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Abstract

In this technical report1, we aim to combine different protfolio allocation techniques with covariance matrix estimators to
meet two types of clients’ requirements: client A who wants to invest money wisely, not taking too much risk, and not willing
to pay too much in rebalancing fees; and client B who wants to make money quickly, benefit from market’s short-term volatility,
and ready to pay rebalancing fees. Four portfolio techniques are considered (mean-variance, robust portfolio, minimum-variance,
and equi-risk budgeting), and four covariance estimators are applied (sample covariance, ordinary least squares (OLS) covariance,
cross-validated eigenvalue shrinkage covariance, and eigenvalue clipping). Some comparisons between the covariance estimators
in terms of eigenvalue stability and four metrics (i.e. expected risk, gross leverage, Sharpe ratio and effective diversification)
exhibit the superiority of the eigenvalue clipping covariance estimator. The experiments on the Russel1000 dataset show that the
minimum-variance with eigenvalue clipping is the model suitable for client A, whereas robust portfolio with eigenvalue clipping
is the one suitable for client B.

Index Terms

Robust portfolio, minimum-variance, eigenvalue clipping, OLS covariance.

I. INTRODUCTION

Financial crises have large deleterious effects on economic activity and have been well marked in the history since the
late 1990s. In this regard, economists have become more engaged with the study of financial crises since their probability of
occurrence has increased dramatically especially with the last 20 years [1]. Modelling financial market risk has thus become
primordial and is the reason why the focus of portfolio allocation has shifted from the return (µ) side of the (µ, σ) coin to
the risk (σ) side. The expected return of a portfolio can be expressed as

µ “ µT w ,

where µ P Rp and w “ rw1, ¨ ¨ ¨ , wpsT P Rp are the vectors of asset returns and weights, respectively. The risk of a portfolio
can be expressed as

σ “
?
wT Σw ,

where Σ P Rpˆp is the unknown covariance matrix of asset returns that has to be efficiently estimated especially in large
dimensions.

The major breakthrough came in 1952 with the publication of Harry Markowitz’s theory of portfolio selection and which
laid the groundwork for modern portfolio construction theory with the so-called mean-variance optimization [2]. The latter
aims to select the optimal portfolio by achieving a compromise between unknown portfolio expected return (µ) and unknown
portfolio risk (σ). More precisely, the mean-variance optimization (with soft constraint to risk aversion) is defined as

max
wPRp

"

µTw ´
λ

2
wTΣw ´ α }w ´ wprevious}1 or 2

*

s.t. 1T
p w “ 1 ,

wj ě 0, j P r1, ps ,

(1)

where λ is the risk aversion intensity of the investor, 1p is a vector of ones of size p, α is the aversion parameter to turnover,
and wprevious is obtained from previous optimization.

The optimal portfolio selected by problem (1) is not robust against small changes in inputs especially in assets mean
returns and can lead to large changes in portfolio allocation. In addition, assets with positive estimation error will usually be
over-weighted, whereas assets with negative estimation error will be under-estimated [3]. In [4] and [5], the authors proposed
to further constraining the mean-variance optimization to keep the optimal portfolio within feasible bounds. However, the
selection of the constraints is highly subjective and the optimal portfolio is quite sensitive to such selection [3]. To reduce
statistical errors in the mean returns, the latter can be shrinked towards a sensible value. For example, in [6] and [7], the

1This report overviews in detail our final project of the course portfolio allocation at CentraleSupélec on March 19, 2021. We hereby certify that this is
entirely our own developed work unless otherwise stated.



authors proposed to shrink the mean returns towards an equal returns and market-implied returns, respectively. These shrinkage
approaches help in increasing the robustness but are quite sensitive to the selection of the shrinkage parameter and can affect
the optimal portfolio allocation very badly [3]. In order to take into account the uncertainty in the return estimation, it would
be interesting to reformulate the mean-variance optimization problem by taking into consideration the estimation errors which
may help to reduce the sensitivity of the portfolios as the estimation of errors increases. This modification has lead to the
so-called robust portfolio optimization [3], [8], [9], [10], [11], [12]. More precisely, the mean-variance portfolio (with soft
constraint to risk aversion) can be modified as

max
wPRp

"

min
µPRp

␣

µTw
(

´
λ

2
wTΣw ´ θ }w ´ wprevious}1 or 2

*

s.t. pµ ´ µ̂q
T
Ω´1

pµ ´ µ̂q ă κ2

1T
p w “ 1 ,

wj ě 0, j P r1, ps ,

(2)

where µ̂ is the estimated mean returns, κ is the aversion parameter to error, Ω is the covariance matrix of errors, and θ is
the aversion parameter to turnover. Problem (2) implies that one needs to maximize the portfolio returns in the worst case
scenario which is defined by letting the estimated mean returns to travel in an uncertainty box about the true mean returns
(that is, pµ ´ µ̂q

T
Ω´1

pµ ´ µ̂q ă κ2).
We have

min
µPRp

␣

µTw
(

ùñ max
µPRp

!

µ̂Tw ´ µTw
)

s.t. pµ ´ µ̂q
T
Ω´1

pµ ´ µ̂q ă κ2 .

The Lagrangian function (with a Lagrangian multiplier Φ) associated with max
µPRp

!

µ̂Tw ´ µTw
)

can be defined as

L pµ, Φq “ µ̂Tw ´ µTw ´ Φ
´

pµ ´ µ̂q
T
Ω´1

pµ ´ µ̂q ´ κ2
¯

.

Equating to zero both partial derivatives of L pµ, Φq relative to µ and Φ and then solving for µ leads to the solution [3], [8]

µ “ µ̂ ´

c

κ2

wTΩw
Ωw .

At the end, one obtains the following robust portfolio optimization [3], [8], [9], [10], [11], [12]:

max
wPRp

"

µ̂T w ´ κ
?
wT Ωw ´

λ

2
wT Σw ´ θ }w ´ wprevious}1 or 2

*

s.t. 1T
p w “ 1 ,

wj ě 0, j P r1, ps .

(3)

As we can observe, if κ is sufficiently small, the term κ
?
wT Ωw will vanish, and thus, problem (3) reduces to problem (1).

On the other hand, if κ is large, the optimal solution to problem (3) can deviate significantly from the solution of problem (1)
[3]. It is important to note that problem (3) can no longer be solved using quadratic programming due to the presence of the
square root. It must be solved using either second-order cone programming or an optimizer that can handle general convex
expressions. These optimization algorithms are readily available in many standard statistical software packages and run almost
as fast as traditional quadratic algorithms for practical portfolio optimization applications [3].

However, the aforementioned optimization (returns-oriented) strategies depend on the expected return and the covariance
matrix Σ, where both of them are completely unknown and have to be carefully estimated. As was discussed in [13], [14], several
other approaches are seen to avoid any or all of the mean returns, variance and covariances. For example, the minimum-variance
and equi-risk budgeting portfolios [15], [16] are kinds of risk-oriented portfolio strategies that aim to focus solely on the
covariance matrix Σ. More precisely, the minimum-variance portfolio (with soft constraint to risk aversion) can be defined as

min
wPRp

␣

wTΣw ` β }w ´ wprevious}1 or 2

(

s.t. 1T
p w “ 1 ,

wj ě min short, j P r1, ps ,

(4)



where β is the aversion parameter to turnover.
The equi-risk budgeting portfolio is defined as

min
wPRp

␣

wTΣw
(

s.t. 1T
p logw “ c ,

wj ě 0, j P r1, ps ,

(5)

where c is a constant.
The minimum-variance portfolio is mean-variance efficient and achieves the highest Sharpe ratio if the asset mean returns are

all equal. In addition, it is known to usually give low-diversified but performing portfolios reinforcing the low-volatility anomaly
concept [3]. However, the equi-risk budgeting portfolio is mean-variance efficient with the highest Sharpe ratio portfolio if the
asset mean returns are proportional to the asset volatilities in addition to that the return correlations are all equal [3].

In this technical report, we aim to combine the aforementioned portfolio optimization techniques (mean-variance, robust
portfolio, minimum-variance, and equi-risk budgeting) with several covariance matrix estimators (sample covariance matrix
Σ̂SCM , OLS covariance matrix Σ̂OLS [17], [18], [19], cross-validated eigenvalue shrinkage covariance matrix Σ̂CV [20], and
eigenvalue clipping Σ̂Clipping [21]) to meet two types of clients’ requirements:

‚ client A: (1) wants to invest money wisely; (2) not taking too much risk; and (3) not willing to pay too much in rebalancing
fees;

‚ client B: (1) wants to make money quickly; (2) benefit from market’s short-term volatility; and (3) ready to pay rebalancing
fees.

Based on some experiments on the Russel1000 dataset in section III, our results show that the robust portfolio with eigenvalue
clipping is the model suitable for client B, whereas minimum-variance with eigenvalue clipping is the one suitable for client
A.

The remainder of this technical report is organized as follows. Some of the aforementioned covariance estimators are briefly
described in section II. The experiments based on the eigenvalue stability and some metrics are presented in section III. Finally,
section IV gives concluding remarks and some directions for future work.

Notations: throughout this technical report, we depict vectors in lowercase boldface letters and matrices in uppercase boldface
letters. The notation p.q

T , |.|, and Tr p.q stand for the transpose, determinant, and trace of a matrix, respectively.

II. COVARIANCE MATRIX ESTIMATORS

The estimation of the covariance matrix is of great interest in finance as it is fundamentally the building block to derive
optimal investment strategies. It is usually done via a collection of samples that can be called “secondary data”. The covariance
matrix estimators that are going to be evaluated in this paper are the following:

‚ Sample Covariance Matrix (SCM) estimator, Σ̂SCM ;
‚ Ordinary Least Squares (OLS) Covariance estimator Σ̂OLS [17], [18], [19];
‚ Eigenvalue clipping estimator, Σ̂Clipping [21];
‚ Cross-validated (CV) eigenvalue shrinkage covariance estimator, Σ̂CV [20].

In what follows, we only present in detail three covariance matrix estimators: Σ̂SCM , Σ̂OLS , and Σ̂Clipping. For the details
about Σ̂CV , please refer to [20].

A. The SCM estimator: Σ̂SCM

We already know that in practice, it is rare to perfectly know the distribution of the data and the Gaussian model assumption
is the commonly widely hypothesis used in several applications. Assume we observe n independent and identically distributed
(i.i.d) p-random vectors x1, ¨ ¨ ¨ , xn, distributed according to a multivariate Gaussian distribution with mean µ and unknown
covariance matrix Σ. That is, xi „ N pµ, Σq with i P r1, ns.

The likelihood function of the matrix X “

»

—

—

—

—

–

xT
1

xT
2

...
xT
n

fi

ffi

ffi

ffi

ffi

fl

P Rnˆp is defined as

L px1, ¨ ¨ ¨ , xn; µ ,Σq “

n
ź

i“1

p2πq
´

p
2 |Σ|

´1
2 exp

´

pxi ´ µq
T
Σ´1

pxi ´ µq

¯

.



The log-likelihood function of the matrix X is obtained as

log pL px1, ¨ ¨ ¨ , xn; µ ,Σqq “

´np

2
logp2πq `

n

2
log

ˇ

ˇΣ´1
ˇ

ˇ `

n
ÿ

i“1

pxi ´ µq
T
Σ´1

pxi ´ µq .

By maximizing the log-likelihood w.r.t. µ and Σ, one obtains the following estimators

µ̂ “
1

n

n
ÿ

i“1

xi “
1

n
XT1n ,

and

Σ̂SCM “
1

n

n
ÿ

i“1

pxi ´ µ̂q pxi ´ µ̂q
T

“
1

n

n
ÿ

i“1

xix
T
i ´ µ̂µ̂T

“
1

n
XTX ´ µ̂µ̂T

“
1

n
XTX ´

1

n2
XT

`

1n1
T
n

˘

X

“ XT

ˆ

1

n

ˆ

In ´
1

n
1n1

T
n

˙˙

X

“
1

n
XTHnX ,

where µ̂, Σ̂SCM , In, Hn “
`

In ´ 1
n 1n1

T
n

˘

P Rnˆn, and 1n are the sample mean, (biased) Sample Covariance matrix (SCM),
the identity matrix of size n ˆ n, the centering matrix, and a vector of ones of size n, respectively.

(i) The matrix H2
n “ Hn:

H2
n “

ˆ

In ´
1

n
1n1

T
n

˙ˆ

In ´
1

n
1n1

T
n

˙

“ In ´
1

n
1n1

T
n ´

1

n
1n1

T
n `

1

n2
1n

`

1T
n1n

˘

l jh n

= n

1T
n “ Hn ,

(ii) The matrix Hn is a projection matrix:

@v P Rn, Hnv “ v ´
1

n

`

vT1n

˘

l jh n

= v̂

1n “ v ´ v̂1n ,

where v̂ is the mean of v. We can obviously observe that the matrix Hn projects v into the subspace of vectors that have
zero mean. As we know, in linear algebra, for a vector to have zero mean implies v K span p1nq). Hence, from linear
algebra point of view, the matrix Hn projects v onto the hyperplane which is orthogonal to the all-ones vector.

B. The OLS covariance estimator: Σ̂OLS

It is important to note that the estimation of the covariance matrix through optimization of an objective function (i.e. the
likelihood function) can be a difficult numerical problem since the resulting estimates must be positive definite. In order to
address the positivity definiteness constraint problem of Σ̂SCM , it would be important to consider that the covariance matrix
Σ is made up of Σ “ T´1 DT´T , where T is a unit lower triangular matrix and D is a diagonal matrix with positive entries
[19], [17], [18].

In order to build the estimator via linear regression [17], [19], [18], let us first denote x̂ “ rx̂1, . . . , x̂psT P Rp, and consider
each element x̂t, t P r1, ps, as the linear least squares predictor of xt based on its t ´ 1 predecessors txjujPr1, t´1s. More
specifically, for t P r1, ps, let

x̂t “

t´1
ÿ

j“1

Ct,j xj .

For each value of t ě 1, we get



x1 “ ϵ1 ,

x2 “ C2,1 x1 ` ϵ2 ,

x3 “ C3,1 x1 ` C3,2 x2 ` ϵ3 ,

...

xp “ Cp,1 x1 ` Cp,2 x2 ` ¨ ¨ ¨ ` Cp,p´1 xp´1 ` ϵp ,

where ϵt “ xt ´ x̂t for t P r1, ps denotes the prediction error with variance var pϵtq “ E
”

pϵtq
2
ı

“ θ2t . Note that for t “ 1, let

x̂1 “ E px1q “ 0, and hence, varpϵ1q “ θ21 “ E
”

px1q
2
ı

.

This is equivalent to

ϵ “

¨

˚

˚

˚

˚

˝

ϵ1

ϵ2
...
ϵp

˛

‹

‹

‹

‹

‚

“

»

—

—

—

—

—

—

—

–

1

´C2,1 1

´C3,1 ´C3,2 1

...
... ¨ ¨ ¨

. . .

´Cp,1 ´Cp,2 ¨ ¨ ¨ ´Cp,p´1 1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

˚

˚

˚

˚

˝

x1

x2

...
xp

˛

‹

‹

‹

‹

‚

“ Tx ,

where T is a unit lower triangular matrix with ´Ct,j in the pt, jqth position for t P r2, ps and j P r1, t ´ 1s, and
x “ rx1, x2, ¨ ¨ ¨ , xpsT P Rp.

One has cov pϵq “ TΣTT “ D. Thus, D´1 “ T´T Σ´1 T´1 ñ Σ´1
“ TT D´1 T, where D is a diagonal

matrix with entries θ21 , θ22 , ¨ ¨ ¨ , θ2p. A very interesting consequence is that for any
´

T̂, D̂
¯

, Σ̂ “ T̂´1 D̂ T̂´T is always
guaranteed to be positive definite.

Let us now define the estimator Σ̂OLS , where “OLS” stands for Ordinary Least Squares. Given a sample txiuiPr1, ns,
we have:

xi,t “

t´1
ÿ

j“1

Ct,j xi,j ` ϵi,t t P r2, ps, i P r1, ns .

Hence, for any t P r2, ps, we haves
»

—

—

—

—

–

x1,t

x2,t

...
xn,t

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

x1,1 x1,2 ¨ ¨ ¨ x1,t´1

x2,1 x2,2 ¨ ¨ ¨ x2,t´1

...
xn,1 xn,2 ¨ ¨ ¨ xn,t´1

fi

ffi

ffi

ffi

ffi

fl

»

—

—

—

—

–

Ct,1

Ct,2

...
Ct,t´1

fi

ffi

ffi

ffi

ffi

fl

`

»

—

—

—

—

–

ϵ1,t

ϵ2,t
...

ϵn,t

fi

ffi

ffi

ffi

ffi

fl

.

As we can see, this is similar to a linear regression model. That is, we have

yt “ An,t βt ` et ,

where yt “ rx1,t, ¨ ¨ ¨ , xn,ts
T P Rn, An,t “ rxi,jsnˆpt´1q, βt “ rCt,1, ¨ ¨ ¨ , Ct,t´1sT P Rpt´1q, and et “ rϵ1,t, ¨ ¨ ¨ , ϵn,ts

T P

Rn.
Assume et „ N

`

0, σ2In
˘

and yt „ N
`

An,tβt, σ
2In

˘

. Hence, by maximizing the log-likelihood under the Gaussian
assumption, one can obtain the following (minimization) optimization problem:

min
βt

!

}yt ´ An,tβt}
2
2

)

. (6)

Problem (6) has a (closed-form) solution and which is unique. This solution (optimal when n ą p) is defined as

β̂
OLS

t “
`

AT
n,tAn,t

˘´1
AT

n,tyt “ rĈOLS
t,1 , ĈOLS

t,t´1sT P Rt´1 ,



The OLS regression coefficients β̂
OLS

t and the corresponding residual variance are plugged-in into T and D for each t P r2, ps,
respectively. At the end, one obtains the estimator

Σ̂OLS “ T̂´1
OLS D̂OLS T̂´T

OLS .

Note that T̂OLS has -ĈOLS
t,j in the pt, jqth position for t P r2, ps and j P r1, t ´ 1s .

(i) β̂
OLS

t behaves poorly in large dimensions:

Let An,t “ USVT , with

U “
“

u1, u2, , ¨ ¨ ¨ , ,ut´1

‰

P Rnˆpt´1q ,

S “

»

—

—

–

?
λ1

. . .
a

λt´1

fi

ffi

ffi

fl

P Rpt´1qˆpt´1q ,

and

V “
“

v1, v2, , ¨ ¨ ¨ , ,vt´1

‰

P Rpt´1qˆpt´1q ,

are the matrix of left singular vectors, (diagonal) matrix of singular values, and matrix of right singular vectors of An,t,
respectively. Hence, β̂

OLS

t can be expressed as
ˆ

´

USVT
¯T ´

USVT
¯

˙´1
´

USVT
¯T

yt “ VS´1UTyt

“
“

v1, v2, , ¨ ¨ ¨ , ,vt´1

‰

»

—

—

—

–

1?
λ1

. . .
1?
λt´1

fi

ffi

ffi

ffi

fl

»

—

—

—

—

—

–

uT
1

uT
2

...

uT
t´1

fi

ffi

ffi

ffi

ffi

ffi

fl

yt

“

”

v1?
λ1

, v2?
λ2

, , ¨ ¨ ¨ , ,
vt´1?
λt´1

ı

»

—

—

—

—

—

–

uT
1

uT
2

...

uT
t´1

fi

ffi

ffi

ffi

ffi

ffi

fl

yt

“

„

řt´1
j“1

vj uT
j?

λj

ȷ

yt “

t´1
ÿ

j“1

zj ,

where zj “
vj uT

j?
λj

yt . As we can obviously observe, the singular values are located in the denominator and which causes

β̂
OLS

t to explode in values especially when p is large enough compared to n.

By computing the mean squared error (MSE) of β̂
OLS

t , we have

MSE
´

β̂
OLS

t

¯

“ E
„

´

β̂
OLS

t ´ βt

¯2
ȷ

“ bias2
´

β̂
OLS

t

¯

` Tr
´

var
´

β̂
OLS

t

¯¯

“ 0 ` σ2 Tr
`

AT
n,tAn,t

˘´1

“ σ2
t´1
ÿ

j“1

1

λj
.

Hence, we obtain

E
„

›

›

›
β̂
OLS

t

›

›

›

2
ȷ

“ }βt}
2

` σ2 Tr
`

AT
n,tAn,t

˘´1
.



We can observe that
›

›

›
β̂
OLS

t

›

›

›
is in general larger than }βt}, and thus, β̂

OLS

t has in general much larger coefficients (in
absolute value) than the true βt especially when p is large compared to n (or even when p ą n).

(ii) Proving that the solution to problem (6) exists:

Let f pβtq “ }An,tβt ´ yt}
2
2 , with βt P Q “ Rpt´1q .

Assume the following lemma:

Lemma II.1

Assume there D

´

β
pkq

t

¯

k
and a constant c ą 0 such that

›

›

›
β

pkq

t

›

›

›

2
ÝÝÝÝÑ
kÑ`8

`8 and
›

›

›
An,tβ

pkq

t

›

›

›

2
ď c @ k .

We have

d
pkq

t “
β

pkq

t
›

›

›
β

pkq

t

›

›

›

2

ñ

›

›

›
An,td

pkq

t

›

›

›

2
“

›

›

›
An,tβ

pkq

t

›

›

›

2
›

›

›
β

pkq

t

›

›

›

2

ÝÝÝÝÑ
kÑ`8

0 .

Clearly d
pkq

t P ℓ p0, 1q is compact, and thus, we can extract a convergent sub-series towards dt P ℓ p0, 1q, and by
continuity, we have }An,tdt}2 “ 0 ñ An,tdt “ 0. As we know that }dt}2 “ 1, then Lemma II.1 does not hold, and
thus,

›

›

›
An,tβ

pkq

t

›

›

›

2
ÝÝÝÝÝÝÝÝÑ
›

›

›
β

pkq
t

›

›

›

2
Ñ`8

`8 .

We know that

}An,tβt ´ yt}
2
2 ě

`

}An,tβt}2 ´ }yt}2

˘2
.

This implies }An,tβt ´ yt}
2
2 ÝÝÝÝÝÝÝÑ

}βt}2Ñ`8
`8, and thus, f pβtq is coercive. In addition f pβtq is continuous ñ lower

semicontinuous2 . Hence, f pβtq is inf-compact. In addition, as the set Q is closed, we can confirm that there exists a
solution for problem (6).

(iii) Proving that the solution that exists for problem (6) is unique:

We have Q “ Rt´1 is convex. Assume the following lemma:

Lemma II.2

Suppose γ Ps0, 1r, u, v P Rt´1, and u ‰ v .

We have

}An,t pγu ` p1 ´ γqvq ´ yt}
2
2

“ }γ pAn,tu ´ ytq ` p1 ´ γq pAn,tv ´ ytq}
2
2

ď
`

γ }An,tu ´ yt}2 ` p1 ´ γq }An,tv ´ yt}2

˘2

ď γ }An,tu ´ yt}
2
2 ` p1 ´ γq }An,tv ´ yt}

2
2 .

Hence, f pβtq is convex. In order for the equality to hold, we should have the following:
‚ γ pAn,tu ´ ytq “ k p1 ´ γq pAn,tv ´ ytq, with k ě 0 ;

‚ }An,tu ´ yt}2 “ }An,tv ´ yt}2, and thus, kp1´γq

γ “ 1 .

Assume An,tu “ An,tv ñ u “ v. Hence, Lemma II.2 does not hold and f pβtq is strictly convex. We can confirm that
the solution that exists for problem (6) is unique.

2For a continuous function f and Sη “ tβt P Q { f pβtq ď ηu “ f´1 ps ´ 8, ηsq , @η P R. The inverse image of a closed set by a continuous application
is closed, and thus, Sη is closed ñ f is lower semicontinuous.



C. The Eigenvalue Clipping covariance estimator: Σ̂Clipping

The proposed idea by Leplou et al. [21] was that all the eigenvalues beyond
`

1 `
a

p
n

˘2
are interpreted as signal while the

others as a pure noise [22], [23]. More precisely, the Sample covariance matrix, Σ̂SCM , is standardized and all its eigenvectors
are kept unchanged. Denote the standardized version by the matrix Σ̃SCM .
Let Σ̃SCM “ Q̃Λ̃Q̃T , with

Q̃ “ rq̃1, ¨ ¨ ¨ , q̃ps P Rpˆp

and

Λ̃ “

»

—

—

–

λ̃1

. . .

λ̃p

fi

ffi

ffi

fl

P Rpˆp

are the matrix of eigenvectors and diagonal matrix of eigenvalues of Σ̃SCM , respectively.

The eigenvalue clipping covariance matrix estimator, Σ̂Clipping , can be computed as

Σ̂Clipping “

p
ÿ

j“1

λ˚
j q̃jq̃

T
j ,

with

λ˚
j “

$

&

%

λ̃j if λ̃j ą
`

1 `
a

p
n

˘2

λ̄ otherwise
,

where λ̄ has to be chosen such as Tr
´

Σ̃SCM

¯

= Tr
´

Σ̂Clipping

¯

.

III. EXPERIMENTS

A. Our procedure for the selection of assets from the Russell1000 dataset

We select a window time from 2006 onward: 85% of stocks with full data values. In order to build a K-assets portfolio, on
the training set, we perform the following:

‚ Clustering based on assymetry with K clusters;
‚ In each cluster, we select the asset with the best Sharpe ratio.

The main advantages of such a procedure is that it provides (1) a large pool of diversified stocks with interesting historical
Sharpe ratios; (2) a stability gain for the covariance matrix estimators.
For any kind of portfolio optimization problem, we normally compute the optimal parameters for a given sample data (i.e.,
the portfolio returns for the last 2000 days). In order to run our strategy (with a particular covariance matrix estimator) over
a given data, we do it in-sample where we expect to “technically” obtain the best possible result. However, by evaluating our
covariance estimation strategy over a different period that was used for the in-sample data (i.e., the next 252 days), then we
have to do it out-of-sample. That is, we are evaluating the covariance estimation strategy on a period which is different from
the one we optimized the strategy on. Our evaluation (as a back-testing) on the out-of-sample will be quite important mainly
because we will only be able to invest today the result of the optimization that has been made today. Hence, it is like we are
earning tomorrow’s strategy performance and not the one of yesterday.

B. Calculating probabilities between Σ̂SCM and Σ̂OLS

In order to compare between the fraction of times [24] that the risk of Σ̂SCM is smaller than Σ̂OLS and vice-versa, it would
be useful to consider the realized (out-of-sample) risk as our based performance measure. We define the realized risk [24] as

Rout
V “

a

252 ˚ ŵT Σout ŵ ,

where Σout is the out-of-sample covariance matrix, and ŵ are computed from the in-sample covariance matrix (filtered or not).

By “fraction of time”, we mean that we need to calculate the probability that Σ̂SCM outperforms Σ̂OLS and vice-versa for a
particular in-sample window size (i.e. n “ 30, n “ 50, n “ 100, n “ 200, n “ 500, or n “ 800). To do that, we will perform
20 independent simulations of p “ 100 assets in random periods.

From Figure 1, we can observe that both Σ̂SCM and Σ̂OLS perform roughly the same but Σ̂SCM is in general slightly better
than Σ̂OLS for our specific dataset assets’ order.



Fig. 1. Probabilities between Σ̂SCM and Σ̂OLS .

C. Comparison between Σ̂SCM , Σ̂OLS , Σ̂CV , and Σ̂Clipping

1) Eigenvalue stability: In order to compare the best (unknown) covariance estimator (aka oracle estimator) with Σ̂SCM ,
Σ̂OLS , Σ̂CV , and Σ̂Clipping, it would be important to compare the in- and out-of-sample persistence of the eigenvalues of
these covariance estimators [24], [25].

As the analytical solution of the optimal porfolio weight calculated via the Markowitz optimization problem (that is, the
Markowitz’s formulation in terms of a soft constraint with regards to aversion to risk) mainly depends on both the (unknown)
covariance matrix Σ and its inverse Σ´1, thus we are going to consider two meaures in order to highlight on both the small
and large eigenvalues [24], [25].

High Eigenvalues Stability measure:

ϵHighEigen “

g

f

f

e

1

n

n
ÿ

i“1

pλi ´ ziq
2

Low Eigenvalues Stability measure:

ϵLowEigen “

g

f

f

e

1

n

n
ÿ

i“1

ˆ

1

λi
´

1

zi

˙2

where we have λi defined as the ith eigenvalue of the in-sample (filtered or unfiltered) covariance estimator, and zi is the ith

eigenvalue for the oracle estimator. As we can observe, the measure ϵHighEigen must account for the discrepancy between
the highest eigenvalues, whereas the measure ϵLowEigen has to attribute more weight to the discrepancy between the smallest
eigenvalues [24].
The main idea is to plot those measures as a function of the window size and compare which covariance estimator is closer
to the oracle estimator. As can be seen from Figure 2, Σ̂Clipping is the closest to the oracle estimator for the high eigenvalues
stability measure.

2) Some metrics: we will use the following metrics: (1) excpected risk; (2) gross leverage; (3) log Sharpe ratio; and (4)
effective diversification. From Figure 3, we can obviously see the superiority of Σ̂Clipping with respect to Σ̂SCM , Σ̂OLS , and
Σ̂CV for all the four metrics.

D. Penalizing turnovers

We define the turnover as

1

∆τ

∆τ´1
ÿ

τ“1

p
ÿ

j“1

ˇ

ˇ

ˇ
w

pτq

j ´ w
pτ`1q

j

ˇ

ˇ

ˇ
.

It is known that the effective portfolio diversification can be defined as the ratio 1
řp

j“1 w2
j

that represents the effective number of
stocks with a significant amount of money invested. However, this ratio does not have a clear interpretation when short-selling
is allowed. In this regard, we may assume the following alternative metric for the effective diversification

Nq “ argmin
l

l
ÿ

i“1

|wi| ě q
p
ÿ

j“1

|wj | ,



Fig. 2. High vs Low eigenvalue stability.

Fig. 3. From top left to bottom right: excpected risk, gross leverage, log Sharpe ratio, and effective diversification.

which is the number of stocks that accounts for ‘q’ percent of the total amount of money invested (i.e., q “ 90% may be a
good choice). As we can observe from Figure 4, the l1-norm is more stringent than the l2-norm but converges much slower.

E. Portfolio Investment Policy

We define two strategies:



Fig. 4. Results obtained with robust portfolio.

‚ 1 very reactive strategy (client B):
– In-sample window size = 2 months;
– Out-sample window size = 1 month;
– AIM: capture short-term variations of the market.

‚ 1 long-term strategy (client A):
– In-sample window size = 1 year;
– Out-sample window size = 6 months;
– AIM: Long-term investment portfolios, less rebalancing costs.

‚ Trade-offs expressed in soft constraints;
‚ Rebalancing costs will be penalized.

For client A: We assume the following needs: (1) a risk-adverse; (2) an averse to rebalancing fees; and (3) invest with
sparsity.

1) Robust portfolio VS minimum-variance with eigenvalue clipping (with n ą p):



Fig. 5. Robust portfolio VS minimum-Variance with eigenvalue clipping.

‚ Parameters:
– 50 diversified stocks;
– In-Sample = 252 days;
– Out-Sample = 126 days;
– θ “ 0.003;
– β “ 0.00001;
– λ “ 0.5;
– κ “ 0.5;
– min short = -0.5;
– Ω “

?
Σ.

As we can observe from Figure 5, with similar risks, the minimum-variance portfolio has less rebalancing fees than the
robust portfolio.

2) Equi-risk budgeting with eigenvalue clipping (with n ą p):
‚ Parameters:

– 10 diversified stocks;
– In-Sample = 252 days;
– Out-Sample = 126 days.

From Figure 6, we can observe that the equi-risk budgeting with eigenvalue clipping, unless specified by the client, is
a less advantageous strategy, less diversified portfolio with higher risks, and less robust than the robust portfolio with
eigenvalue clipping.

For client B: We assume the following needs: (1) risk-taking; (2) willing to pay rebalacing fees; and (3) follow short-term
market’s movements.



Fig. 6. Equi-risk budgeting with eigenvalue clipping.

1) Robust portfolio VS mean-variance with eigenvalue clipping (with n ą p):
‚ Parameters:

– 50 diversified stocks;
– In-Sample = 2 months;
– Out-Sample = 1 month;
– θ “ 0.0005;
– α “ 0.0005;
– λ “ 0.01;
– κ “ 0.5;
– Ω “

?
Σ.

From Figure 7, we can conclude that the mean-variance is not a good model to follow. On the other hand, the robust
portfolio keeps a highly diversified portfolio as well as it achieves higher turnovers and Sharpe ratios (in average) than
the risk-based portfolios (minimum-variance and equi-risk budgeting).

From all the results above, we can conclude that robust portfolio with eigenvalue clipping is the model suitable for client B,
whereas minimum-variance with eigenvalue clipping is the one suitable for client A.



Fig. 7. Robust portfolio VS mean-variance with eigenvalue clipping.

IV. CONCLUSION AND FUTURE WORK

A. Conclusion

In this technical report, we combined four different portfolio optimization strategies (mean-variance, robust portfolio,
minimum-variance, and equi-risk budgeting) with four covariance matrix estimators (sample covariance matrix, OLS covariance
matrix, cross-validated eigenvalue shrinkage covariance matrix, and eigenvalue clipping) to meet two types of clients’
requirements: client A who wants to invest money wisely, not taking too much risk, and not willing to pay too much in
rebalancing fees; and client B who wants to make money quickly, benefit from market’s short-term volatility, and ready to pay
rebalancing fees. Our experiments on the Russel1000 dataset suggest that the robust portfolio with eigenvalue clipping is the
strategy suitable for client B, whereas minimum-variance with eigenvalue clipping is the one suitable for client A.

B. Some directions for future work

As for future enhancements, a likely first step would be to extend this work by combining the four portfolio optimization
strategies with covariance matrix estimators in the case when p ą n. For example, and as was mentioned in section II-B,
β̂
OLS

t behaves poorly in large dimensions, and thus, one can simply think to penalize it (e.g. by the l2 norm). In addition,
it would be important to propose robust (i.e. distributional-free estimators) and/or sparse covariance estimators and combine
them with the robust portfolio optimization discussed in problem (3).

Penalizing the least squares estimator β̂
OLS

t : Recall that we have β̂
OLS

t “ VS´1UTyt “
řt´1

j“1 zj , where zj “
vj uT

j?
λj

yt .

A general penalization of β̂
OLS

t can be written in the form

β̂
pen
t “ VS´1ΓUTyt “

t´1
ÿ

j“1

g pλjq zj ,



where

Γ “

»

—

—

–

g pλ1q

. . .

g pλt´1q

fi

ffi

ffi

fl

P Rpt´1qˆpt´1q ,

and g pλjq is the penalization factor for j P r1, t ´ 1s.
As we can clearly observe, β̂

pen
t reduces to β̂

OLS

t when g pλjq “ 1 ,@j P r1, t ´ 1s .

Some properties about β̂
pen
t :

We have
‚ E

´

β̂
pen
t

¯

“ VS´1ΓUTE pytq “ VS´1ΓSVTβt .

This implies

bias2
´

β̂
pen
t

¯

“

´

E
´

β̂
pen
t ´ βt

¯¯T

E
´

β̂
pen
t ´ βt

¯

“

´

VS´1ΓSVTβt ´ βt

¯T ´

VS´1ΓSVTβt ´ βt

¯

“

´

VS´1ΓSVTβt ´ VVTβt

¯T ´

VS´1ΓSVTβt ´ VVTβt

¯

“

´

V
`

S´1ΓS ´ I
˘

VTβt

¯T ´

V
`

S´1ΓS ´ I
˘

VTβt

¯

“

´

VTβt

¯T
`

S´1ΓS ´ I
˘T `

S´1ΓS ´ I
˘

´

VTβt

¯

“

t´1
ÿ

j“1

pg pλjq ´ 1q
2
´

vT
j βt

¯2

.

‚ var
´

β̂
pen
t

¯

“
`

VS´1ΓUT
˘ `

VS´1ΓUT
˘T

var pytq “ σ2VS´1ΓUTUΓS´1VT .

This implies

Tr
´

var
´

β̂
pen
t

¯¯

“ σ2Tr
`

VS´1Γ2S´1VT
˘

“ σ2
t´1
ÿ

j“1

pg pλjqq
2

λj
.

By computing the mean squared error (MSE) of β̂
pen
t , we have

MSE
´

β̂
pen
t

¯

“ E
„

´

β̂
pen
t ´ βt

¯2
ȷ

“

t´1
ÿ

j“1

pg pλjq ´ 1q
2 `

vT
j βt

˘2
` σ2

t´1
ÿ

j“1

pg pλjqq
2

λj
.

We can clearly observe that one needs to set g pλjq ‰ 1 and more precisely |g pλjq| ă 1 in order to have lower variance than
β̂
OLS

t .
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