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Abstract

In this paper, the minimum variance distortionless response (MVDR)
beamforming technique is studied in the presence of a spatially coherently
distributed (CD) source. In the first part, we propose the CD-MVDR
beamforming in which the steering vector of the CD source model is
used instead of the conventional point source model. We derive a the-
oretical expression of the white noise gain of CD-MVDR beamforming,
which is inversely proportional to the square of the difference between
the angular dispersion of the actual source and that of the CD-MVDR
beamforming model. In the second part, based on the performance anal-
yses, we propose an efficient optimization method for the microphone
array geometry to reduce the impact of the CD source angular dispersion
on the performance of the conventional MVDR beamforming. Simula-
tion results validate our proposed theoretical expressions and show that
with the proposed geometry, the conventional MVDR beamforming tends
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to be significantly more robust to the angular dispersion of the CD
source for both white noise gain (WNG) and directivity factor (DF).

Keywords: Microphone Array, Minimum Variance Distortionless Response,
Beamforming, Coherent Distributed Source, Geometry Optimization, White
Noise Gain

1 Introduction

s a famous signal enhancing technique, beamforming [4] has been widely used
in speech enhancement, acoustic imaging, wireless communications, radar pro-
cessing, etc. The beamforming techniques can be divided into two categories:
fixed beamforming and adaptive beamforming. The fixed beamforming algo-
rithms, including delay-and-sum beamforming, are independent of the received
signals at the microphone array, while the adaptive beamforming algorithms
are more flexible, the coefficients of the Beamformers can be changed according
to the received signals, to preserve the signal of interest (SOI) while reducing
the noise and the interference. Among the adaptive beamformings, the MVDR
beamforming [2] is prevail for its convenient implementation. The MVDR
beamforming has two different ways to make use of the signals received on
the microphone array, leading to two objective functions: the one generally
employed by the conventional MVDR filter minimizes the power of the out-
put signals of the microphone array; the other one generally employed by the
MVDR filter minimizes the power of the residual noise of the microphone array
with the reconstructed interference plus noise covariance matrix [12]. Indeed,
the latter one can achieve a better output signal to interference plus noise ratio
(SINR) when the input signal to noise ratio (SNR) is high.

In addition, plenty of robust beamforming techniques have been proposed
to improve the performance with point source model [18; 19; 25; 29]. However,
in many practical applications, the source can no longer be considered a point
source and angular dispersion should be taken into consideration. According
to the statistical characteristics of source, the models of the spatially dis-
tributed source can be classified into two types: the incoherently distributed
(ID) sources and the coherently distributed (CD) ones [23]. An ID source
means that signals coming from different points of the same distributed source
are assumed uncorrelated. The acoustic sources caused by the vibration of
the front wheels and the rearview mirrors on a moving car can be considered
examples of ID sources. A CD source means that the signal components from
the same source are delayed and scaled replicas of one point in the source. The
trumpet on a big loudspeaker can be considered an example of a CD source.
The localization of the distributed source has been widely studied in the liter-
ature [6][27], but few works have been publicly reported on the enhancement
techniques of a target distributed source. In [24] and [31] the proposed beam-
forming for a distributed source can achieve an optimal value of SINR due to
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the Rayleigh quotient. However, the covariance matrix of the received signals
emitted by the target source is required for the proposed method yet diffi-
cult to be obtained in practice. Thus, in our work, instead of utilizing the
covariance matrix of the received signals, we assume that the steering vector
of the distributed source is known a priori in the linear constraint in beam-
forming. We try to optimize the microphone array geometry to compensate for
the performance degradation caused by the inaccuracy of the steering vector
model.

The optimization of array geometry can be divided into two categories.
The first category refers to choosing a subset of active microphones according
to different criteria from a large scale of candidate microphones in a wireless
acoustic sensor network (WASN), for the sake of improving the information
transform efficiency and energy saving. In [28] the best subset of sensors is
determined by minimizing the transmission cost while constraining the output
noise power. In [8] the Camér-Rao Bound (CRB) is used as an optimization
goal and the microphone subset selection problem is formulated as a sparsity
based optimization problem. Similar work has been extended to correlated
noise scenarios in [17]. In [5] and [22] the microphone subset selection criteria
are the utility of each sensor and the SNR, respectively. The criteria are solved
by greedy methods. The second category refers to the design of the geometry
of the microphone array directly. For example, the V shape is optimum for
ambiguity-free array [11]. The spiral array provides performance advantages
over a wide frequency spectrum owing to the absence of inter-element spacing
redundancy [1]. Beamforming with the famous differential microphone arrays
(DMAs) can achieve a frequency invariant and super directive performance
with a small inter-element spacing [3]. Recently, to make a compromise between
the WNG and DF, a novel class of microphone arrays have been proposed
[9] to decompose the steering vector of the source as a Kronecker product of
two sub-steering vectors, one sub-steering vector corresponds to a microphone
array with a smaller aperture and the other sub-steering vector corresponds to
a microphone array with a larger inner space than the original one. The novel
class of microphone array have been extended to circular [30], cuboid [26], and
other geometries. Besides the Kronecker product method, one can also design
optimal nonuniform linear DMAs with a specified target directivity pattern [7].

In our work, we first propose CD-MVDR beamforming by extending the
conventional MVDR beamforming to the CD source scenario, and analyse
theoretically the performance of CD-MVDR beamforming: with Taylor expan-
sions, the WNG is found to be inversely proportional to the square of the
difference between the angular dispersion of the actual source and that in the
CD-MVDR beamforming model. As a second step, we propose a criterion to
minimize the impact of the angular dispersion on the WNG across the whole
angle sector of interest of the direction of arrival (DOA) of the SOI with a
minimum inter-element space constraint. Although such a criterion is effective
in theory, it is difficult to implement in practice due to the high computational
burden. Therefore, an iterative algorithm is proposed to efficiently optimize



Springer Nature 2021 LATEX template

4 Article Title

the array geometry, which locates the microphones one by one on the edge of
the constraint region given by the located microphones. With the proposed
locally-optimal geometry, both the WNG and the DF become more robust to
the angular spread of the source.

This paper is organized as follows: the wide band CD source model and
the conventional MVDR beamforming are briefly reviewed in section 2. The
performance of CD-MVDR beamforming in the presence of the CD source is
studied in section 3 and some simulation results are shown to validate the the-
oretical expressions. In section 4, we propose an array geometry optimization
algorithm based on the results of the previous section. Finally, conclusions are
given in section 5.

2 Signal model and MVDR beamforming

2.1 The CD source model

Fig. 1: Illustration of planar microphone array and spatially distributed
source.

Let us consider a far-field wide band CD [23] source with angular spread ∆
in an anechoic environment impinging on a microphone array from the DOA
θ0 at the speed of sound, i.e., c = 340m/s. The microphone array is composed
of M sensors and assumed to be planar. With respect to the origin in the polar
coordinate, the position of the mth microphone is given by the distance rm
and the angular ϕm (see Figure 1). The signal received at the mth microphone
at moment t is given by:

ym(t) =

∫ π

−π
s(t+ rm cos(θ0 + φ− ϕm)/c)g(φ)dφ+ nm(t), (1)

where s(t) is the SOI, nm(t) is the noise observed at the mth microphone,
g(φ) is introduced to describe the angular distribution of the CD source
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−π g(φ)dφ = 1. With the short time Fourier transform (STFT), assuming

that the window length of the STFT is long enough, the wide band signal in
frequency domain ỹm(ω) can be given as:

ỹm(ω) =

∫
ejωrm cos(θ0+φ−ϕm)/cg(φ)dφs̃(ω) + ñm(ω), (2)

where ỹm(ω), s̃(ω) and ñm(ω) are the STFT of ym(t), s(t) and nm(t), respec-
tively, j is the imaginary unit with j =

√
−1. (2) can also be expressed in a

vector form as:
y(ω) = c(θ0, g, ω)s̃(ω) + n(ω), (3)

where y(ω) = [ỹ1(ω), . . . , ỹM (ω)]T ∈ CM×1, n(ω) = [ñ1(ω), . . . , ñM (ω)]T ∈
CM×1, c(θ0, g, ω) = [c1(θ0, g, ω), . . . , cM (θ0, g, ω)]T ∈ CM×1, is the steering
vector for a CD source which can be given by:

c(θ0, g, ω) =

∫ π

−π
a(θ0 + φ, ω)g(φ)dφ, (4)

where a(θ0, ω) is the steering vector for a point source, which can be given by:

a(θ0, ω) = [ejωr1 cos(θ0−ϕ1)/c, ..., ejωrM cos(θ0−ϕM )/c]T , (5)

where the superscript T is the transpose operator. The steering vector in (4)
can be seen as a set of point sources impinging from θ0 + φ with the steering
vector in (5) and weighted by the distribution function g(φ).

Assuming that the source and the additive noise are uncorrelated, with (3),
the correlation matrix of the signals received at the microphone array is given
by:

Ry , E[y(ω)yH(ω)]

= σ2
sc(θ0, g, ω)cH(θ0, g, ω) + Rn(ω), (6)

where E[·] denotes the mathematical expectation, the superscript H denotes
the conjugate-transpose operator, σ2

s , E[|S(ω)|2] is the power of the SOI,
Rn(ω) , E[n(ω)nH(ω)] is the correlation matrix of the additive noise n(w)
whose rank is M in general. Notice that in the case of spatially white noise,
Rn(ω) = σ2

nIM , where σ2
n is the noise power, and IM is a M ×M diagonal

matrix; while in the case of spherically isotropic noise, Rn(ω) = σ2
nΓn(ω),

where [Γn(ω)]ij = sinc[ωdij/c] = sin(ωdij/c)/(ωdij/c), [Γn(ω)]ij is the (i, j)th
element of the matrix Γn(ω), and dij is the distance between the ith and the
jth microphones. Note that our work focuses on the CD source since no explicit
expression exists for the steering vector in (4) for the ID source.
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2.2 MVDR beamforming and its performance

The main idea of the conventional MVDR beamforming is given by minimiz-
ing the output power of the microphone array while preserving the target
source. Assuming that a point source impinges from θ0, MVDR beamforming
is formulated as:

argmin
h(ω)

hH(ω)Ryh(ω) subject to hH(ω)a(θ0, ω) = 1, (7)

where h(ω) can be considered as a finite impulse filter applied to each
microphone output at angular frequency w.

In this paper, we investigate the performance of MVDR beamforming in
the same sub-frequency band. Therefore, in the following, we omit the ω in
the definitions for simplicity. The solution of (7) can be given as:

h =
R−1y a0

a0R
−1
y a0

, (8)

where a0 is a simplification of a(θ0, ω).
The two important optimization goals of beamforming are given as follows:
WNG: The white noise gain is defined as the ratio between the output

SNR and the input SNR of the microphone array in the scenario of spatially
white noise, which also describes the robustness of the Beamformer:

GW (h) =
σ2
nh

HRsh

σ2
sh

HRnh
. (9)

In the case of one target source, the WNG can be given as 1/hHh.
DF: The directivity factor is defined as the ratio between the output SNR

and the input SNR of the microphone array in the scenario of a diffuse sound
field, which also indicates the beampattern gain at the look direction to the
average beampattern gain at other directions:

GD(h) =
1

hHΓn(ω)h
. (10)

3 CD-MVDR beamforming

In this section, we first extend the conventional MVDR beamforming for
the CD source scenario as CD-MVDR beamforming, and then study its
performance.

3.1 CD-MVDR beamforming

The CD-MVDR beamforming is designed to enhance the signal of a CD source
located at θB with a generalized steering vector c(θB , g, ω). In this case the
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beamforming h(ω) is the solution of:

min
h(ω)

hH(ω)Ryh(ω) subject to hH(ω)c(θB , ω) = 1. (11)

In the following, the steering vector model c(θB , g, ω) in the CD-MVDR beam-
forming is shortened as cB . As a consequence, the CD-MVDR beamforming
filter is given as:

h =
R−1y cB

cBR
−1
y cB

. (12)

3.2 CD-MVDR beamforming performance

To further investigate the performance of CD-MVDR beamforming, we first
assume that the angular spread of the CD source is not too large (≤ 10◦) in
the far-field, and the distribution shape is symmetrical. Thus,

∫ π
−π g(φ)dφ = 1,∫ π

−π φg(φ)dφ = 0. Considering the second order Taylor approximation in
the angular spread, the steering vector for the CD source in (4) can be
approximated by:

c0 ≈
∫ π

−π
(a0 + ȧ0φ+ ä0φ

2)g(φ)dφ

= a0 +
1

2
ä0δ

2
0 , (13)

where the steering vector c(θ0, g, ω) of the actual source is simplified as c0,
a0 is the steering vectors of the point source with the same DOA of c0,

ȧ0 = ∂a(θ)
∂θ |θ0 , ä0 = ∂2a(θ)

∂θ2 |θ0 , δ20 =
∫
φ2g(φ)dφ is the angular dispersion of

the distributed source. The first order term in φ is canceled due to the spatial
symmetry of the distribution function of the source. Note that if the distri-
bution function of one source is simple such as Uniform, Gaussian, or Raised
Cosine, its angular dispersion can be expressed explicitly as:

Uniform : δ20 = ∆2
0/12,

Gaussian : δ20 = ∆2
0,

Raised cosine : δ20 =
π2 − 6

12π2
∆2

0, (14)

where ∆0 is a parameter of the angular distribution function of the actual dis-
tributed source. For Uniform and Raised cosine distribution, ∆0 is the length
of the support of the source; for Gaussian distribution, ∆0 is the standard
deviation of the Gaussian function.
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Similarly, the second order approximation of the steering vector in CD-
MVDR beamforming (11) can be given as:

cB ≈ aB +
1

2
äBδ

2
B . (15)

In the case that the a-priori information of the central DOA is well esti-
mated, that is, θ0 = θB and thus a0 = aB , the relationship between (13) and
(15) can be given as:

c0 = cB +
1

2
ä0(δ20 − δ2B). (16)

We focus on the study of the CD-MVDR beamforming performance when
the angular spread is roughly known. We aim to express the performance with
respect to the angular dispersion error δ20−δ2B where δ20 is the dispersion of the
actual source and δ2B is the dispersion used by the CD-MVDR beamforming.
One can notice that the case δ2B = 0 addresses the performance study of the
standard MVDR beamforming in presence of a CD source.

In addition, with the Woodbury formula [14], the inverse of the correlation
matrix Ry in (8) can be given by:

R−1y = R−1n −
R−1n c0c

H
0 R−1n

1 + cH0 R−1n c0
. (17)

Introducing (17) and (16) into (8), and keeping the second order Taylor
approximation in δ, the MVDR Beamformer can be given by:

h ≈ h0 + ∆h, (18)

where h0 = R−1n cB/c
H
BR−1n cB is the term depending on

the central DOA of the source, the array geometry and
the noise on the microphone array; ∆h = (δ20 − δ2B) ·(
R−1n cBReal{äBR−1n cB} − 1

2R
−1
n äBc

H
BR−1n cB − 1

2R
−1
n cB ä

H
BR−1n cB

)
/cHBR−1n cB

is the term due to (δ20 − δ2B). Note that when the conventional MVDR
beamforming is used, that is, the angular spread in the steering vector cB in
CD-MVDR beamforming equals to 0, cB shrinks to aB , and (δ20 − δ2B) shrinks
to δ20 . In this case, ∆h depends explicitly on the angular dispersion of the
actual source.

Similarly, introducing (18) into (9), the approximation of WNG as an
explicit function of the angular spread can be deduced as:

G̃W (h, δ
2
0 , δ

2
B) ≈

M2

Mσ2
n + (δ20 − δ2B)2 ·

(
0.25M2‖äB‖2 + 0.25M‖cH

B äB‖2 −MReal{äH
B cB}2 + 0.5MReal{(äH

B cB)2}
) .

(19)

From (19) we can see that the WNG is inversely proportional to the square
of the angular dispersion difference between the actual source and CD-MVDR
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(b) Gaussian CD source

Fig. 2: WNG vs. angular spread model in CD-MVDR beamforming (Uniform
CD source with ∆0 = 5◦ and Gaussian CD source with ∆0 = 1.5◦.)
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(b) Gaussian CD source

Fig. 3: Angular dispersion vs. angular spread of actual CD source

beamforming model. Besides, (19) proves that the WNG can be used to correct
the angular dispersion in the CD-MVDR beamforming model such that:

δ̂2B = argmax
δ2B

GW (h, δ20 , δ
2
B), (20)

where GW (h, δ20 , δ
2
B) here is obtained in (9).

3.3 Numerical simulation results

In this subsection, we validate our theoretical results on CD-MVDR beam-
forming in (19) and (20). A female speaker reading a book as the source [20]
impinges on the array from θ0 = 45◦, a uniformly distributed source propaga-
tion model is generated according to (3). The total snapshots number is 217,
the sampling rate of the source is 16kHz, and the window length of the STFT
is 256. A uniform linear array with M = 13 microphones is used. We work in
the sub-frequency band of 1000Hz, d = 0.2λ = 0.068m, where λ is the wave-
length of the source. In all the simulations, the signal to noise ratio (SNR) is
set to 10 dB. 100 Monte Carlo experiments are executed.
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In Figure 2, we plot the WNG of CD-MVDR beamforming as a function of
the angular spread ∆B in the CD-MVDR beamforming steering vector model
for a uniform CD source with ∆0 = 5◦ (Figure 2(a)) and a Gaussian CD source
with ∆0 = 1.5◦ (Figure 2(b)), respectively. The angular distribution shapes in
the CD-MVDR beamforming models are identical to the actual sources. We
can see that our theoretical results obtained with (19) are generally consistent
with the simulation results. The WNG reaches a maximum value when the
angular dispersion of the actual source and that in the CD-MVDR beamform-
ing model approaches, and then decreases when the gap between the actual
angular dispersion and that in the model increases.

In Figure 3, we plot the actual and estimated angular dispersion as a
function of the angular spread, for both uniform CD source and Gaussian
CD source. The blue lines represent the actual angular dispersions obtained
directly with (14), while the red stars represent the estimated angular dis-
persions obtained with (20). The distribution function in the CD-MVDR
beamforming model is set to be uniform. We can see that by maximizing (20)
the angular dispersion can be well estimated, even if the distribution function
of the actual source and that of the model in CD-MVDR beamforming are
mismatched (see Figure 3(b)).

4 Array geometry optimization algorithm

In the previous section, we can see that CD-MVDR beamforming requires
a-priori information on the angular dispersion of the CD source. The per-
formance of CD-MVDR beamforming degrades if the angular dispersion in
its model is mismatched with that of the actual source. In this section, we
optimize the microphone array geometry to improve the performance of the
conventional MVDR beamforming in the CD source scenario, where the a pri-
ori information of the angular dispersion of the CD source is dispensable. For
simplification, the microphone array geometry optimizations are given with
the WNG. We can see in the simulations in section 4.1 that the proposed
geometries can also improve the DF.

In the following, we seek to maximize the WNG by minimizing the influence
of the angular spread on the WNG. Firstly, we define:

αm = ωrm cos(θ0 − ϕm)/c,

βm = ωrm sin(θ0 − ϕm)/c,

where m = 1, ...,M.
Further, when the conventional MVDR beamforming is used, expression

(19) remains valid with δ2B = 0 and cB becomes equal to aB . We note the terms
concerning the angular dispersion in G̃W in (19) as F and they are given as:

F = 0.25M2äHB äB+0.25M‖aHB äB‖2−MReal{äHBaB}2+0.5MReal{(äHBaB)2}.
(21)
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To explore the intrinsic structure of F , we introduce αm and βm in (21).
With Euler’s formula, F can be given as:

F = (
δω

c
)4
[
−1

4
M(
∑

β2
m)2 +

1

4
M2

∑
β4
m +

1

4
M2

∑
α2
m −

1

4
M(
∑

αm)2
]
.

(22)
According to Cauchy inequality, it can be easily seen that F ≥ 0, and the

global minimum of F can be obtained when α1 = ... = αm = ... = αM , and
β1 = ... = βm = ... = βM . However, it is not possible to put all the microphones
in the same place in practice. It is generally necessary to impose a constraint
on the minimum distance between the microphones, for the sake of eliminating
a coherence too high [21], alleviating poor noise sensitivity at low frequencies
[10], as well as reducing the mutual coupling [15][16], etc. Therefore, in this
paper, we also give a minimum distance between two neighbor microphones
as a constraint for the optimization of the microphone geometry. Intuitively,
a more compact array with a smaller aperture is more robust to the angular
spread for the MVDR beamforming.

In addition, we can see that F is a function of θ0, since αm and βm are both
function of θ0. Therefore, minimizing F will lead to an optimal geometry for a
fixed θ0. If the DOA of the source is changed, the performance of the MVDR
beamforming will degrade as well. In this paper, we propose a criterion which
optimizes the geometry globally across the whole angle sector of the possible
DOA:

Fg =

∫ 2π

0

Fdθ. (23)

After tedious calculations, the global criterion Fg can be given by:

Fg =
1

4
π3M2(‖x‖22 + ‖y‖22)− 1

4
π3M

(
x2 + y2

)
+

1

4
π5M2

(
3

4
‖x‖44 +

3

4
‖y‖44 +

3

2
‖x� y‖22

)
− 1

4
π5M

(
3

4
‖x‖42 +

3

4
‖y‖42 + x� y

2
+

1

2
‖x‖22‖y‖22

)
, (24)

where x = [x1, ...xm, ...xM ], y = [y1, ...ym, ...yM ], xm and ym are the Cartesian
coordinates of the mth microphone, respectively, ‖ · ‖p is the operator of p-
norm, · is the mean value operator, � is the element wise product operator.
Therefore, the optimization of the microphone array geometry means finding
the x and y satisfying:

{xopt,yopt} = arg min
x,y

‖Fg‖22

s.t. ‖(xm, ym)− (xn, yn)‖2 ≥ d, where m,n ∈ [1, ...,M ] ,m 6= n,
(25)
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Table 1: Iterative method for array optimization
Parameters: M,d
Initialization: x1 = y1 = 0, x2 = d, y2 = 0
x3 = ... = xM = y3 = ... = yM = 0
For m = 3 : M

{xm, ym} = argminxm,ym
‖Fg(x1, ..., xm, y1, ..., ym)‖22

s.t. {xm, ym} ∈ edge{C(1) ∪ ... ∪ C(m− 1)}
end

where d is the minimum inter element space constraint that we impose a-priori.
The criterion above is not convex and can be solved by greedy search across the
whole region of interest for all the microphones with an extremely high com-
putational burden. To overcome this problem, here we propose to solve (25)
with an iterative method which can find at least one local solution of the opti-
mization problem: Intuitively, from (22) we can see that all the microphones
have the trend to be located as close as possible. Without loss of generality,
we assume that the first microphone is placed at the origin and the second
on the x axis at (d, 0). Defining that C(m) is the circle centered at the mth

microphone with a radius d, the mth microphone will be located on the edge
of the union of C(1),C(2),...,C(m − 1), at the same time the criterion of mini-
mizing Fg is satisfied for the first m microphones. The iterative optimization
algorithm is formulated as in table 1.

4.1 Numerical simulation results

In this subsection, we present the locally-optimal geometry obtained with
the algorithm in (25) with various numbers of microphones and show the
advantages of the proposed geometry by comparing the performance of the
conventional MVDR beamforming using various array geometries.

In Figure 4, the locally-optimal geometries are plotted for various values
of the microphone number M . The red dots represent the microphones and
the black dashed lines represent the circles centered at the microphones with
radius d = 0.2λ; where d is the minimum inter-element space constraint. We
can see that the locally-optimal geometry is fan-shaped, and Figure 4(e) and
4(h) show that the locally-optimal geometry has the trend to be concentric.

In Figure 5, the WNG and DF as a two-dimensional function of the angular
spread and the DOA of the actual source are illustrated. We can see that in
Figure 5(a) the WNG is robust to the DOA of the source, as the proposed
locally-optimal geometry is obtained by minimizing the impact of the angular
spread of the CD source on the WNG of MVDR beamforming. On the contrary,
in Figure 5(b) the DF is less robust to the DOA than the WNG. Similarly,
Figure 5(c) and Figure 5(d) show the WNG and DF with spiral geometry,
where the aperture of the spiral geometry is approximately equivalent to the
proposed locally-optimal geometry. We can see the advantage of the proposed
geometry for both the WNG and DF.

In Figure 6, we compare the WNG and the DF of the MVDR beamforming
with a Fermat spiral array (Figure 6(a)), an arbitrary array (Figure 6(b)), and



Springer Nature 2021 LATEX template

Article Title 13

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(a) M3

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(b) M4

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(c) M5

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(d) M6

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(e) M7

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(f) M8

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(g) M10

-1 -0.5 0 0.5 1

x(λ/2)

-1

-0.5

0

0.5

1

y
(λ
/
2
)

(h) M13

Fig. 4: Locally-optimal geometry with different number of microphones (inter-
element space constraint d = 0.2λ)
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Fig. 5: WNG and DF vs. angular spread and DOA (uniformly distributed
source, (a) and (b): the locally-optimal geometry with M = 13, (c) and (d):
the spiral geometry with M = 13)

the proposed array. All the microphone arrays compose ofM = 13 microphones
and have the same minimum inter-element space constraint. The spherically
isotropic noise is generated according to the method in [13]. In Figure 6(c)
we can see that the performance degradation with the proposed geometry is
significantly less than the others, while the performance degradation with the
spiral geometry is the largest, which can be explained by the fact that under
the same minimum inter-element space constraint, the proposed geometry has
the minimum array aperture as well as the minimum value of F in (22). More-
over, in Figure 6(d) we can see that, even though our proposed criterion for
the optimization of the array is based on the WNG, with the locally-optimal
geometry the DF degrades significantly less than the others.

In Figure 7 and Figure 8, we compare the proposed method with the model-
driven microphone subset selection (MSS) method proposed in [28]. As one of
the state-of-the-art methods, the MSS method selecting the most informative
subset of microphones from a WASN for MVDR beamforming. Its main idea
is as follows:

argmin
h,p∈{0,1}M

‖diag(p)c‖1
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Fig. 6: WNG and DF vs. angular spread (θ0 = 45◦, uniformly distributed
source, M = 13)

s.t.hHRnh ≤
β

α
,

hHa = 1, (26)

where p = [p1, p2, ..., pM ] ∈ {0, 1}M , and pi = 1 means that the ith microphone

is selected, c = [c1, c2, ..., cM ]
T

denote the pairwise transmission cost between
each microphone and the fusion center (FC) of the WASN, β denotes the
output noise power after beamforming when all microphones are used (i.e.,
p = 1M ), α ∈ (0, 1] is an adaptive factor to control the output noise power
compared to β. Figure 7 illustrates the array geometry examples obtained
by the MSS method in different noise scenarios and with different values of
α. The FC is placed at the origin or at (d, 0). The red dots represent the
candidate microphones and the blue circles represent the selected microphones.
α = 0.15 in spatially white noise scenario (Figure 7(b) and 7(c)) and α = 0.25
in spherically isotropic noise scenario (Figure 7(e) and 7(f)) are considered in
Figure 8 to compare the SNR gain performance with our proposed geometry.
With this configuration, the number of microphones is always equal to 13.
We can see from Figure 7 and Figure 8 that the advantages of the proposed
method lie in the following aspects: 1) The MSS method concerns choosing
informative microphones from a large number of candidate microphones, while
the proposed method only needs a small number of microphones. 2) For the
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Fig. 7: Array geometries obtained by the model-driven MSS method in [28]
in different noise scenarios (inter element space d = 0.2λ)
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Fig. 8: WNG and DF vs. angular spread (θ0 = 45◦, uniformly distributed
source, spatially white noise, M = 13)

MSS method, the parameter α is introduced to control the output power of the
network and can thus impact the array geometry (see the subfigures in Figure
7); and the position of the FC can also impact the array geometry (see Figure
7(e) and Figure 7(f)). The proposed method does not have such parameters.
3) The array geometry obtained by the MSS method is sensitive to the DOA
of the SOI in some scenarios, see Figure 7(g) and Figure 7(h) for example,
while the proposed criterion in our paper is robust to the DOA of the SOI. 4)
Figure 8 illustrates that if the FC is placed at the origin, the proposed method
performs approximately as well as the MSS method in the spatially white
noise scenario and outperforms slightly the MSS method in the spherically
isotropic noise scenario. However, if the FC is placed with a bias with respect
to the origin, for example at (d, 0), with the MSS method the robustness of
beamforming to the angular distribution of the SOI decreases evidently.

5 Conclusions

In this paper, we have first extended the conventional MVDR beamforming
into the CD source scenario as the CD-MVDR beamforming; and we have
found that the WNG of CD-MVDR beamforming is inversely proportional to
the square of the angular dispersion difference between the actual source and
the CD-MVDR beamforming model. In the second part, we have proposed
an efficient optimization method of microphone array geometry based on the
minimization of the WNG of the conventional MVDR beamforming. We have
found that the locally-optimal geometry is fan-shaped and has the trend to be
concentric with one microphone at the center. Numerical results have shown
that the proposed locally-optimal geometry is more robust than the MVDR
beamforming in the CD source scenario for both the WNG and the DF.
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