ∈ Rnx×nx ,

Ψxz = PBΦ⊤
n (θo)∆

⊤
n +(λInx

+A⊤)Qn+νQn(∆
⊤
n )

2 ∈ Rnx×n,

Ψzz = ∆nΦn(θo)B
⊤Qn + Tn(λIn+ν(∆⊤

n )
2) ∈ Rn×n.

(33)
Moreover, considering (x, z) ∈ Dn, the expression of V̇

will be restricted to D in (3). In other words, the vector[
x∫ θi

0 Φn(τ)z(τ)dτ

]
need to satisfy[

C −Φ⊤
n (0)

0 −Φ⊤
n (θi)

][
x∫ θi

0 Φn(τ)z(τ)dτ

]
= 0. (34)

This constraint (34) can be seen as a projection of the finite-
dimensional state ξn =

[
x∫ θi

0 Φn(τ)z(τ)dτ

]
on the matrix kernel

Πn = ker
[
C −Φ⊤

n (0)

0 −Φ⊤
n (θi)

]
. (35)

Matrices Ψ+
n and Ψ−

n are expressed with a finite number of
parameters via the triplet of matrices (P,Qn, Tn). We can then
deduce an instability criterion in the form of a semidefinite
programming test based on the feasibility of two affine matrix
inequalities.

Theorem 3: For a given n ∈ N, if there is no triplet of
matrices (P,Qn, Tn) ∈ Snx

+ ×Rnx×n × Sn+ such that Ψ+
n ≻ 0

and Π⊤
nΨ

−
nΠn ≺ 0, then system (1) is unstable.

Proof : Assume that system (1) is globally asymptotically
stable. Then, there exist scalars γ1, γ2 > 0 and a triplet of
functions (P,Q, T ) such that the Lyapunov functional V given
by (21) satisfy inequalities (23) that are recalled below

γ1 ∥[ xz ]∥
2 ≤ V([ xz ]), ∀[ xz ] ∈ H,

V̇([ xz ]) ≤ −γ2 ∥[ xz ]∥
2
, ∀[ xz ] ∈ D.

In particular, these inequalities are also verified on the subsets
Hn ⊂ H and Dn ⊂ D, respectively. It gives then a triplet of
matrices (P,Qn, Tn) such that

γ1|ξn|2 ≤ ξ⊤n Ψ−
n ξn, ∀ξn ∈ Rnx+n,

ξ⊤n Ψ−
n ξn ≤ −γ2|ξn|2, ∀ξn ∈

{
Rnx+n such that[
C −Φ⊤

n (0)

0 −Φ⊤
n (θi)

]
ξn = 0

}
,

(36)
which means that Ψ+

n ≻ 0 and Π⊤
nΨ

−
nΠn ≺ 0. By

contraposition, the theorem’s statement holds. □

Remark 5: Note that the condition in Theorem 2 gives an
outer estimate of the feasible set in the space of parameters for
the integral inequalities (23). It naturally leads to a sufficient
instability condition. Following [16] and using the add-on
QUINOPT (QUadratic INtegral OPTimisation) on Yalmip, it
might be possible to also have an inner estimate of the integral
inequalities (23). ⌟
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C. Converse Lyapunov condition

In this subsection, we exploit the solution of the Lyapunov
equation A∗P + PA = −W , for an arbitrary diagonal and
positive operator W = [ 1 0

0 w ]. Indeed, for θo = θi, the partic-
ular triplet (P,Q, T ) associated to such an converse operator
P satisfies the following equations (see Appendix B-A for
calculation details)

He(PA+ νQ′(0)C) = −Inx
,

νQ′′(θ)+(A⊤+λInx
)Q(θ)+νC⊤∂θ1T (0, θ)=0,

Q(0) = 0, PB + νQ(θi) = 0,

(ν∂θ1θ1 + ν∂θ2θ2 + 2λ)T (θ1, θ2) = 0,

T (θ, 0) = 0, νT (θi, θ) +B⊤Q(θ) = 0,

(∂θ1 − ∂θ2)T (θ, θ) = −w

2
.

(37a)

(37b)
(37c)
(37d)

(37e)

(37f)

According to [12, Theorem 1], the statement below holds.
Theorem 4: For w > 0, consider the Lyapunov functional V

of the form (21) where (P,Q, T ) satisfy (37). System (1) is
globally asymptotically stable if and only if there exists a
scalar γ > 0 such that for all [ xz ] ∈ H the following inequality
holds

γ ∥[ xz ]∥
2 ≤ V([ xz ]). (38)

Proof : It parallels the proof of Theorem 2. For more details,
one can refer to [11], [12]. □

Since inequality (38) cannot be tested numerically, we
propose an alternative as a sufficient condition of instability.

Corollary 2: For a given n in N, define matrix Ψ+
n by (30)

where (P,Q, T ) satisfy (37) with w > 0. If Ψ+
n is not positive

definite, then system (1) is unstable.
Proof : Assume that Ψ+

n is not positive definite. Consequently,
there exist a state ξn =

[
X+

ζ+
n

]
∈ Rnx+n\{0} such that

ξ⊤n Ψ+
n ξn ≤ 0. Then, by orthogonality of the functions Φn,

we have

V([ xz ]) ≤ 0, for [ xz ] :=
[

X+

Φ⊤
n ζ+

n

]
∈ H\{0}.

The previous inequality shows that the converse Lyapunov
functional is negative for a particular state in Hn ⊂ H. By
application of Theorem 4, we conclude that system (1) is
unstable. □

For the case n = 0, the following corollary holds.
Corollary 3: If the matrix P solution of (37) with w > 0 is

not positive definite, then system (1) is unstable.
Remark 6: Note that Corollaries 2 and 3 extend Theorem 3

and can be used when the Lyapunov converse function is
known. Obtaining such a function is far from trivial in the
general case. ⌟

V. NUMERICAL RESULTS

A. A scalar example

The example below allows a complete and simple paramet-
ric study by considering nx = 1.

Example 1: Consider system (1) with A = a ∈ R, B = b ∈
R, C = 1, θi = θo, ν ∈ R and λ ∈ R.

-5 0 5
-5

0

5

Fig. 2: Spectral condition with λ = 0, ν = θi = 1.

The influence of the PDE parameter λ and the ODE parameter
a, which are known to rule the stability of both equations
separately, is investigated in the sequel.

1) Spectral analysis: The characteristic equation (7) is
given by

s− a+
b

θisinhc(
√

s−λ
ν θi)

= 0. (39)

Considering real solutions s = Re(s), we obtain a sufficient
condition of instability. For any λ

ν < ( π
θi
)2, the system is

unstable if the coefficient a satisfies

a >
b

θisinhc(
√

−λ
ν θi)

. (40)

This condition means that there is no real positive in-
tersection between f1(s) = −Re(s) + a and f2(s) =

b

θisinhc(

√
Re(s)−λ

ν θi)
. It is illustrated in Fig. 2, where the func-

tions f1 and f2 are plotted in blue and magenta colors. For
instance, when λ = 0, we find the instability condition a ≥ b

θi
.

For b = 0 (without interconnection), both systems have to be
stable separately.

Remark 7: Note that the limitation to λ
ν < ( π

θi
)2 is due to

the fact we only consider the first branch of the above function
f2 in the spectral analysis. ⌟

Remark 8: When b < bmax with

1

bmax
= − d

ds

1

θisinhc(
√

s−λ
ν θi)

(0),

=
θi
2ν

cosh(
√

−λ
ν θi)− sinhc(

√
−λ
ν θi)

sinh(
√

−λ
ν θi)2

=
λ=0

θi
6ν

.

(41)

the criterion (40) is a necessary and sufficient stability condi-
tion applying Theorem 1. ⌟

2) Direct Lyapunov condition: Theorem 3 can be used
with Legendre polynomials or Fourier trigonometric functions
normalized on the interval [0, θi]. Firstly, we remark that the
use of trigonometric functions is much more restrictive than
Legendre polynomials. Indeed, only trigonometric functions
can be generated on [0, θi] with Fourier basis [31]. Secondly,
the instability condition depends on the order n. When n
increases, the certified instability regions grow. On Fig. 3, we
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Fig. 3: Lyapunov direct condition with b = −1, ν = θi = 1.

applied Theorem 3 with respect to point-wise values of a and
λ. The unstable points are represented with red points, whose
size shrinks with the order n. From the order n = 10, we
notice that there is no more improvement and that the estimate
seems to converge to the unstable region colored in red.

3) Converse Lyapunov condition: Consider the
triplet (P,Q, T ) as the solution of (37), where T is a
piece-wise separable function [36]. This solution can be
expressed as follows (see Appendix B-B for calculation
details)

P =
αθi
2

sinhc(

√
−λ

ν
θi), Q(θ) = −αθi

2

b

ν
sinhc(

√
−λ

ν
θ),

T (θ1, θ2) =
(
cosh(

√
−λ
ν θ1) + β sinh(

√
−λ
ν θ1)

)
sinh(

√
−λ
ν θ2)

w
2 ,

for 0 ≤ θ2 ≤ θ1 ≤ 1,
T (θ2, θ1), otherwise,

(42)
where

α =

(
b− aθisinhc(

√
−λ
ν θi)

)−1

,

β =
a cosh(

√
−λ
ν θi)

b
√

−λ
ν −a sinh(

√
−λ
ν θi)

,

w =
α( b

ν )2/
√

−λ
ν

cosh(
√

−λ
ν θi)+β sinh(

√
−λ
ν θi)

.

(43)

It satisfies

V̇([ xz ]) = −|x|2 − w

∫ θi

0

|z(θ)|2dθ. (44)

For this particular case, the converse Lyapunov analysis re-
ported by Corollary 3 can be implemented. For w > 0, if
α < 0 then system (1) is unstable. It is equivalent to the
spectral criterion (40). The corresponding area is colored in
red on Fig. 3.

4) Comparison: A comparison between the three previous
results is reported in Fig. 3. From one side, the spectral condi-
tion (40) and the Lyapunov converse condition certify that the
red area is unstable and that the black line shows the boundary
between stable and unstable sets. From the other side, the
Lyapunov direct condition with Legendre polynomials at order
n = 10 provides red points when it is unstable and green
squares when we cannot conclude.

For b = −1 and ν = θi = 1, one can see that even if both
the PDE and the ODE are stable, the interconnection might be
unstable. Intead, for b = 1, the interconnection can stabilize
unstable subsystems.

Lastly, the spectral method and the converse Lyapunov
method are restricted to simple cases and require the above
analytical calculations (such as the computation of the right-
most characteristic root). The Lyapunov direct method is much
more tractable and does not need pre-processing. It is also
easily extendable to multi-dimensional reaction-diffusion PDE
cases, other sets of system’s parameters and other boundary
conditions (Neumann or Robin types).

B. Multivariable ODE example

Consider a matrix case, where A is Hurwitz and λ > 0. It
can be seen as a linear finite-dimensional controller at order
nx = 2 of an unstable reaction-diffusion equation.

Example 2: Consider system (1) with A =
[

0 1
−4 −4

]
, B =[

0
θi

]
, C = [ 1 0 ], ν > 0, λ > 0, θi > 0, θo = (1 − α)θi and

α ∈ (0, 0.5).
We focus on the instability phenomena occurred when the
sensor or actuator location (θi or θo) varies.

1) Spectral analysis: The characteristic equation (7) is
given by

(s+ 2)2 −
cosh(

√
s−λ
ν αθi)

sinhc(
√

s−λ
ν θi)

= 0. (45)

For real solutions s = Re(s), we obtain a sufficient
condition of instability. For any θi < ( νλ )

2π, Example 2 is
unstable if the coefficient α satisfies

α <
1√
−λ
ν θi

cosh−1

(
4sinhc(

√
−λ

ν
θi)

)
. (46)

This condition means that there is no real positive in-
tersection between f3(s) = −(Re(s) + 2)2 and f4(s) =

− cosh(

√
Re(s)−λ

ν αθi)

sinhc(

√
Re(s)−λ

ν θi)
. It is illustrated on Fig. 4, where the

functions f3 and f4 are plotted in blue and magenta colors.
For ν = λ = 1, α = 0.3 and θi = 3, the pole s ≃ 0.2 yields
an unstable the closed-loop system in Example 1. On Fig. 5,
we depict condition (46) as a black line. We can certify that
Example 2 is unstable for the parameters on the right of the
black line (red area) and stable on the left.

2) Direct Lyapunov condition: The numerical condition
Ψ+

n ≻ 0 and Π⊤
nΨ

−
nΠn ≺ 0 in Theorem 3 is tested with

Legendre polynomials at order n = 10. On Fig. 5, for
point-wise values of θi and θo

θi
= 1 − α, a green square

means that the condition succeeds, and a red point that it
fails. Applying Theorem 3, for red parameter values, the
interconnected system in Example 2 is unstable.

3) Comparison: Actually, for multivariable cases (nx > 1),
the closed form of the converse Lyapunov functional satis-
fying (37) is unknown. Then, we only compare the spectral
condition (46) and the semidefinite programming condition
given by Theorem 3. Once again, as shown in Fig. 5, both
results are similar. An unstable region is detected when θi or
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Fig. 4: Example 2 with ν = λ = 1 and θo
θi

= 0.7 (α = 0.3).
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Fig. 5: Example 2 with ν = λ = 1.

θo
θi

increase. It is also important to mention that the spectral
condition enables to prove instability for a set of continuous
parameters whereas the direct Lyapunov condition applies to
a set of discrete parameters.

VI. CONCLUSIONS

This paper deals with a reaction-diffusion PDE coupled with
an ODE. We developed instability tests to determine the role of
several parameters on the behavior of the linear interconnected
system. We propose three sufficient instability conditions: an
eigenvalue test based on the spectral approach, a semidefinite
programming test based on the direct Lyapunov approach, and
a positive definiteness test based on the converse Lyapunov
approach.

From a numerical point of view, we computed the sets of
parameters for which the closed-loop system is unstable. We
proved that the stability property of the interconnected system
is independent of the stability of the PDE or ODE separately.

Future work will extend the Lyapunov direct and converse
methods to convex hulls of parameters and multi-dimensional
PDE cases. Our theoretical results in terms of Riesz spectral
decomposition could also lead to design controllability tests
or control design strategies.

APPENDIX A
EXPRESSION OF SOME CHARACTERISTIC FUNCTIONS

Assuming that
[

xk(t)
zk(t,θ)

]
= eskt

[
Xk

Zk(θ)

]
is a non null

solution of system (1) implies that
skXk = AXk +B∂θZk(θo),

skZk(θ) = νZ ′′
k (θ) + λZk(θ), ∀θ ∈ (0, θi),

Zk(0) = CXk, Zk(θi) = 0.

(47)

From the ODE part, the vector Xk satisfies

det(skInx
−A)Xk = adj(skInx

−A)B∂θZk(θo). (48)

From the PDE part, the function Zk satisfies

sinh

(√
sk − λ

ν
θi

)
Zk(θ) = sinh

(√
sk − λ

ν
(θi − θ)

)
CXk.

By derivation and evaluation at θo, the coupling gives

det(skInx−A)−Cadj(skInx−A)BH(sk) = 0 ⇔ ∆(sk) = 0.
(49)

Then, for any u =
Cadj(skInx−A)B

det(skInx−A) sinh

(√
sk−λ

ν θi

)∂θZk(θo) in C

and for sk solution of ∆(sk) = 0, we obtain that

[
Xk

Zk(θ)

]
=

 adj(skInx−A)B
sinh

(√
sk−λ

ν
θi

)
Cadj(skInx−A)B

sinh

(√
sk−λ

ν (θi−θ)

)
u, (50)

solve (47). To conclude, Fk :=
[

Xk

Zk(θ)

]
i is the normalized

characteristic function of A in D associated to the character-
istic root sk solution of (7).

APPENDIX B
CONVERSE LYAPUNOV FUNCTIONAL

A. Kernels equation

Consider (P,Q, T ) in Snx
+ × L2(0, θi)

nx × L2((0, θi) ×
(0, θi)) such that T (θ1, θ2) = T (θ2, θ1) and that the Lya-
punov functional V in (21) satisfies along the trajectories of
system (1)

1

2
V̇(x, z) = −1

2
|x|2 − w

2

∫ θi

0

|z(θ)|2dθ. (51)

Applying integration by parts to the expression of V̇ in (22)
leads to

x⊤PAx+x⊤PB∂θz(θi)+∂θz
⊤(θi)

∫ θi

0

B⊤Q(θ)z(θ)dθ

+x⊤
∫ θi

0

(A⊤+ν∂θθ+λInx
)Q(θ)z(θ)dθ+νx⊤[Q(θ)∂θz(θ)]

θi
0

−νx⊤[∂θQ(θ)z(θ)]
θi
0 +ν

∫ θi

0

z⊤(θ) [T (θ, τ)∂τz(τ)]
θi
0 dθ

−ν

∫ θi

0

z⊤(θ)
(
[∂τT (θ, τ)z(τ)]

θ
0+[∂τT (θ, τ)z(τ)]

θi
θ

)
dθ

+

∫ θi

0

∫ θi

0

z⊤(θ1)(ν∂θ2θ2 + λ)T (θ1, θ2)z(θ2)dθ1dθ2

= −1

2
|x|2 − w

2

∫ θi

0

|z(θ)|2dθ.
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Boundary conditions z(0) = Cx and z(θi) = 0 allow to
simplify in

x⊤(PA+νQ′(0)C+
1

2
)x+x⊤(PB+νQ(θi))∂θz(θi)

+x⊤
∫ θi

0

(
(A⊤+ν∂θθ+λInx)Q(θ)+νC⊤lim

τ→0
∂τT

⊤(θ, τ)
)
z(θ)dθ

+∂θz
⊤(θi)

∫ θi

0

(BQ(θ)+νT⊤(θ, θi))z(θ)dθ

−νx⊤Q(0)∂θz(0)−ν

∫ θi

0

z⊤(θ)T (θ, 0)∂θz(0)dθ

−ν

∫ θi

0

z⊤(θ)

(
lim

τ→θ−
∂τT (θ, τ)− lim

τ→θ+
∂τT (θ, τ)+

w

2

)
z(θ)dθ

+

∫ θi

0

∫ θi

0

z⊤(θ1)(ν∂θ2θ2 + λ)T (θ1, θ2)z(θ2)dθ1dθ2 = 0.

Symmetric properties satisfied by the matrix P and the func-
tion T allow us to conclude that the constraints in (37) need
to be satisfied.

B. Kernels solution

Assuming that function T is a separable function on the
triangle {(θ1, θ2) ∈ [0, 1]2 | θ1 ≥ θ1}, the PDE part (37d)
leads to

T (θ1, θ2)=

(
β1 cosh(

√
−λ

ν
θ1) + β2 sinh(

√
−λ

ν
θ1)

)
(
β3 cosh(

√
−λ

ν
θ2) + β4 sinh(

√
−λ

ν
θ2)

)
,

(52)
where β1, β2, β3 and β4 are some scalars to be fixed. Nor-
malizing β1 = 1, the boundary conditions (37c),(37e),(37f)
give

P = (
ν

b
)2T (θi, θi), Q(θ) = −ν

b
T (θi, θ),

β3 = 0, β4 =
w

2
.

(53)

Moreover, the ODE part (37b) allows to fix

β2 =
a cosh(

√
−λ
ν θi)

b
√

−λ
ν − a sinh(

√
−λ
ν θi)

. (54)

Then, the last constraint (37a) imposes

aT (θi, θi)− b∂θ2T (θi, 0) = −
( bν )

2

2
, (55)

which means that

w =
( bν )

2/
√

−λ
ν(

cosh(
√

−λ
ν θi)+β sinh(

√
−λ
ν θi)

)(
b− aθisinhc(

√
−λ
ν θi)

).
(56)

Lastly, denoting

α =
cosh(

√
−λ
ν θi) + β sinh(

√
−λ
ν θi)

( bν )
2/
√

−λ
ν

w, β = β2, (57)

we recover the solution provided in (42)-(43).
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