
HAL Id: hal-04073063
https://centralesupelec.hal.science/hal-04073063v1

Preprint submitted on 18 Apr 2023 (v1), last revised 30 Aug 2023 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Maintaining a relevant dataset for data-driven MPC
using Willems’ fundamental lemma extensions

Alexandre Faye-Bedrin, Stanislav Aranovskiy, Paul Chauchat, Romain
Bourdais

To cite this version:
Alexandre Faye-Bedrin, Stanislav Aranovskiy, Paul Chauchat, Romain Bourdais. Maintaining a
relevant dataset for data-driven MPC using Willems’ fundamental lemma extensions. 2023. �hal-
04073063v1�

https://centralesupelec.hal.science/hal-04073063v1
https://hal.archives-ouvertes.fr


Maintaining a relevant dataset for data-driven MPC using Willems’
fundamental lemma extensions

Alexandre Faye-Bédrin, Stanislav Aranovskiy, Paul Chauchat, and Romain Bourdais

Abstract— This work explores the recent formulation of non-
linear Data-driven Model Predictive Control in the case of
dynamic references. Indeed, the state-of-the-art methods rely
on Willems fundamental lemma, and freeze the used dataset
at some point. While this ensures consistent behavior, i.e.,
excitation and accuracy, for a given setpoint, this will likely fail
when the reference, and thus the operating point, changes. To
this end, we propose refined heuristics for dataset management.
First, a singular value-based method induces regular dataset
updates but still guarantees a minimum excitation level. Then,
a double-dataset formulation aims at decoupling accuracy and
excitation issues and leverages the singular value-based one.
These heuristics are validated in real-time experiments on a
heat-blower system.

I. INTRODUCTION

Model Predictive Control (MPC) is a mature research area
and one of the most industrially accepted advanced control
solutions [1] including, e.g., building energy management
systems [2], [3]. For MPC, the accuracy of the process
model is crucial, which motivates and gives rise to research
on Adaptive MPC capable of online adjustments for model
uncertainties and variations. As in Adaptive Control, the
adaptation in MPC can be model-based or non-parametric
(data-driven). For the first one, an explicit parametric model
of a plant is estimated, and then a MPC strategy is applied.
The Data-Driven MPC (DD MPC) does not include such
an explicit parametric model. In contrast, it uses a dataset
of past measurements to formulate an optimization problem;
such a dataset can be thus seen as an implicit non-parametric
model. The absence of a-priori knowledge of the process is
actually advantageous, as it reduces the risk of making wrong
assumptions [4].

One possible approach in DD MPC is based on Willems
et al’s fundamental lemma [5]. It says that any trajectory of
a discrete-time linear time-invariant system can be derived
from a sufficiently large dataset of past trajectories if these
trajectories satisfy the persistence of excitation condition.
Then an optimization problem can be formulated for the
future trajectory using this dataset and avoiding explicit
dynamics formulation.

This idea is used in [6], where a DD MPC solution for
a non-linear system is developed. To this end, a record of
recent input-output measurements is used as a linearization
around the current position. Such a data-driven linearization
is then used in the tracking MPC formulation; see also [7],
[8] for more details. In [6], the crucial assumption to prove
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alexandre.faye-bedrin@centralesupelec.fr

the stability and tracking capabilities is that the dataset re-
mains persistently excited when operating in the closed loop.
Such an assumption requires a dataset-maintaining strategy.
The authors highlight that developments of efficient dataset
update heuristics remain an open question. Specifically, they
propose the following approach: measurements are collected
until the system arrives at the desired position, and then the
collected dataset is frozen; no future measurements are used.
While this approach works for constant reference tracking, it
may yield an error when the reference changes. The dataset
collected around a linearization point may be irrelevant
when used for regulation around another linearization point
(another reference). Thus, the dataset-maintaining problem
remains open.

The contribution of this paper is as follows. We apply the
DD MPC [6] to a non-linear MIMO testbed representing
a heating/ventilation system, where the temperature and the
airflow set points (references) are piece-wise constants. Due
to the changes in the set points, the heuristic proposed in [6]
yields a steady-state tracking error. To this end, we develop
a novel dataset-maintaining strategy that ensures the use of
the most recent sufficiently excited dataset while keeping
track of the offset at all times. The proposed strategy tracks
the smallest singular value of the Hankel matrix introduced
in Willems’ lemma. Our experimental results show that the
proposed solution tracks the set point variations.

The paper has the following structure. Section II presents
some preliminary results: a Willems’ lemma-based DD MPC
for affine systems and its extension for non-linear systems;
Section II-C highlights a limitation of the discussed ap-
proaches to be addressed in this paper. Section III presents
our main result: the data management strategy. Section IV
describes the experimental results on a heating/ventilation
system regulation illustrating the performance of the pro-
posed solution. Finally, conclusions and future directions are
given in Section V.

Notation:
• The operator col(·) stacks up its vector or matrix

arguments.
• For a sequence (zk)

M
k=m and a, b ∈ [m,M ] we use the

following notation for a stacked window:

z[a,b] = col(za, za+1, . . . , zb)

and we write z := z[m,M ].
• For a sequence (zk)

N−1
k=0 , we denote the Hankel matrix

HL(z) ∈ RL×(N−L+1) as

HL(z) =
[
z[0,L−1] z[1,L] . . . z[N−L,N−1]

]
.



• A vector or sequence computed at time t is denoted by
·(t), e.g., (zk(t))Mk=m.

• A vector of ones of length q is denoted by 1q .
• The Kronecker product is denoted by ⊗.
• For a matrix A, the vector of singular values is denoted

by σ(A), and σmin(A) := min
i
(σi(A)).

II. PRELIMINARIES

MPC is an acclaimed control method as it can account
for non-linear dynamics, input and output constraints, and
versatile objective functions. However, this heavily relies on
the accuracy of the process model. Adaptive MPC methods
try to overcome this problem, and a promising line of
research is Data-Driven MPC [6], which we recall in this
section.

A. Data-driven MPC for affine systems

Consider the following affine system:

xk+1 = Axk +Buk + e,

yk = Cxk +Duk + r,
(1)

where uk ∈ Rm, xk ∈ Rn, yk ∈ Rp, A, B, C, and D
are constant matrices of appropriate dimensions, and e, r
are constants, e.g., resulting due to a linearization around a
non-equilibrium point.

Most of the data-driven control methods designed so far,
with guarantees on the accuracy of the prediction, rely on
Willems’ fundamental lemma [5] and its few extensions
[9], [10], [6], which characterize all the system’s possible
trajectories with respect to a collection of past ones. Data-
based methods have been developed prior to the lemma,
e.g., [11], based on the idea of subspace identification [12].
In a way, Willems’ lemma specifies when the subspace
identification of a system is exact.

1) Willems’ fundamental lemma for affine systems: Sup-
pose that (1) defines a controllable and observable system.

Definition 1: A sequence (zk)
N−1
k=0 with zk ∈ Rq is said

to be persistently exciting of order M if

rank(HM (z)) = qM.
Let

(
ud = (ud

k)
N−1
k=0 , yd = (ydk)

N−1
k=0

)
be a series of

inputs-outputs of the system.
Theorem 1 ([6], [10]): If ud is persistently exciting of

order L+ n+ 1, then
• (u = col(u0, . . . , uL−1) , y = col(y0, . . . , yL−1)) is a

trajectory of length L of the system if and only if:

∃α ∈ RN−L+1,

uy
1

 =

HL(u
d)

HL(y
d)

1⊤
N−L+1

α (2)

• as an intermediary result, with xd the state sequence
associated with the trajectory (ud, yd), we have the
following full row rank condition:

rank

HL(u
d)

H1(x
d)

1⊤
N−L+1

 = mL+ n+ 1 (3)

2) Control scheme: Let yr be the reference. The goal of
this scheme is to find a feasible setpoint (usr, ysr) such that
ys comes close to yr. Then, a trajectory from the current
operating point to this setpoint is computed, and the first
control step of this trajectory is applied.

Suppose that the dataset (ud, yd) is available at the time
instance t, where ud is persistently exciting of order L+2n+
2. Then the open-loop optimal control problem is based on
the following two-stage procedure.

a) First stage: The first stage computes a feasible
steady-state (usr(t), ysr(t)) close to the reference as a solu-
tion to the following problem:

min
εsr,αsr,
usr,ysr

∥ysr − yr∥2S + λs
α∥αsr∥22 + λs

ε∥εsr∥22 (4a)

st.

 1L+n+1 ⊗ usr

1L+n+1 ⊗ ysr + εsr

1

 =

HL+n+1(u
d)

HL+n+1(y
d)

1⊤
N−L−n

αsr

(4b)

Here, εsr is a feasibility term, useful for both the noisy
and non-linear cases, i.e., it allows a deviation of the mea-
surement from the model (1), and λs

α, λ
s
ε help regularising

the problem. As αsr is obtained based on the data available
at t, it is further denoted as αsr(t). This value is used in the
second stage as a proxy for (usr(t), ysr(t)).

b) Second stage: The second problem stage computes
an open-loop trajectory in a more classic way. As well
as in the model-based case [8], it relies on a constrained
optimization problem using a quadratic cost function.

min
ε(t),α(t),
us(t),ys(t)

L∑
k=−n

∥ūk(t)− us(t)∥2R + ∥ȳk(t)− ys(t)∥2Q

+ ∥ys(t)− yr∥2S + λα∥α(t)− αsr(t)∥22
+ λε∥ε(t)∥22

(5a)

st.

 ū(t)
ȳ(t) + ε(t)

1

 =

HL+n+1(u
d)

HL+n+1(y
d)

1⊤
N−L−n

α(t) (5b)

[
ū[−n,−1](t)
ȳ[−n,−1](t)

]
=

[
u[t−n,t−1]

y[t−n,t−1]

]
(5c)[

ū[L−n,L](t)
ȳ[L−n,L](t)

]
=

[
1n+1 ⊗ us(t)
1n+1 ⊗ ys(t)

]
(5d)

Using notation (.)[a,b] with sometimes negative values of
a, b allows keeping consistency with [6]. Here, at time t,
we denote ū(t) = (ūk(t))

L
k=−n, likewise for ȳ. This centers

the stacked sequences around zero . Thus (5c) ensures, for
k < 0, ūk(t) = ut+k, so that it represents the measured
inputs, likewise for y. This induces a consistent trajectory
initialization. Then ūk, ȳk, k ≥ 0, represent the predicted
inputs and outputs from time t. Terminal constraint (5d)
ensures closed-loop stability, and (5b) ensures, thanks to
Willems’ lemma, that ū, ȳ is close to a trajectory of the
system, with again feasibility and regularisation terms.

Once problem 5 is solved, ū0(t) is the control to be
applied.



3) Obtaining an acceptable dataset: The performance of
DD MPC is directly linked with the quality of the dataset
(ud, yd). It has to satisfy two criteria (CR):

CR-i: its prediction must be accurate,
CR-ii: it must ensure the controllability of the system by

spanning all feasible state-control sequences.
For an affine system, Willems’ lemma ensures that both
properties are satisfied as soon as ud is persistently exciting
of sufficient order. This is why it was proposed to set up
an initialization phase during which a sufficiently exciting
input sequence ud is injected, similar to a probe signal
injection, and then use the corresponding outputs yd to form
the dataset. This single dataset will then ensure accuracy and
controllability for an arbitrary long time [5], [7].

B. Data-driven MPC for non-linear systems

Consider a non-linear dynamic system B of the form{
xk+1 = f(xk) +Buk

yk = g(xk) +Duk
(6)

with uk ∈ Rm, xk ∈ Rn, yk ∈ Rp.
If the system satisfies some suitable assumptions (mainly,

smoothness of f and g), it can be linearized around an
operating point x̃. The result is an affine system Ba(x̃) in
the form (1), which can approximately predict the behavior
of the non-linear system (6). The matrices B and D of the
system Ba(x̃) are the same as in (6), and the matrices A, C
and the vectors e, r in (1) are computed around x̃,

Ax̃ :=
df

dx
(x̃), ex̃ := f(x̃)−Ax̃x̃

Cx̃ :=
dg

dx
(x̃), rx̃ := g(x̃)− Cx̃x̃

(7)

Just as in the model-based case, this model can be used
to get a control scheme around x̃ [8]. In turn, non-linear
DD MPC simply relies on the method designed for affine
systems and presented in Section II-A.

C. Main limitation of DD MPC for non-linear systems: How
to maintain the dataset?

Similarly to the affine case, (ud, yd) must satisfy criteria
CR-i and CR-ii. However, in this case, Willems’ lemma alone
does not guarantee CR-i: the associated linearization point
needs to be close to the current operating point.

An easy strategy to ensure this is to form ud with the last
N samples at a given time t: ud(t) = u[t−N,t−1]. However,
the risk is to reduce the controllability of the system if
these samples do not carry enough excitation, especially in a
steady state. Thus, CR-i and CR-ii appear to be conflicting.
A compromise was proposed in [6], [13] in the form of the
following heuristic. Starting with an exciting initialization
phase as in the affine case, the dataset is frozen once a steady
state is reached, to ensure accuracy around this operating
point.

However, this only works if the system has a unique
setpoint during its lifetime. No guarantees can be given for
a reference which would change over time. In the following,
we propose refined heuristics to overcome this problem.

III. PROPOSED DATASET MANAGEMENT SOLUTIONS

In this section, we explore heuristics that can be used
for non-linear DD MPC with changing references. We first
propose a method to update a single dataset based on a com-
promise between accuracy and controllability requirements.
Then, we leverage this solution to develop a new double
dataset management heuristic, which aims at decoupling both
of these requirements.

A. A simple singular value-based heuristics

Let (ud, yd) be the previously collected dataset used for
DD MPC, and (ũd(t) := u[t−N,t−1], ỹ

d(t) := y[t−N,t−1]) be
the one formed from the last N steps. The question is: when
do we replace (ud, yd) with (ũd, ỹd)? Our rationale is as fol-
lows: a dataset update will be needed if the reference changes
and if this change triggers enough excitation. Mathematically
speaking, Willems’ lemma is based on a Hankel matrix built
from ud and which has to be a full-rank matrix. We propose
to track this condition over time through the smallest singular
value of this matrix ς(ud) := σmin(HL+2n+2(u

d)). Since
in practice, the presence of noise will almost always induce
some excitation of measurements, we introduce the threshold
ς̄ > 0 and assume that the dataset (ud, yd) is sufficiently
excited if ς(ud) ≥ ς̄ . Then, a simple heuristics can be
formulated as always using the most recent sufficiently
excited data, i.e., if ς(ũd) ≥ ς̄ . The current dataset (ũd, ỹd)
is further used for DD MPC until a more recent sufficiently
excited dataset is observed.

The threshold ς̄ has to be small enough to allow for
frequent updates, but also large enough so that the dataset
will ensure the controllability of the system.

B. Using two complementary datasets

Willems’ fundamental lemma (in its original form, for
linear systems [5]) has been generalized to the case of
multiple datasets in [14]: instead of relying on a unique
trajectory that represents the behavior of the system, it is
possible to use a collection of trajectories, under some similar
conditions.

This leads us to the following idea: it is possible to use
multiple datasets with different properties, in order to fulfill
the two criteria of a “good” dataset.

In our case, we propose the following method with two
datasets:

• one that guarantees the sufficient excitation level,
• one that tracks the current operating point x̃.
1) Defining two relevant datasets: We define the two

following datasets:
• (ud,ℓ(t) = u[tℓ−Nℓ,tℓ−1], y

d,ℓ(t) = y[tℓ−Nℓ,tℓ−1]) is
a dataset collected at the time tℓ ≤ t chosen such
that the dataset is sufficiently excited, ς(ud,ℓ) ≥ ς̄ ,
e.g., the initial excitation. However, since tℓ can be
a past measurement time, this dataset is not used for
adjustments of the vectors ex̃ and rx̃.

• (ud,a(t) = u[t−Na,t−1], y
d,a(t) = y[t−Na,t−1]) is a

dataset with the most recent data; it is used to track



the current operating point x̃, specifically the vectors
ex̃ and rx̃ of the affine system Ba(x̃).

These two datasets are then combined to represent the
approximation Ba(x̃) as discussed in the following extension
to Willems’ lemma.

Theorem 2: Let B be an affine system in the form (1),
and let ud,ℓ be persistently exciting of order L+n+1. Then
(u, y) is a trajectory of length L of B if and only if there
exists α ∈ RNa+Nℓ−2L+2 such that

u
y
1
0

 =


HL(u

d,ℓ) HL(u
d,a)

HL(y
d,ℓ) HL(y

d,a)
0 1⊤

Na−L+1

1⊤
Nℓ−L+1 0

α. (8)

Proof: Decompose α as α =

[
αℓ

αa

]
with αℓ ∈ RNℓ−L+1

and αa ∈ RNa−L+1. Then the last two equalities of (8) imply
that

Nℓ−L+1∑
k=0

αℓ
k = 0,

Na−L+1∑
k=0

αa
k = 1.

Any trajectory of length L of the affine system B can be
described as

y[t,t+L−1] = ΦLxt + Γu,Lu[t,t+L−1] + γe,r,L (9)

with ΦL,Γu,L, γe,r,L suitably defined from A,B,C,D, e, r,
and xt the initial state. In particular, this equality applies to
the columns of the Hankel matrices used in (8).

a) Proof of ”if”: We have

y[t,t+L−1] =

Nℓ−L∑
i=0

yd,ℓ[i,i+L−1]α
ℓ
i +

Na−L∑
i=0

yd,a[i,i+L−1]α
a
i

=

Nℓ−L∑
i=0

αℓ
i

(
ΦLx

d,ℓ
i + Γu,Lu

d,ℓ
[i,i+L−1] + γe,r,L

)
+

Na−L∑
i=0

αa
i

(
ΦLx

d,a
i + Γu,Lu

d,a
[i,i+L−1] + γe,r,L

)
=ΦL

(
Nℓ−L∑
i=0

αℓ
ix

d,ℓ
i +

Na−L∑
i=0

αa
i x

d,a
i

)
+ Γu,Lu[t,t+L−1] + γe,r,L.

This implies that (u, y) is a trajectory of B with initial
state

xt =

Nℓ−L∑
i=0

αℓ
ix

d,ℓ
i +

Na−L∑
i=0

αa
i x

d,a
i .

b) Proof of ”only if”: Let (u, y) be a trajectory of B
of length L and initial state x0. Let αa, chosen such that∑Na−L

i=0 αa
i = 1 (for example, ∀i, αa

i = 1
Na

). Then, we
define uℓ

yℓ

xℓ
0

 :=

 u
y
x0

− Na−L∑
i=0

αa
i

u
d,a
[i,i+L−1]

yd,a[i,i+L−1]

xd,a
i


=

 u
y
x0

−
HL(u

d,a)
HL(y

d,a)
H1(x

d,a)

αa

(10)

From (9), we have

yℓ =ΦLx0 + Γu,Lu+ γe,r,L

−
Na−L∑
i=0

αa
i

(
ΦLx

d,a
i + Γu,Lu

d,a
[i,i+L−1] + γe,r,L

)
=ΦL

(
x0 −

Na−L∑
i=0

αa
i x

d,a
i

)

+ Γu,L

(
u−

Na−L∑
i=0

αa
i u

d,a
[i,i+L−1]

)
=ΦLx

ℓ
0 + Γu,Lu

ℓ

(11)

Applying Theorem 1 and (3), there exists αℓ ∈ RNℓ−L+1

such that HL(u
d,ℓ)

H1(x
d,ℓ)

1⊤
N−L+1

αℓ =

uℓ

xℓ
0

0

 (12)

which satisfies

u =
[
HL(u

d,ℓ) HL(u
d,a)
] [αℓ

αa

]
(13)

Moreover, note that
∑Nℓ−L

i=0 αℓ
i = 0, and

y =ΦLx0 + Γu,Lu+ γe,r,L

(10)
=ΦL

(
xℓ
0 +

Nℓ−L∑
i=0

αℓ
ix

d,a
i

)

+ Γu,L

(
uℓ +

Nℓ−L∑
i=0

αℓ
iu

d,a
i

)
+ γe,r,L

(12)
=

Nℓ−L∑
i=0

αℓ
i

(
ΦLx

d,ℓ
i + Γu,Lu

d,ℓ
[i,i+L−1] + γe,r,L

)
+

Na−L∑
i=0

αa
i

(
ΦLx

d,a
i + Γu,Lu

d,a
[i,i+L−1] + γe,r,L

)
=

Nℓ−L∑
i=0

αℓ
iy

d,ℓ
[i,i+L−1] +

Na−L∑
i=0

αa
i y

d,a
[i,i+L−1]

=
[
HL(y

d,ℓ) HL(y
d,a)
] [αℓ

αa

]
.

This completes the proof.
2) Changes in the control scheme: To use the two datasets

in the control scheme, we simply adapt (5b) and (4b) to take
the same form as (8). The resulting optimal control problem
is then still defined in two stages.

a) First stage: The first stage computes a feasible
steady-state (usr(t), ysr(t)) close to the reference as a solu-
tion to the following problem, similar to the original Problem
4, where we define L := L+ n+ 1 for concision:

min
εsr,αsr,
usr,ysr

∥ysr − yr∥2S + λs
α∥αsr∥22 + λs

ε∥εsr∥22 (14a)

st.

 1L ⊗ usr

1L ⊗ ysr + εsr

1
0

 =


HL(u

d,ℓ) HL(u
d,a)

HL(y
d,ℓ) HL(y

d,a)
0 1⊤

Na−L+1

1⊤
Nℓ−L+1 0

αsr

(14b)



Similarly to the original scheme, only the obtained αsr is
used in the second stage.

b) Second stage: Likewise, the second stage is very
similar to the original one (Problem 5):

min
ε(t),α(t),
us(t),ys(t)

L∑
k=−n

∥ūk(t)− us(t)∥2R + ∥ȳk(t)− ys(t)∥2Q

+ ∥ys(t)− yr∥2S + λα∥α(t)− αsr(t)∥22
+ λε∥ε(t)∥22

(15a)

st.


ū(t)

ȳ(t) + ε(t)
1
0

 =


HL(u

d,ℓ) HL(u
d,a)

HL(y
d,ℓ) HL(y

d,a)
0 1⊤

Na−L+1

1⊤
Nℓ−L+1 0

α(t)

(15b)[
ū[−n,−1](t)
ȳ[−n,−1](t)

]
=

[
u[t−n,t−1]

y[t−n,t−1]

]
(15c)[

ū[L−n,L](t)
ȳ[L−n,L](t)

]
=

[
1n+1 ⊗ us(t)
1n+1 ⊗ ys(t)

]
(15d)

Here, we did not split α (nor αsr) into (αℓ, αa) for
concision. However, it may be relevant to do so and assign
various weights to these two parts in the objective function.

The exciting dataset (ud,ℓ, yd,ℓ) can be updated, for ex-
ample, according to the singular value criterion proposed in
section III-A.

3) Control scheme: With our proposed double-dataset
management solution, the complete control scheme is as
described in Algorithm 1.

Algorithm 1 Data-driven MPC scheme
Initialization

Generate ud,I , a control sequence of length Nℓ which
is persistently exciting of order L+ 2n+ 2.

Apply this sequence to the system: u[0,Nℓ−1] ← ud,I .
Initialize the two datasets:

(ud,ℓ, yd,ℓ)← (ud,I , y[0,Nℓ−1])
(ud,a, yd,a)← (u[Nℓ−Na,Nℓ−1], y[Nℓ−Na,Nℓ−1])

End of initialization
for each time step t do

Compute and apply the optimal control:
Compute αsr(t) by solving Problem (14)
Compute ū(t) by solving Problem (15)
Apply the computed input: ut ← ū0(t)

Update the datasets:
(ud,a, yd,a)← (u[t−Na+1,t], y[t−Na+1,t])
(ũd,ℓ, ỹd,ℓ)← (u[t−Nℓ+1,t], y[t−Nℓ+1,t])
Compute ς(ũd,ℓ) = σmin(HL+2n+2(ũ

d,ℓ))
if ς(ũd,ℓ) ≥ ς̄ then update the exciting dataset:

(ud,ℓ, yd,ℓ)← (ũd,ℓ, ỹd,ℓ)
end if

end for

Fig. 1. Instrumented heat blower. The actuators (blower fan and heating
resistance) are situated on the left of the picture, while the flow meter and
thermocouple are on the right.

IV. EXPERIMENTAL RESULTS

We assess the performance of the various DD MPC
schemes on a heat blower shown in Figure 1. The system
is equipped with a blower fan and heating resistance, and
is instrumented with a thermocouple and a flow meter. We
generated an initial exciting control sequence ud,I and we
designed a piece-wise constant reference yr(t). We then fed
those two elements to all experiments, which shared the same
control scheme and parameters up to the dataset management
strategies. The following methods were compared:
STR-1: Following [6] (recalled in II-A.2): the unique dataset

is updated until the steady state is reached, after
which it is indefinitely frozen.

STR-2: With singular value criteria: as described in III-
A, the unique dataset is updated every time the
condition on the minimal singular value of a Hankel
matrix is fulfilled.

STR-3: With 2 datasets and singular value criteria: this is the
complete strategy, that we propose in III-B.3 with
Algorithm 1.

We show in Figure 2 the outcome of the experiments.
We also compute the Root Mean Square (RMS) tracking
error, in relation to the quadratic objective function used in
the control scheme, for both output of the system and each
strategy. Results are in Table I.

Data management strategy Airflow Temperature
STR-1 (No update) 0.59 0.51
STR-2 (SVD-based) 0.35 0.31
STR-3 (2 datasets) 0.12 0.13

TABLE I
RMS OF TRACKING ERROR DURING THE EXPERIMENT

We can notice in Figure 2 that the original strategy STR-
1 is incapable of following a variation of reference. The
proposed singular value based strategy STR-2 can overcome
this limitation, but only once the second change of reference
triggered enough excitation. Finally, the two-datasets strategy
STR-3 is the best performing one, as it successfully tracks
the reference. This clearly shows the interest of having this
second dataset, which does not depend on excitation.

Figure 3 shows the value of ς(ũd) (as defined in Section
III-A) over time, and therefore illustrates the excitation of



0 100 200 300 400 500

3

4

5

6
V

a
lu

e
 (

V
)

1 dataset, no update

0 100 200 300 400 500

3

4

5

6

V
a
lu

e
 (

V
)

1 dataset, SVD update

0 100 200 300 400 500

Time (s)

3

4

5

6

V
a
lu

e
 (

V
)

2 datasets, SVD update

Airflow reference

Temperature reference

Airflow measure

Temperature measure

A

Fig. 2. Reference and output trajectories with the 3 considered strategies.
STR-1 (top) performs well until the first change of reference (t = 350s):
after that, a large static error (highlighted in the oval) stays between
measures and reference. STR-2 (middle) starts similarly. However, as a
change in reference (A, at t = 420s) brings enough excitation in the control
law, the dataset can be updated to ensure a null static error. STR-3 (bottom)
successfully converges to the reference after every change.

the candidate datasets and the times dataset updates happen
given a threshold. In particular, we can clearly see that
the second change of reference triggers enough excitation
for STR-2 to update, which in turn improves the tracking
accuracy.

V. CONCLUSION

In this paper, we proposed two strategies to update the
dataset required for the Data-Driven MPC implementation
in a relevant way. The results obtained in experimentation
highlight the potential of this approach to track dynamic

0 100 200 300 400 500

Time (s)

10-2

100

Smallest singular value of Hankel matrix
1 dataset, no update

1 dataset, SVD update

2 datasets, SVD update

Threshold

Fig. 3. Smallest singular value of the Hankel matrix used to verify
persistency of excitation, for the 3 considered strategies. For STR-2 and
STR-3, the dataset update is triggered by a singular value above the
threshold. The initialization is intentionally exciting, hence the important
values at the beginning.

references. As a future direction, we propose investigating
the persistent excitation order, which could be reduced to
lower the requirements defining a good dataset, thus allowing
more frequent updates.

REFERENCES

[1] T. Samad, M. Bauer, S. Bortoff, S. D. Cairano, L. Fagiano, P. F.
Odgaard, R. R. Rhinehart, R. Sánchez-Peña, A. Serbezov, F. Ankersen,
P. Goupil, B. Grosman, M. Heertjes, I. Mareels, and R. Sosseh, “In-
dustry engagement with control research: Perspective and messages,”
Annual Reviews in Control, vol. 49, pp. 1–14, 2020.

[2] Y. Wang, J. Kuckelkorn, and Y. Liu, “A state of art review
on methodologies for control strategies in low energy buildings
in the period from 2006 to 2016,” Energy and Buildings,
vol. 147, pp. 27–40, Jul. 2017. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0378778817303547
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