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On DREM regularization and unexcited linear regression estimation
Stanislav Aranovskiy1, Rosane Ushirobira2, and Denis Efimov2

Abstract—The problem of estimation of unknown constant
parameters in the linear regression with measurement noise
is considered. Analysing different levels of excitation of the
regressor, two notions of partial and feeble excitation are in-
troduced. The former implies the absence of the persistent
or interval excitation, while the latter property says that the
excitation is just insufficient for an efficient estimation in a noisy
setting. The dynamic extension and mixing method (DREM)
is used for the problem solution, and in order to improve
its estimation performance, regularization is proposed and the
resulting improvement is investigated analytically. The theoretical
findings are illustrated in the simulations.

I. INTRODUCTION

We consider the linear regression equation (LRE)

y(t) = ϕ⊤(t)θ + v(t), t ∈ R+ (1)

where y(t) ∈ Rℓ is the output signal, ϕ(t) ∈ Rn×ℓ is
the regressor, v(t) ∈ Rℓ is an additive distortion, e.g., a
measurement noise, and θ ∈ Rn is the vector of unknown
constant parameters. The signals y and ϕ are available, and
the goal is to estimate the vector of parameters θ. We assume
that the regressor ϕ and the distortion v are bounded and that
the regressor ϕ is piecewise continuous.

The crucial property defining whether the vector of parame-
ters θ can be estimated (uniformly in time) is the excitation of
the regressor ϕ. The common types of excitation are persistent
and interval ones, as given in Section II.

The classic result in adaptive control and parameter esti-
mation states that for ϕ persistently exciting, the vector θ
in LRE (1) can be estimated exponentially fast using, for
example, least squares algorithms, and the estimation error is
input-to-state stable with respect to v [1], [2]. In contrast, the
interval excitation is not uniform in time, precluding noise
filtering and robustness. However, it was shown in [3]–[5]
that the interval excitation is, in fact, sufficient for estimation
being the identifiability condition. If the regressor ϕ is not
exciting over any interval in the sense of Definition 1, then
there exist θa, θb ∈ Rn, θa ̸= θb, such that ϕ(t)θa = ϕ(t)θb,
for all t, and the vector θ in (1) cannot be reconstructed
from the measurements of y and ϕ, even in the absence of
v. On the other hand, if the regressor ϕ is intervally excited,
the vector θ can be estimated in the absence of noise, e.g.,
using finite-/fixed-time estimators [4] or concurrent/composite
learning [6], [7] (where the interval excitation is also known
as sufficient excitation [3]).

Besides the compromised identifiability of θ, the lack of ex-
citation of ϕ is also connected to the numerical implementation
and tuning of estimation algorithms. For example, concurrent
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learning estimators use a historical data stack that can be seen
as an accumulation of samples ϕ(tk)ϕ

⊤(tk) ∈ Rn×n at time
instances tk, k ∈ N. This data stack is meant to keep the
past information to be used with new measurements of ϕ,
allowing for parameter estimation under interval excitation.
Suppose that ϕ is intervally excited as in Defintion 1, but the
corresponding value µ is small regarding the magnitudes of
signals and chosen numerical accuracy. Then the accumulated
data matrix may be ill-conditioned, requiring high gains and
making the estimation prone to numerical errors.

A similar situation may arise in the Dynamic Regressor
Extension and Mixing (DREM) estimation [8]. The extension
step of this procedure transforms the LRE (1) into a novel
extended LRE with a square regressor matrix Φ(t) ∈ Rn×n

whose adjugate matrix is further used to decouple the vector
problem (1) into a set of scalar LRE for each element of θ
independently. If the original regressor ϕ is PE but with a
relatively small value µ, then the extended matrix Φ(t) may
be close to singular, complicating the practical implementation
of a DREM estimator.

Nevertheless, even if the regressor ϕ is neither PE nor IE or
is PE/IE with a small µ value, the regressor may still contain
certain information, being exciting in specific directions. This
concept is used in least-squares estimation with regressor
projection [9], [10] and directional forgetting [11], [12], where
the covariance matrix is updated only in those directions where
the regressor ϕ contains new information.

Recently, a modification of the standard gradient and least-
squares algorithms was proposed in [13], allowing for expo-
nential estimation of a particular projection of θ in (1) under a
lack of PE; the authors also propose a definition of order of PE
lack. A similar problem was addressed in [14] in the context of
the DREM procedure. The authors proposed a matrix update
algorithm in the vein of directional forgetting and introduced
a definition of semi-persistent excitation.

Novelty and Contribution. This research is motivated by
these recent advances. We consider the LRE (1) under a defi-
ciency of excitation of ϕ, and propose two notions quantifying
the lack of persistent excitation as discussed above. Next, we
study several regularization tools that allow us to improve
the estimation accuracy for the vector of constant unknown
parameters θ. Admissible bounds on the regularization matrix
are evaluated.

The rest of the paper is organized as follows. Definitions
of different levels of excitation for a regressor are given in
Section II, together with two new concepts of partial and
feeble excitation. Problem statement is presented in Section
III. Regularization for DREM is introduced and analyzed in
Section IV. The results of computer experiments illustrating
the efficiency of this regularization are shown in Section V.
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Notation

• The sets of nonnegative real and nonnegative integer
numbers are denoted by R+ and N, respectively. Also,
N∗ := N \ {0}.

• The set of real n×m-matrices is denoted by Rn×m.
• The n-identity matrix is denoted by In.
• For a vector x ∈ Rn, ∥x∥ denotes its Euclidean norm,

and ∥A∥ corresponds to induced norm for a matrix A ∈
Rn×n.

II. PRELIMINARIES

Classical definitions of persistent and interval excitation are
recalled below:

Definition 1: Let ϕ : R+ → Rn×ℓ be a bounded signal.
(i) We call ϕ persistently exciting if there exist T > 0 and

µ > 0 such that for all t ∈ R+,∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ ≥ µIn. (2)

We write ϕ is PE or (T, µ)-PE to mention specific values
of T and µ.

(ii) We call ϕ interval exciting if it is exciting over an interval
(so (2) is satisfied only for a specific value of t, e.g.,
t = 0). We say ϕ is IE. □

A. What is lack of excitation?

In contrast with persistent or interval excitation, a lack of
excitation is a less common concept. It is often considered
merely the absence of the PE/IE properties. A more sophis-
ticated interpretation was suggested in the recent work [13],
where the authors define the lack of persistence of excitation
of order p as follows.

Definition 2 (Lack of persistence of excitation of order p,
[13]): For 0 ≤ p ≤ n, a piecewise continuous uniformly
bounded matrix function ϕ : R+ → Rn×ℓ has a lack of
persistency of excitation of order p, if there exist T > 0,
kT > 0 and linearly independent orthogonal, unitary norm
vectors vi ∈ Rn, 1 ≤ i ≤ n, such that for all t ∈ R+,

v⊤i

(∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ

)
vi = 0, 1 ≤ i ≤ p (3)

and

v⊤i

(∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ

)
vi ≥ kT , p+ 1 ≤ i ≤ n.

A few remarks regarding Defintion 2 are given below.
1) An example of vectors vi are the orthonormal eigenvec-

tors of the symmetric n× n matrix
∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ .

Then the first p vectors correspond to zero eigenvalues.
2) Definition 2 operates with constant vectors vi, meaning

that the lack of excitation has constant nature; the kernel
of the matrix

∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ is time-invariant.

For this paper, we consider the lack of excitation from
another point of view by introducing the following definition
of partial excitation.

Definition 3 (Partial excitation): A bounded signal ϕ :
R+ → Rn×ℓ is partially persistently (interval) exciting of
degree q, if there exist constant matrices C ∈ Rn×(n−q) and
Z ∈ Rn×q such that

• rank
([
C Z

])
= n,

• (degeneracy of regressor)

ϕ⊤(t)C = 0, ∀t ∈ R+, (4)

• the signal ϕ̃ =
(
ϕ⊤Z

)⊤
is persistently (interval) exciting.

Definition 3 is more general than the definition of lack of
persistent excitation of degree p = n − q in [13]. It also
includes the case of interval excitation and does not impose
a particular structure of the matrices C and Z. However, it
is easy to see that partial persistent excitation of degree q is
equivalent to a lack of persistent excitation of degree n − q
for a special choice of C and Z.

Consider now the LRE (1), where the regressor ϕ is only
partially exciting of degree q. Due to the invertibility of the
matrix

[
C Z

]
, there exist θ̃1 ∈ Rn−q and θ̃2 ∈ Rq providing

θ = Cθ̃1 + Zθ̃2. (5)

The component Cθ̃1 of the vector θ is orthogonal to the
regressor ϕ and cannot be estimated from (1). Thus, only the
vector θ̃2, excited by ϕ̃, can be reconstructed. To this end,
substituting (5) to (1) yields the reduced-order LRE

y(t) = ϕ̃⊤(t)θ̃2 + v(t) (6)

allowing the estimation of θ̃2 from y and ϕ̃ using any existing
parameter estimation techniques.

Remark 1: The matrices C and Z in Definition 3 are not
unique and may be written on a different basis. For instance,
for a pair C, Z satisfying the conditions, for any invertible ma-
trix R, the pair CR, ZR also fulfills the requirements. Thus, θ̃2
in (5) is defined by a specific choice of Z. Moreover, without
loss of generality, we may assume that Z is orthogonal to C.
Otherwise, the matrix Z can be written as Z = CA+ C⊥B,
where C⊥ ∈ Rn×q is a full-rank matrix in the orthogonal
complement of C, and A ∈ R(n−q)×q , B ∈ Rq×q are any
matrices. Then ϕ̃⊤(t) = ϕ⊤(t)Z = ϕ(t)C⊥B, i.e., only the
projection of Z on the subspace orthogonal to C affects the
measurements y(t) and the reduced-order regressor ϕ̃(t).

B. Feeble Excitation

Both Definitions 2 and 3 operate with the exact equality to
zero of the products in (3) and (4). Recalling that the LRE (1)
contains the measurement noise v, from a practical point of
view, it is beneficial to consider the cases when the regressor
ϕ is formally exciting, but the level of excitation is feeble
with respect to the noise magnitude or numeric precision of
the system. We formulate feeble excitation as follows.

Definition 4: Let ϕ : R+ → Rn×ℓ be (T, µ)-PE (or IE) in
the sense of Definition 1. Let λ1(t) ≤ λ2(t) ≤ . . . ≤ λn(t) be
the eigenvalues of the matrix

∫ t+T

t
ϕ(s)ϕ⊤(s)ds. We say that

the excitation is feeble of order p if there exist µ1, µ2 ∈ R+,
µ1 ≪ µ2, such that

λp(t) ≤ µ1, λp+1(t) ≥ µ2,
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for all t ∈ R+ (for a specific t ∈ R+).

Definition 4 is related to the ill-conditioning of the estima-
tion problem. For instance, if the integral is taken on a larger
time domain from t to t + kT for k ∈ N∗ to accumulate
more information, the resulting matrix is not well-conditioned
(it may also result in the augmentation of the noise influence
if ϕ and v are interrelated). From a practical point of view,
we are also interested in the case when µ1 is of the order of
magnitude of the noise v impacting the estimation accuracy.

C. Dynamic Regressor Extension and Mixing (DREM)

In a nutshell, the DREM procedure is a nonlinear dynamic
transformation applied to the LRE (1) and transforming it into
a set of n scalar LREs for each element of the vector θ. Thus,
the elements of θ can be estimated independently, enhancing
the transient performance; see [8] for more details.

The DREM procedure consists of the extension and mixing
steps. First, a dynamic transformation is applied, leading to a
new extended LRE

Y (t) = Φ(t)θ + V (t), V (t) = V (t) + ϵ(t), t ∈ R+, (7)

where Y (t) ∈ Rn and Φ(t) ∈ Rn×n are measured signals
generated by the extension of the dynamics, V (t) ∈ Rn

results from the noise v propagation, and ϵ(t) ∈ Rn is an
exponentially decaying term arising due to the initialization
of the filters in the extending dynamics. Such an extension
can be performed, for instance, via delay operators or linear
filters, whose auxiliary role is also to filter the noise, see [15].

One particular choice yielding the extended model (7) is the
Kreisselmeier’s approach [16] given by: ∀t ∈ R+,

Φ̇(t) = −aΦ(t) + ϕ(t)ϕ⊤(t),

Ẏ (t) = −aY (t) + ϕ(t)y(t),
(8)

where Φ(0) = Φ0 ≥ 0, Y (0) = Y0, and a > 0 is a scalar
tuning parameter. Notably, the choice Φ0 = 0, Y0 = 0 yields
ϵ ≡ 0 in (7). The work [17] shows that (8) preserves the persis-
tent/interval excitation providing the quantitative evaluation of
the excitation level of Φ, and [13] shows that it also preserves
the lack of excitation in the sense of Definition 2.

The second step of the DREM procedure, mixing, is next
applied to derive a set of n scalar equations. Multiplying (7)
by the adjugate matrix of Φ, denoted as adj(Φ(t)), on the left
and setting Y(t) := adj(Φ(t))Y (t), V(t) := adj(Φ(t))V (t),
∀t ∈ R+, we get

Yi(t) = ∆(t)θi + Vi(t), (9)

where Yi, θi, and Vi are the ith elements of the vectors Y ,
θ, and V , respectively, i ∈ 1, n, and the scalar function ∆ :
R+ → R is the determinant of Φ,

∆(t) := det(Φ(t)) , ∀t ∈ R+.

The set of n scalar LRE (9) sharing the same bounded scalar
regressor ∆ is the main result of the DREM procedure. It is
worth noting that for a bounded regressor ϕ, the vector V is
also bounded, and v ≡ 0 implies V ≡ 0.

D. Some useful matrix equations

Consider two square matrices A and B of the same dimen-
sion. There are several formulas for the inverse of their sum
depending on their properties; see for instance, [18]:

• Woodbury matrix identity, A and B invertible

(A+B)
−1

= A−1 −A−1
(
B−1 +A−1

)
A−1

= A−1 −A−1
(
AB−1 + I

)−1

= A−1 −
(
A+AB−1A

)−1
.

• If A is invertible and B is singular

(A+B)
−1

=
(
I +A−1B

)−1
A−1

= A−1 −
(
I +A−1B

)−1
A−1BA−1.

• For a pertubation of invertible A

(A+B)
−1

= A−1 −A−1B (A+B)
−1

.

III. PROBLEM STATEMENT

As discussed in Section II-A, if the excitation is partial of
the degree q, then only a reduced-order q-dimensional problem
(6) can be solved. As it was explained in the introduction, it
also implies that the LRE is not identifiable for the whole θ,
therefore, it is difficult to hope in getting better with a reliable
estimation of a projection of θ1 by using any tool.

At the same time, a feeble excitation theoretically allows the
vector θ to be identified, but such a degeneracy of the regressor
makes the estimation more sensitive to noise. A conventional
approach in such a setting is to introduce a regularization in
the estimation algorithm, which is our main goal in the context
of DREM in this work.

IV. REGULARIZATION OF THE DREM PROCEDURE

Consider the DREM procedure for the LRE (1), where a
dynamic extension, e.g., the Kreisselmeier’s approach (8),
yields the extended LRE (7). If the original regressor ϕ
is partially (feeble) excited, then according to quantitative
estimates from [13], [17], the extended regressor Φ is singular
(ill-conditioned). To this end, we intend to revise the mixing
step of DREM, introducing a regularization.

Let H(t) ∈ Rn×n be a time-varying regularization matrix
and define

Φ̃(t) := Φ(t) +H(t),

∆̃(t) := det
(
Φ̃(t)

)
, ∀t ∈ R+.

Multiplying (7) by adj
(
Φ̃(t)

)
on the left and defining

Ỹ(t) := adj
(
Φ̃(t)

)
Y (t),

Ṽ(t) := adj
(
Φ̃(t)

)
V (t), ∀t ∈ R+,

yields

Ỹ(t) = ∆̃(t)θ + Ṽ(t)− adj
(
Φ̃(t)

)
H(t)θ.

Suppose that the matrix H(t) is such that Φ̃(t) is invertible and
∆̃(t) is strictly separated from zero for all t ≥ t0 ∈ R+, where
t0 defines the interval of the initial information accumulation.
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As discussed in [19], an estimate of θ can be obtained via
a pointwise (algebraic) estimator

θ̂(t) =
1

∆̃(t)
Ỹ(t),∀t ≥ t0, (10)

followed by a (probably nonlinear) filter. The paper [19] also
shows that such a scheme operates as well (or better) as
estimators with asymptotic convergence, e.g., the gradient and
least-squares ones. Then the parameter estimation error is
given by, ∀t ≥ t0,

θ̂(t)− θ =
1

∆̃(t)
Ṽ(t)− d̃(t). (11)

where d̃(t) :=
(
Φ̃(t)

)−1

H(t)θ is the regularization error.
The first term on the right-hand side corresponds to the
measurement noise, and the second term, d̃, is the distortion
introduced by the regularization.

Let us evaluate the properties of d̃ for different scenarios
according to the invertibility of Φ and H . For completeness,
the case of partial excitation (with a singular matrix Φ) is also
investigated. These formulas will be also useful later in the
implementation of the regularization and the derivation of the
matrix H .

A. Φ and H both invertible

Suppose that Φ is invertible, e.g., in the case of feeble
excitation, and that H is also invertible (non-singular regu-
larization). According to the identities in subsection II-D, we
obtain

Φ̃−1 = Φ−1 −
(
Φ+ ΦH−1Φ

)−1
.

By definition, adj
(
Φ̃(t)

)
= det

(
Φ̃(t)

)
Φ̃−1(t), and thus

adj
(
Φ̃
)
= det

(
Φ̃
)(

Φ−1 −
(
Φ+ ΦH−1Φ

)−1
)
.

Hence,

adj
(
Φ̃
)
Φ = det

(
Φ̃
)(

I −
(
Φ+ ΦH−1Φ

)−1
Φ
)

= det
(
Φ̃
)(

I −
(
I +H−1Φ

)−1
)
,

and, recalling the definition of adjugate,

Φ̃−1Φ = I −
(
I +H−1Φ

)−1

the following expression can be derived:

d̃ = Φ̃−1Hθ = Φ̃−1
(
Φ̃− Φ

)
θ

= θ −
(
I −

(
I +H−1Φ

)−1
)
θ

=
(
I +H−1Φ

)−1
θ.

This equation shows that as the regularization matrix H goes
to zero, the regularization-induced distortion d̃ also goes to
zero. However, decreasing H also reduces the lower bound
∆̃, making the estimation more sensitive to the noise due to
the ∆̃−1Ṽ term in (11). Thus, a choice of the regularization
matrix H is subject to the trade-off between noise sensitivity
and distortion, similar to the classic bias-variance trade-off.

B. Singular Φ and invertible H

Suppose the matrix Φ is singular, e.g., partially excited.
To get ∆̃ separated from zero, we introduce an invertible
regularization matrix H . Then it similarly holds

Φ̃−1 = (Φ +H)
−1

=
(
I +H−1Φ

)−1
H−1

and
d̃ = Φ̃−1Hθ =

(
I +H−1Φ

)−1
θ.

Therefore, as we can conclude from the first two cases, if
H is invertible, we have the same shape of d̃ independently
of the invertibility of Φ.

C. Invertible Φ and singular H

As the matrix H yields a perturbation, reducing it can be
of interest. Suppose that Φ is invertible, e.g., in the case of
feeble excitation, and that H is singular, i.e., the regularization
is introduced in some specific directions only, then similarly
to the previous case, we obtain

d̃ = Φ̃−1Hθ =
(
I +Φ−1H

)−1
Φ−1Hθ.

By analogy with the case of an invertible matrix H , a smaller
matrix H implies a smaller distortion and a higher noise
sensitivity. Again this obvious trade-off is observed.

For a more constructive result, consider a block structure
of Φ. For feeble excitation, the first p eigenvalues are small,
then we can assume that

Φ =

[
A B
B⊤ D

]
,

where A ∈ Rp×p (or with other dimensions) should be
improved by the regularization, and from Φ > 0 we conclude
that its Schur complement S = D−B⊤A−1B is also a positive
definite matrix. Then using the block matrix inversion formula,
we obtain:

Φ−1 =

[
J −A−1BS−1

−S−1B⊤A−1 S−1

]
,

J = A−1 +A−1BS−1B⊤A−1.

For ∆̃ to be separated from zero, we need Φ + H with
sufficiently big eigenvalues. One possible choice of H is

H =

[
H1 0
0 0

]
, H1 > 0, H1 ∈ Rp×p

Then Φ̃ =

[
A+H1 B
B⊤ D

]
is no more feebly excited for a

properly selected H1. Therefore, we have

Φ−1H =

[
JH1 0

−S−1B⊤A−1H1 0

]
,

and

d̃ =

[
I + JH1 0

−S−1B⊤A−1H1 I

]−1 [
JH1 0

−S−1B⊤A−1H1 0

]
θ

=

[
Σ 0

S−1B⊤A−1H1Σ I

] [
JH1 0

−S−1B⊤A−1H1 0

]
θ

=

[
ΣJH1 0

S−1B⊤A−1H1(ΣJH1 − I) 0

]
θ,
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where
Σ = (I + JH1)

−1.

Consequently, the components of the parameter vector θ,
corresponding to the part of Φ that is sufficiently excited (the
matrix D), do not introduce a perturbation in the regular-
ization error d̃, and their estimates are not much influenced
provided that the vector

[
S−1B⊤A−1H1(ΣJH1 − I) 0

]
θ

is sufficiently small.

D. Φ and H are simultaneously diagonalizable

Let us consider the special case when the regularization
matrix H is simultaneously diagonalizable with Φ. Such a
matrix H may be time-varying and computed online based
on the spectral decomposition of Φ, which is symmetric by
design. The spectral decomposition of Φ for all t ≥ t0 is
given by

Φ(t) = Q⊤(t)ΛΦ(t)Q(t), (12)

where Q is a time-varying orthogonal matrix of orthonormal
eigenvectors vectors (cf. with constant vi in Definition 2 or
matrix C in Definition 3), and ΛΦ(t) is a diagonal matrix of
eigenvalues of Φ(t). Let the matrix H be symmetric and have
the same eigenspace, i.e.,

H(t) = Q⊤(t)ΛH(t)Q(t), (13)

where ΛH(t) is a diagonal matrix of eigenvalues of H(t).
Then

Φ̃(t) = Q⊤(t) (ΛΦ(t) + ΛH(t))Q(t).

Suppose that ΛH(t) is chosen such that Φ̃(t) is invertible,
∀t ≥ t0. Then

d̃(t) = Φ̃−1(t)H(t)θ

= Q⊤(t) (ΛΦ(t) + ΛH(t))
−1

ΛH(t)Q(t)θ.

Recalling Definition 4, 0 ≤ λ1(t) ≤ . . . ≤ λn(t) are the
eigenvalues of Φ(t), i.e., the diagonal elements of ΛΦ(t);
suppose for simplicity that λi(t) is the i-th diagonal element,
i = 1, . . . , n. Let the diagonal elements of ΛH(t) be σi(t).
Then

d̃(t) = G(t)θ, G(t) = Q⊤(t)ΛG(t) Q(t), (14)

where

ΛG(t) = diag

(
σi(t)

λi(t) + σi(t)

)n

i=1

,

and all eigenvalues of G(t) are not greater than 1.
Suppose that Φ is partially (feeble) exciting of degree q (of

order p), i.e., the first p = n − q eigenvalues of Φ are zeros
(close to zero): λi(t) = 0 (λi(t) ≤ µ1) for all t ≥ t0 for i =
1, . . . , p. To ensure that the DREM-generated regressor ∆̃(t) is
strictly separated from zero, it is reasonable to choose σi(t) =
σ0 > 0 for i = 1, . . . , p, where σ0 is a tuning parameter.
Setting σi = 0 for i = p+ 1, . . . , n, then

ΛH(t) =

[
σ0I 0
0 0

]
, ΛG(t) =

[
E(t) 0
0 0

]
,

where E(t) = diag
(

σ0

λi(t)+σ0

)p
i=1

.

The eigenvectors of Φ(t) associated with zero (small) eigen-
values are the first p columns of the matrix Q(t); denote these
columns by Q0(t) ∈ Rn×p and the rest columns as Q1(t) ∈
Rn×q , then Q(t) =

[
Q0(t) Q1(t)

]
=

[
Q00(t) Q01(t)
Q⊤

01(t) Q11(t)

]
,

where Q00(t) ∈ Rp×p, Q11(t) ∈ Rq×q and Q01(t) ∈ Rp×q are
respective sub-blocks. At the same time, the columns of Q1(t)
are the eigenvectors corresponding zero eigenvalues, σi = 0,
of the matrix G(t) defined in (14).

In the partial excitation case, the columns of Q0(t) span
the same subspace of Rn as the columns of C defined in
Definition 3, corresponding to the kernel of Φ(t). Moreover,
if Z is orthogonal to C, as discussed in Remark 1, then Q1(t)
spans the same subspace as Z. Thus, Z is orthogonal to G(t)
for all t ≥ t0, and

Z⊤d̃(t) = Z⊤G(t)θ = 0. (15)

Equation (15) implies that for the specific choice of the
regularization matrix H(t) as (13) with σi = 0 for i =
p + 1, . . . , n, the distortion d̃(t) is orthogonal to Z. Thus, in
the absence of noise, the projection of the estimate (10) under
this regularization on the subspace orthogonal to C, i.e., where
the regressor ϕ is exciting, is not affected by the distortion.
Let θ̂ss be the steady-state value of θ̂(t) in the absent of noise.
Then

θ̂ss = C
(
θ̃1 + d̃1

)
+ Zθ̃2,

where d̃1 it the projection of d̃ on C. Thus this representation
can be used as an alternative to the reduced-order LRE (6).

In the case of feeble excitation,

d̃(t) =

[
Q00(t)E(t)Q00(t) Q00(t)E(t)Q01(t)
Q01(t)E(t)Q00(t) Q01(t)E(t)Q01(t)

]
θ

which has a generic structure. In general case the regulariza-
tion always perturb the estimation accuracy and optimization
of its value in the presence of noise is desirable.

E. Trade-off estimation

Let us provide an estimate on H providing the desired trade-
off between the noise filtering and the bias error.

Define the estimation error for the algorithm (10):

eH(t) = θ̂(t)− θ = Φ̃−1(t)Y (t)− θ

= Φ̃−1(t) (V (t)−H(t)θ) ,
(16)

then our goal is to prove that under certain restrictions on
the matrix H(t), and for a sufficiently big amplitude of the
noise V (t) in comparison with the norm of θ, the estimation
accuracy after regularization is better, i.e.,

∥eH(t)∥ ≤ ∥e0(t)∥, ∀t ≥ t0, (17)

where e0 corresponds to eH for H = 0, i.e., to the absence
of regularization. The necessity of introduction of a relation
between V (t) and θ is intuitively clear from the expression
of eH : the last term V (t) − H(t)θ contains all variables of
interest, which is multiplied on a common gain Φ̃−1(t), and
obviously, if H(t) is very big, the bias error H(t)θ starts to
be dominating and corrupting the estimation error, as it has
been already discussed.
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Theorem 1: Assume that ∥θ∥ ≤ θmax for a given upper
bound θmax > 0, the matrix Φ̃(t) is nonsingular for all t ≥ t0,
and there exists a constant β > 0 such that

∥Φ̃−1(t)V (t)∥ ≥ ∥Φ̃−1(t)∥β

for all t ≥ t0, then for

β√
2θmax

≥ ∥H∥, Φ−1H +HΦ−1 +HΦ−2H ≥ 2In

the desired relation (17) is satisfied.

This existence of β implies that the noise V (t) is suffi-
ciently rich and not zero providing an excitation of the signal
Φ̃−1(t)V (t). If the noise is zero, it is straightforward that
regularization is the only source of the inaccuracy in the
estimation.

Proof: Since Φ−1 = Φ̃−1 +Φ−1HΦ̃−1, the can write:

eH = Φ̃−1V − Φ̃−1Hθ,

e0 = Φ̃−1V +Φ−1HΦ̃−1V,

and consider the difference of the squares of these errors (all
matrices H , Φ and Φ̃ are symmetric):

e⊤0 e0 − e⊤HeH = V ⊤Φ̃−1Φ−1HΦ̃−1V + V ⊤Φ̃−1HΦ−1Φ̃−1V

+V ⊤Φ̃−1HΦ−2HΦ̃−1V + V ⊤Φ̃−2Hθ

+θ⊤HΦ̃−2V − θ⊤HΦ̃−2Hθ

=

[
Φ̃−1V
Hθ

]⊤
Υ

[
Φ̃−1V
Hθ

]
,

Υ =

[
Φ−1H +HΦ−1 +HΦ−2H Φ̃−1

Φ̃−1 −Φ̃−2

]
.

We need to show that Υ ≥ 0 that implies (17) directly. Assume
that

V ⊤Φ̃−2V ≥ 2θ⊤HΦ̃−2Hθ, (18)

which implies −θ⊤HΦ̃−2Hθ ≥ θ⊤HΦ̃−2Hθ − V ⊤Φ̃−2V ,
then by substituting this inequality into the estimate we get

e⊤0 e0 − e⊤HeH ≥
[

Φ̃−1V
Hθ

]⊤
Υ̃

[
Φ̃−1V
Hθ

]
,

where

Υ̃ =

[
Φ−1H +HΦ−1 +HΦ−2H − In Φ̃−1

Φ̃−1 Φ̃−2

]
.

Then the property Υ̃ ≥ 0 follows from the analysis of the
Schur complement of this matrix:

Φ−1H +HΦ−1 +HΦ−2H ≥ 2In,

while the restriction (18) is also implied by the conditions of
the theorem:

V ⊤Φ̃−2V ≥ ∥Φ̃−1∥2β2 ≥ 2θ2max∥H∥2∥Φ̃−1∥2

≥ 2θ⊤HΦ̃−2Hθ.

The proof is finished.
Let us illustrate these result on an academic example.

V. EXAMPLE

For an illustrative example, we consider the LRE (1) with
n = 3, ℓ = 1, and

ϕ(t) =
[
1 sin(t) sin(t+ s)

]
(19)

with constant s ∈ [0, π
2 ]. Choosing T = 2π, we obtain∫ t+T

t

ϕ(τ)ϕ⊤(τ)dτ =

2π 0 0
0 π π cos(s)
0 π cos(s) π

 ,

where the eigenvalues of this matrix are λ1 = π (1− cos(s)),
λ2 = π (1 + cos(s)), and λ3 = 2π. The excitation properties
of ϕ are summarized below.

• For any s > 0, the regressor (19) is (µ, 2π)-PE with
µ = 2π3

(
1− cos2(s)

)
, see Definition 1.

• A value of s close to zero makes the excitation feeble of
order 1 in the sense of Definition 4, i.e., the eigenvalue
λ1 can be made arbitrary close to zero making the ratio
λ2

λ1
arbitrary large.

• For s = 0, the regressor is partially persistently exciting
of degree 2 in the sense of Definition 3. This can be seen
choosing

C =

 0
1
−1

 , Z =

1 0
0 1
0 1


and verifying that ϕ⊤(t)C = 0 for all t ∈ R+ and ϕ̃(t) =
Z⊤ϕ(t) is PE. Note also that Z is orthogonal to C as
discussed in Remark 1.

Choose the vector of unknown parameters as

θ =
[
1 −3 2

]⊤
and let v(t) be a uniform bounded noise, |v(t)| ≤ v̄, where
v̄ = 0.3.

For the extension step of the DREM procedure, we apply
(8), where a = 1

2 , Φ0 = 0 and Y0 = 0. It yields the
extended LRE (7), where the regularization and mixing can
be performed as discussed in Section IV.

A. Persistently and Partially excited cases

For s = π
2 , both eigenvalue λ1 and λ2 equal to π, and

all parameters can be estimated without a regularization. The
estimation accuracy thus depends only on the noise filtering.

For s = 0, the smallest eigenvalue is zero, and the vector θ
cannot be reconstructed. Then two options are available. The
first is to compute the new regressor ϕ̃ = Z⊤ϕ as discussed
in Section II-A, and perform estimation based on the reduced-
order LRE (6). Note that if the matrix Z is not known a priory,
it can be found based on the spectral decomposition of Φ, as
discussed in Section IV-D. It is also interesting to see that
due to the special structure of the matrix Z, the first element
of θ̃2 coincides with the first element of θ allowing for its
estimation.

Another option is to apply the regularization (12). Then,
due to (14) and the form of the matrix Z, the first element of
d̃ is zero allowing for reconstruction of the first element of θ.
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Fig. 1. Mean value of |eH(σ)(t)|2 as a function of σ.

B. Feeble excitation

Choose s = 0.1 making λ1 small and the matrix∫ t+T

t
ϕ(τ)ϕ⊤(τ)dτ poorly conditioned. Then, to improve the

estimation accuracy, we introduce the constant regularization
matrix H(σ) = σ diag(0, I2), where I2 is a 2 by 2 identity
matrix, and σ > 0. Such a structure is motivated by the results
presented in Section IV-C.

We are interested to see how the value of σ changes the
estimation accuracy. Towards this end, for a given value of σ
we compute eH(σ)(t) defined in (16) and find the mean value
of |eH(σ)(t)|2 over the simulation horizon after the transients
(approximately 3 · 105 samples). These values, computed for
σ varying from 0 (no regularization) to 0.01 are given in
Figure 1. For no regularization, the noise impacts the accuracy;
as σ increases, the noise sensitivity is improved, but for high
σ the regularization-induced bias becomes dominating.

To better illustrate this bias/variance trade-off, we also
present the mean values of the estimation errors θ̂(t) − θ
in Figure 2 and their standard deviations from the mean in
Figure 3. The results confirm the previous discussion: the
mean error (bias) increases as σ increases, and the deviations
decreases as σ grows. Moreover, the results illustrate that
the chosen structure of the H matrix primarily affects the
components θ̂2 and θ̂3 of the estimate.

VI. CONCLUSIONS

The LRE problem with measurement noise was investigated.
Two concepts of partial and feeble excitation were introduced,
which determine the conditions of a lack of persistent or
interval excitation, or that the excitation is not enough for
a reliable estimation with perturbations. Regularization was
introduced for DREM and the conditions of improvement of
the accuracy were evaluated. An extension to the case of time-
varying parameters is left for future research.
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