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Introduction Complex/Real Kernel Methods Numerical Results

Parametric Problem

We address linear parametric problems in the form

(K+ sD+ s2M)u = g

Stiffness, damping and mass matrix K,D,M,∈ Rnh×nh

Complex frequency variable s = iω, where ω ∈ Ω ⊂ R+

Quantity of Interest (QoI)

f : C → C, s 7→ J (u(s))

Training data set {ωi, f(iωi)}ni=1 1 1.2 1.4 1.6 1.8 2 2.2 2.4
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Goal: Approximation of FRFs based on a few training points
Approach: Complex Gaussian Process (GP) / Kernel methods
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Gaussian Process Regression and Kernel Methods

f(x) ∼ GP(m(x), k(x, x′))

Mean function m(x)
Covariance function k(x, x′)

Gaussian Process Regression (GPR):
infer unobserved values by
conditioning on training data
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Approximation of complex functions

1. Use separate GP approximations for real and imaginary part
2. Use complex GP with

– Covariance function k(x, x′) = E[(f(x)−m(x))(f(x)−m(x′))∗]

– Pseudo-covariance function c(x, x′) = E[(f(x)−m(x))(f(x)−m(x′))]

Posterior mean: minimum norm interpolant in the RKHS with kernel k
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Introduction Complex/Real Kernel Methods Numerical Results

A Framework for Complex Kernel / GP Approximation

FRFs are complex-valued functions f : S → C, s 7→ f(s)

Symmetry condition f(s∗) = f(s)∗, ∀s ∈ S requires real vector spaces

Definition: complex/real RKHS
A real Hilbert space of complex valued functions (denoted H) over S,
with continuous evaluation functionals δs(f) = f(s).

A complex/real RKHS is characterized by
a kernel k and pseudo-kernel c

Complex GPs R. Boloix-Tortosa et al., ”Complex Gaussian Processes for Regression”, IEEE

Trans Neural Netw Learn Syst, 2018

Widely-linear estimation B. Picinbono and P. Chevalier, ”Widely linear estimation with

complex data”, IEEE Trans Signal Process, 1995
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A Framework for Complex Kernel / GP Approximation

Kernel interpolation in a complex/real RKHS
Let s1, . . . , sn ∈ S and y1, . . . , yn ∈ C. There exists a unique interpolant
f ∈ H such that f(si) = yi, i = 1, . . . , n, if and only if

Knγ + Cnγ∗ = y, with Kn = (k(si, sj))i,j,Cn = (c(si, sj))i,j

admits a solution γ ∈ Cn.

The function fn = ∑n
i=1 γik(·, si) + γ∗

i c(·, si):

is the unique interpolant with minimal norm in H

is the conditional mean prediction of the GP with covariance k and
pseudo-covariance c
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Complex/Real RKHS with Symmetry Condition
If all f ∈ H satisfy f(s∗) = f(s)∗, then

kernel and pseudo-kernel are related as c(s, s0) = k(s, s∗0)

interpolation requires yj = y∗i for all sj = s∗i

Example: Hardy space H2(Γα)

Assumption: f ∈ H2(Γα), where

Γα := {s ∈ C | R[s] > −α}, α > 0

−α
Γα

<

=

H2(Γα) is an RKHS with the kernel k (Szegö) and pseudo-kernel c

k(s, s0) =
1

2π(2α + s+ s∗0)
c(s, s0) =

1
2π(2α + s+ s0)

See also J. Lataire and T. Chen. ”Transfer function and transient estimation by Gaussian process

regression in the frequency domain”, Automatica, 2016
Ulrich Römer Learning of Frequency Response Functions in Eletrical Engineering July 12, 2022 7 / 19



Introduction Complex/Real Kernel Methods Numerical Results

Choice and Effect of Pseudo-Covariance

Comparison of different interpolation techniques:

Complex/real interpolation

Separate interpolation of real and imaginary part

Numerical example: third order rational function f ∈ H2(Γα), ω ∈ [0, 1]
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Combining Kernel and Rational Approximation

Problem: slow convergence of complex/real kernel interpolation
fn(iω; α) if function has a few dominant poles
Idea: combine kernel approach with rational basis functions1

f(K)n (iω; p, α) = fn(iω; α) +
K

∑
i=1

1
iω − pi

ri +
1

iω − p∗i
r∗i

Approach: heuristic algorithm generating models {f(K)n }KmaxK=0 by tuning
hyper-parameter α and pole pairs

Model selection using a novel criterion based on leave-on-out
cross-validation with an additional instability penalty

1B. Gustavsen and A. Semlyen, ”Rational approximation of frequency domain responses by
vector fitting”, IEEE Trans. Power Delivery (1999)
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Electric Circuit
Parallel connection of n underdamped series RLC circuits

Y(iω) =
n

∑
i=1

iω
(iω)2Li + iωRi + C−1

i
, ω ∈ [10 kHz, 25 kHz]

Setting 1: n1 = 1000 random series RLC elements

Ci ∼ U (1, 20) µF, Li ∼ U (0.1, 2)mH, Ri = Li(1+U (−0.2, 0.2))
Ω
mH

Setting 2: two additional circuit elements with very low damping
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Electric Circuit - Setting 1
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1Y. Nakatsukasa et al. ”The AAA algorithm for rational approximation”, SISC, 2018
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Electric Circuit - Setting 2
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Benchmark Problem: Acoustic Scattering

2m

PACMAN shape: vibrating surface

Acoustic pressure pi at black dot

Approx. with n training points (blue crosses)

Method: AAA (rational approximation)
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H. Ziegelwanger, P. Reiter, ”The PAC-MAN model: Benchmark case for linear acoustics in

computational physics,”J Comput Phys, 2017
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Benchmark Problem: Acoustic Scattering

2m

PACMAN shape: vibrating surface

Acoustic pressure pi at black dot

Approx. with n training points (blue crosses)

Vector Fitting (rational approximation)
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Benchmark Problem: Acoustic Scattering

2m

PACMAN shape: vibrating surface

Acoustic pressure pi at black dot

Approx. with n training points (blue crosses)

Complex/real kernel + rational basis
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Benchmark Problem: Acoustic Scattering

2m

PACMAN shape: vibrating surface

Acoustic pressure pi at black dot

Approx. with n training points
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Benchmark Problem: Sprial Antenna

CST Microwave Studio
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Conclusion

Real/complex kernel interpolation (GPR)

Construction of pseudo-kernels for FRF approximation

Additional rational basis functions to capture dominant poles

Model selection based on LOO and instability penalty

Method is competitive w.r.t. AAA/VF for a number of benchmark
problems

GP tools for model selection and adaptive sampling are available

Ulrich Römer Learning of Frequency Response Functions in Eletrical Engineering July 12, 2022 18 / 19



Introduction Complex/Real Kernel Methods Numerical Results

Thank you for your attention!

N. Georg, J. Bect, U. Römer, S. Schöps. Rational kernel-based
interpolation for complex-valued frequency response functions. Will
appear on arXiv.
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