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On DREM regularization and unexcited linear regression estimation

The problem of estimation of unknown constant parameters in the linear regression with measurement noise is considered. Analysing different levels of excitation of the regressor, two notions of partial and feeble excitation are introduced. The former implies the absence of the persistent or interval excitation, while the latter property says that the excitation is just insufficient for an efficient estimation in a noisy setting. The dynamic extension and mixing method (DREM) is used for the problem solution, and in order to improve its estimation performance, regularization is proposed and the resulting improvement is investigated analytically. The theoretical findings are illustrated in the simulations.

I. INTRODUCTION

We consider the linear regression equation (LRE)

y(t) = ϕ ⊤ (t)θ + v(t), t ∈ R + (1) 
where y(t) ∈ R ℓ is the output signal, ϕ(t) ∈ R n×ℓ is the regressor, v(t) ∈ R ℓ is an additive distortion, e.g., a measurement noise, and θ ∈ R n is the vector of unknown constant parameters. The signals y and ϕ are available, and the goal is to estimate the vector of parameters θ. We assume that the regressor ϕ and the distortion v are bounded and that the regressor ϕ is piecewise continuous. The crucial property defining whether the vector of parameters θ can be estimated (uniformly in time) is the excitation of the regressor ϕ. The common types of excitation are persistent and interval ones, as given in Section II.

The classic result in adaptive control and parameter estimation states that for ϕ persistently exciting, the vector θ in LRE (1) can be estimated exponentially fast using, for example, least squares algorithms, and the estimation error is input-to-state stable with respect to v [START_REF] Efimov | Design of impulsive adaptive observers for improvement of persistency of excitation[END_REF], [START_REF] Efimov | Robustness of linear time-varying systems with relaxed excitation[END_REF]. In contrast, the interval excitation is not uniform in time, precluding noise filtering and robustness. However, it was shown in [START_REF] Pan | Composite learning robot control with guaranteed parameter convergence[END_REF]- [START_REF] Wang | Observability is sufficient for the design of globally exponentially stable state observers for state-affine nonlinear systems[END_REF] that the interval excitation is, in fact, sufficient for estimation being the identifiability condition. If the regressor ϕ is not exciting over any interval in the sense of Definition 1, then there exist θ a , θ b ∈ R n , θ a ̸ = θ b , such that ϕ(t)θ a = ϕ(t)θ b , for all t, and the vector θ in (1) cannot be reconstructed from the measurements of y and ϕ, even in the absence of v. On the other hand, if the regressor ϕ is intervally excited, the vector θ can be estimated in the absence of noise, e.g., using finite-/fixed-time estimators [START_REF] Wang | Fixed-time estimation of parameters for non-persistent excitation[END_REF] or concurrent/composite learning [START_REF] Kamalapurkar | Concurrent learning for parameter estimation using dynamic statederivative estimators[END_REF], [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF] (where the interval excitation is also known as sufficient excitation [START_REF] Pan | Composite learning robot control with guaranteed parameter convergence[END_REF]).

Besides the compromised identifiability of θ, the lack of excitation of ϕ is also connected to the numerical implementation and tuning of estimation algorithms. For example, concurrent 1 CentraleSupélec-IETR, 35576 Cesson-Sévigné, France. 2 Inria, Univ. Lille, CNRS, UMR 9189 -CRIStAL, F-59000 Lille, France.

learning estimators use a historical data stack that can be seen as an accumulation of samples ϕ(t k )ϕ ⊤ (t k ) ∈ R n×n at time instances t k , k ∈ N. This data stack is meant to keep the past information to be used with new measurements of ϕ, allowing for parameter estimation under interval excitation. Suppose that ϕ is intervally excited as in Defintion 1, but the corresponding value µ is small regarding the magnitudes of signals and chosen numerical accuracy. Then the accumulated data matrix may be ill-conditioned, requiring high gains and making the estimation prone to numerical errors.

A similar situation may arise in the Dynamic Regressor Extension and Mixing (DREM) estimation [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF]. The extension step of this procedure transforms the LRE (1) into a novel extended LRE with a square regressor matrix Φ(t) ∈ R n×n whose adjugate matrix is further used to decouple the vector problem (1) into a set of scalar LRE for each element of θ independently. If the original regressor ϕ is PE but with a relatively small value µ, then the extended matrix Φ(t) may be close to singular, complicating the practical implementation of a DREM estimator.

Nevertheless, even if the regressor ϕ is neither PE nor IE or is PE/IE with a small µ value, the regressor may still contain certain information, being exciting in specific directions. This concept is used in least-squares estimation with regressor projection [START_REF] Sripada | Improved least squares identification[END_REF], [START_REF] Zolghadri | Turning theory to practice in model-based FDI: Successful application to new generation airbus aircraft[END_REF] and directional forgetting [START_REF] Bittanti | Convergence and exponential convergence of identification algorithms with directional forgetting factor[END_REF], [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency [lecture notes[END_REF], where the covariance matrix is updated only in those directions where the regressor ϕ contains new information.

Recently, a modification of the standard gradient and leastsquares algorithms was proposed in [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF], allowing for exponential estimation of a particular projection of θ in (1) under a lack of PE; the authors also propose a definition of order of PE lack. A similar problem was addressed in [START_REF] Glushchenko | Relaxation of conditions for convergence of dynamic regressor extension and mixing procedure[END_REF] in the context of the DREM procedure. The authors proposed a matrix update algorithm in the vein of directional forgetting and introduced a definition of semi-persistent excitation.

Novelty and Contribution. This research is motivated by these recent advances. We consider the LRE (1) under a deficiency of excitation of ϕ, and propose two notions quantifying the lack of persistent excitation as discussed above. Next, we study several regularization tools that allow us to improve the estimation accuracy for the vector of constant unknown parameters θ. Admissible bounds on the regularization matrix are evaluated.

The rest of the paper is organized as follows. Definitions of different levels of excitation for a regressor are given in Section II, together with two new concepts of partial and feeble excitation. Problem statement is presented in Section III. Regularization for DREM is introduced and analyzed in Section IV. The results of computer experiments illustrating the efficiency of this regularization are shown in Section V.

Notation

• The sets of nonnegative real and nonnegative integer numbers are denoted by R + and N, respectively. Also, N * := N \ {0}. • The set of real n × m-matrices is denoted by R n×m .

• The n-identity matrix is denoted by I n .

• For a vector x ∈ R n , ∥x∥ denotes its Euclidean norm, and ∥A∥ corresponds to induced norm for a matrix A ∈ R n×n .

II. PRELIMINARIES

Classical definitions of persistent and interval excitation are recalled below:

Definition 1: Let ϕ : R + → R n×ℓ be a bounded signal. (i) We call ϕ persistently exciting if there exist T > 0 and µ > 0 such that for all t ∈ R + ,

t+T t ϕ(τ )ϕ ⊤ (τ )dτ ≥ µI n . (2) 
We write ϕ is PE or (T, µ)-PE to mention specific values of T and µ. (ii) We call ϕ interval exciting if it is exciting over an interval (so (2) is satisfied only for a specific value of t, e.g., t = 0). We say ϕ is IE. □

A. What is lack of excitation?

In contrast with persistent or interval excitation, a lack of excitation is a less common concept. It is often considered merely the absence of the PE/IE properties. A more sophisticated interpretation was suggested in the recent work [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF], where the authors define the lack of persistence of excitation of order p as follows.

Definition 2 (Lack of persistence of excitation of order p, [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF]): For 0 ≤ p ≤ n, a piecewise continuous uniformly bounded matrix function ϕ : R + → R n×ℓ has a lack of persistency of excitation of order p, if there exist T > 0, k T > 0 and linearly independent orthogonal, unitary norm

vectors v i ∈ R n , 1 ≤ i ≤ n, such that for all t ∈ R + , v ⊤ i t+T t ϕ(τ )ϕ ⊤ (τ )dτ v i = 0, 1 ≤ i ≤ p (3) 
and

v ⊤ i t+T t ϕ(τ )ϕ ⊤ (τ )dτ v i ≥ k T , p + 1 ≤ i ≤ n.
A few remarks regarding Defintion 2 are given below. ϕ(τ )ϕ ⊤ (τ )dτ is time-invariant. For this paper, we consider the lack of excitation from another point of view by introducing the following definition of partial excitation. Definition 3 (Partial excitation): A bounded signal ϕ : R + → R n×ℓ is partially persistently (interval) exciting of degree q, if there exist constant matrices C ∈ R n×(n-q) and Z ∈ R n×q such that

• rank C Z = n, • (degeneracy of regressor) ϕ ⊤ (t)C = 0, ∀t ∈ R + , (4) 
• the signal φ = ϕ ⊤ Z ⊤ is persistently (interval) exciting.

Definition 3 is more general than the definition of lack of persistent excitation of degree p = n -q in [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF]. It also includes the case of interval excitation and does not impose a particular structure of the matrices C and Z. However, it is easy to see that partial persistent excitation of degree q is equivalent to a lack of persistent excitation of degree n -q for a special choice of C and Z.

Consider now the LRE [START_REF] Efimov | Design of impulsive adaptive observers for improvement of persistency of excitation[END_REF], where the regressor ϕ is only partially exciting of degree q. Due to the invertibility of the matrix C Z , there exist θ1 ∈ R n-q and θ2 ∈ R q providing θ = C θ1 + Z θ2 .

(
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The component C θ1 of the vector θ is orthogonal to the regressor ϕ and cannot be estimated from [START_REF] Efimov | Design of impulsive adaptive observers for improvement of persistency of excitation[END_REF]. Thus, only the vector θ2 , excited by φ, can be reconstructed. To this end, substituting ( 5) to (1) yields the reduced-order LRE

y(t) = φ⊤ (t) θ2 + v(t) (6) 
allowing the estimation of θ2 from y and φ using any existing parameter estimation techniques.

Remark 1: The matrices C and Z in Definition 3 are not unique and may be written on a different basis. For instance, for a pair C, Z satisfying the conditions, for any invertible matrix R, the pair CR, ZR also fulfills the requirements. Thus, θ2 in ( 5) is defined by a specific choice of Z. Moreover, without loss of generality, we may assume that Z is orthogonal to C. Otherwise, the matrix Z can be written as Z = CA + C ⊥ B, where C ⊥ ∈ R n×q is a full-rank matrix in the orthogonal complement of C, and A ∈ R (n-q)×q , B ∈ R q×q are any matrices. Then φ⊤ (t) = ϕ ⊤ (t)Z = ϕ(t)C ⊥ B, i.e., only the projection of Z on the subspace orthogonal to C affects the measurements y(t) and the reduced-order regressor φ(t).

B. Feeble Excitation

Both Definitions 2 and 3 operate with the exact equality to zero of the products in (3) and (4). Recalling that the LRE (1) contains the measurement noise v, from a practical point of view, it is beneficial to consider the cases when the regressor ϕ is formally exciting, but the level of excitation is feeble with respect to the noise magnitude or numeric precision of the system. We formulate feeble excitation as follows.

Definition 4: Let ϕ : R + → R n×ℓ be (T, µ)-PE (or IE) in the sense of Definition 1. Let λ 1 (t) ≤ λ 2 (t) ≤ . . . ≤ λ n (t) be the eigenvalues of the matrix t+T t ϕ(s)ϕ ⊤ (s)ds. We say that the excitation is feeble of order p if there exist

µ 1 , µ 2 ∈ R + , µ 1 ≪ µ 2 , such that λ p (t) ≤ µ 1 , λ p+1 (t) ≥ µ 2 , for all t ∈ R + (for a specific t ∈ R + ).
Definition 4 is related to the ill-conditioning of the estimation problem. For instance, if the integral is taken on a larger time domain from t to t + kT for k ∈ N * to accumulate more information, the resulting matrix is not well-conditioned (it may also result in the augmentation of the noise influence if ϕ and v are interrelated). From a practical point of view, we are also interested in the case when µ 1 is of the order of magnitude of the noise v impacting the estimation accuracy.

C. Dynamic Regressor Extension and Mixing (DREM)

In a nutshell, the DREM procedure is a nonlinear dynamic transformation applied to the LRE [START_REF] Efimov | Design of impulsive adaptive observers for improvement of persistency of excitation[END_REF] and transforming it into a set of n scalar LREs for each element of the vector θ. Thus, the elements of θ can be estimated independently, enhancing the transient performance; see [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF] for more details.

The DREM procedure consists of the extension and mixing steps. First, a dynamic transformation is applied, leading to a new extended LRE

Y (t) = Φ(t)θ + V (t), V (t) = V (t) + ϵ(t), t ∈ R + , (7)
where Y (t) ∈ R n and Φ(t) ∈ R n×n are measured signals generated by the extension of the dynamics, V (t) ∈ R n results from the noise v propagation, and ϵ(t) ∈ R n is an exponentially decaying term arising due to the initialization of the filters in the extending dynamics. Such an extension can be performed, for instance, via delay operators or linear filters, whose auxiliary role is also to filter the noise, see [START_REF] Aranovskiy | Performance enhancement of parameter estimators via dynamic regressor extension and mixing[END_REF].

One particular choice yielding the extended model ( 7) is the Kreisselmeier's approach [START_REF] Kreisselmeier | Adaptive observers with exponential rate of convergence[END_REF] given by: ∀t ∈ R + ,

Φ(t) = -aΦ(t) + ϕ(t)ϕ ⊤ (t), Ẏ (t) = -aY (t) + ϕ(t)y(t), (8) 
where Φ(0) = Φ 0 ≥ 0, Y (0) = Y 0 , and a > 0 is a scalar tuning parameter. Notably, the choice Φ 0 = 0, Y 0 = 0 yields ϵ ≡ 0 in [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF]. The work [START_REF] Aranovskiy | On preserving-excitation properties of kreisselmeier's regressor extension scheme[END_REF] shows that (8) preserves the persistent/interval excitation providing the quantitative evaluation of the excitation level of Φ, and [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF] shows that it also preserves the lack of excitation in the sense of Definition 2. The second step of the DREM procedure, mixing, is next applied to derive a set of n scalar equations. Multiplying [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF] by the adjugate matrix of Φ, denoted as adj(Φ(t)), on the left and setting Y(t)

:= adj(Φ(t)) Y (t), V(t) := adj(Φ(t)) V (t), ∀t ∈ R + , we get Y i (t) = ∆(t)θ i + V i (t), (9) 
where Y i , θ i , and V i are the ith elements of the vectors Y, θ, and V, respectively, i ∈ 1, n, and the scalar function ∆ :

R + → R is the determinant of Φ, ∆(t) := det(Φ(t)) , ∀t ∈ R + .
The set of n scalar LRE (9) sharing the same bounded scalar regressor ∆ is the main result of the DREM procedure. It is worth noting that for a bounded regressor ϕ, the vector V is also bounded, and v ≡ 0 implies V ≡ 0.

D. Some useful matrix equations

Consider two square matrices A and B of the same dimension. There are several formulas for the inverse of their sum depending on their properties; see for instance, [START_REF] Horn | Matrix Analysis[END_REF]:

• Woodbury matrix identity, A and B invertible

(A + B) -1 = A -1 -A -1 B -1 + A -1 A -1 = A -1 -A -1 AB -1 + I -1 = A -1 -A + AB -1 A -1 .
• If A is invertible and B is singular

(A + B) -1 = I + A -1 B -1 A -1 = A -1 -I + A -1 B -1 A -1 BA -1 .
• For a pertubation of invertible A

(A + B) -1 = A -1 -A -1 B (A + B) -1 .
III. PROBLEM STATEMENT As discussed in Section II-A, if the excitation is partial of the degree q, then only a reduced-order q-dimensional problem (6) can be solved. As it was explained in the introduction, it also implies that the LRE is not identifiable for the whole θ, therefore, it is difficult to hope in getting better with a reliable estimation of a projection of θ 1 by using any tool.

At the same time, a feeble excitation theoretically allows the vector θ to be identified, but such a degeneracy of the regressor makes the estimation more sensitive to noise. A conventional approach in such a setting is to introduce a regularization in the estimation algorithm, which is our main goal in the context of DREM in this work.

IV. REGULARIZATION OF THE DREM PROCEDURE

Consider the DREM procedure for the LRE [START_REF] Efimov | Design of impulsive adaptive observers for improvement of persistency of excitation[END_REF], where a dynamic extension, e.g., the Kreisselmeier's approach (8), yields the extended LRE [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF]. If the original regressor ϕ is partially (feeble) excited, then according to quantitative estimates from [START_REF] Marino | On exponentially convergent parameter estimation with lack of persistency of excitation[END_REF], [START_REF] Aranovskiy | On preserving-excitation properties of kreisselmeier's regressor extension scheme[END_REF], the extended regressor Φ is singular (ill-conditioned). To this end, we intend to revise the mixing step of DREM, introducing a regularization.

Let H(t) ∈ R n×n be a time-varying regularization matrix and define

Φ(t) := Φ(t) + H(t), ∆(t) := det Φ(t) , ∀t ∈ R + .
Multiplying [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF] by adj Φ(t) on the left and defining

Y(t) := adj Φ(t) Y (t), V(t) := adj Φ(t) V (t), ∀t ∈ R + , yields Y(t) = ∆(t)θ + V(t) -adj Φ(t) H(t)θ.
Suppose that the matrix H(t) is such that Φ(t) is invertible and ∆(t) is strictly separated from zero for all t ≥ t 0 ∈ R + , where t 0 defines the interval of the initial information accumulation.

As discussed in [START_REF] Korotina | Fixed-time parameter estimation via the discrete-time drem method[END_REF], an estimate of θ can be obtained via a pointwise (algebraic) estimator

θ(t) = 1 ∆(t) Y(t), ∀t ≥ t 0 , (10) 
followed by a (probably nonlinear) filter. The paper [START_REF] Korotina | Fixed-time parameter estimation via the discrete-time drem method[END_REF] also shows that such a scheme operates as well (or better) as estimators with asymptotic convergence, e.g., the gradient and least-squares ones. Then the parameter estimation error is given by, ∀t ≥ t 0 ,

θ(t) -θ = 1 ∆(t) V(t) -d(t). (11) 
where d(t) := Φ(t)

-1 H(t)θ is the regularization error. The first term on the right-hand side corresponds to the measurement noise, and the second term, d, is the distortion introduced by the regularization.

Let us evaluate the properties of d for different scenarios according to the invertibility of Φ and H. For completeness, the case of partial excitation (with a singular matrix Φ) is also investigated. These formulas will be also useful later in the implementation of the regularization and the derivation of the matrix H.

A. Φ and H both invertible

Suppose that Φ is invertible, e.g., in the case of feeble excitation, and that H is also invertible (non-singular regularization). According to the identities in subsection II-D, we obtain

Φ -1 = Φ -1 -Φ + ΦH -1 Φ -1 .
By definition, adj Φ(t) = det Φ(t) Φ -1 (t), and thus

adj Φ = det Φ Φ -1 -Φ + ΦH -1 Φ -1 .
Hence,

adj Φ Φ = det Φ I -Φ + ΦH -1 Φ -1 Φ = det Φ I -I + H -1 Φ -1 ,
and, recalling the definition of adjugate,

Φ -1 Φ = I -I + H -1 Φ -1
the following expression can be derived:

d = Φ -1 Hθ = Φ -1 Φ -Φ θ = θ -I -I + H -1 Φ -1 θ = I + H -1 Φ -1 θ.
This equation shows that as the regularization matrix H goes to zero, the regularization-induced distortion d also goes to zero. However, decreasing H also reduces the lower bound ∆, making the estimation more sensitive to the noise due to the ∆ -1 V term in [START_REF] Bittanti | Convergence and exponential convergence of identification algorithms with directional forgetting factor[END_REF]. Thus, a choice of the regularization matrix H is subject to the trade-off between noise sensitivity and distortion, similar to the classic bias-variance trade-off.

B. Singular Φ and invertible H

Suppose the matrix Φ is singular, e.g., partially excited. To get ∆ separated from zero, we introduce an invertible regularization matrix H. Then it similarly holds

Φ -1 = (Φ + H) -1 = I + H -1 Φ -1 H -1 and d = Φ -1 Hθ = I + H -1 Φ -1 θ.
Therefore, as we can conclude from the first two cases, if H is invertible, we have the same shape of d independently of the invertibility of Φ.

C. Invertible Φ and singular H

As the matrix H yields a perturbation, reducing it can be of interest. Suppose that Φ is invertible, e.g., in the case of feeble excitation, and that H is singular, i.e., the regularization is introduced in some specific directions only, then similarly to the previous case, we obtain

d = Φ -1 Hθ = I + Φ -1 H -1 Φ -1 Hθ.
By analogy with the case of an invertible matrix H, a smaller matrix H implies a smaller distortion and a higher noise sensitivity. Again this obvious trade-off is observed. For a more constructive result, consider a block structure of Φ. For feeble excitation, the first p eigenvalues are small, then we can assume that

Φ = A B B ⊤ D ,
where A ∈ R p×p (or with other dimensions) should be improved by the regularization, and from Φ > 0 we conclude that its Schur complement S = D-B ⊤ A -1 B is also a positive definite matrix. Then using the block matrix inversion formula, we obtain:

Φ -1 = J -A -1 BS -1 -S -1 B ⊤ A -1 S -1 , J = A -1 + A -1 BS -1 B ⊤ A -1 .
For ∆ to be separated from zero, we need Φ + H with sufficiently big eigenvalues. One possible choice of H is

H = H 1 0 0 0 , H 1 > 0, H 1 ∈ R p×p Then Φ = A + H 1 B B ⊤ D
is no more feebly excited for a properly selected H 1 . Therefore, we have

Φ -1 H = JH 1 0 -S -1 B ⊤ A -1 H 1 0 , and 
d = I + JH 1 0 -S -1 B ⊤ A -1 H 1 I -1 JH 1 0 -S -1 B ⊤ A -1 H 1 0 θ = Σ 0 S -1 B ⊤ A -1 H 1 Σ I JH 1 0 -S -1 B ⊤ A -1 H 1 0 θ = ΣJH 1 0 S -1 B ⊤ A -1 H 1 (ΣJH 1 -I) 0 θ, where Σ = (I + JH 1 ) -1 .
Consequently, the components of the parameter vector θ, corresponding to the part of Φ that is sufficiently excited (the matrix D), do not introduce a perturbation in the regularization error d, and their estimates are not much influenced provided that the vector S -1 B ⊤ A -1 H 1 (ΣJH 1 -I) 0 θ is sufficiently small.

D. Φ and H are simultaneously diagonalizable

Let us consider the special case when the regularization matrix H is simultaneously diagonalizable with Φ. Such a matrix H may be time-varying and computed online based on the spectral decomposition of Φ, which is symmetric by design. The spectral decomposition of Φ for all t ≥ t 0 is given by

Φ(t) = Q ⊤ (t)Λ Φ (t)Q(t), ( 12 
)
where Q is a time-varying orthogonal matrix of orthonormal eigenvectors vectors (cf. with constant v i in Definition 2 or matrix C in Definition 3), and Λ Φ (t) is a diagonal matrix of eigenvalues of Φ(t). Let the matrix H be symmetric and have the same eigenspace, i.e.,

H(t) = Q ⊤ (t)Λ H (t)Q(t), (13) 
where Λ H (t) is a diagonal matrix of eigenvalues of H(t).

Then

Φ(t) = Q ⊤ (t) (Λ Φ (t) + Λ H (t)) Q(t).
Suppose that Λ H (t) is chosen such that Φ(t) is invertible, ∀t ≥ t 0 . Then

d(t) = Φ -1 (t)H(t)θ = Q ⊤ (t) (Λ Φ (t) + Λ H (t)) -1 Λ H (t)Q(t)θ.
Recalling Definition 4, 0 ≤ λ 1 (t) ≤ . . . ≤ λ n (t) are the eigenvalues of Φ(t), i.e., the diagonal elements of Λ Φ (t); suppose for simplicity that λ i (t) is the i-th diagonal element, i = 1, . . . , n. Let the diagonal elements of Λ H (t) be σ i (t).

Then

d(t) = G(t)θ, G(t) = Q ⊤ (t)Λ G (t) Q(t), (14) 
where

Λ G (t) = diag σ i (t) λ i (t) + σ i (t) n i=1
, and all eigenvalues of G(t) are not greater than 1.

Suppose that Φ is partially (feeble) exciting of degree q (of order p), i.e., the first p = n -q eigenvalues of Φ are zeros (close to zero): λ i (t) = 0 (λ i (t) ≤ µ 1 ) for all t ≥ t 0 for i = 1, . . . , p. To ensure that the DREM-generated regressor ∆(t) is strictly separated from zero, it is reasonable to choose σ i (t) = σ 0 > 0 for i = 1, . . . , p, where σ 0 is a tuning parameter. Setting σ i = 0 for i = p + 1, . . . , n, then

Λ H (t) = σ 0 I 0 0 0 , Λ G (t) = E(t) 0 0 0 , where E(t) = diag σ0 λi(t)+σ0 p i=1 .
The eigenvectors of Φ(t) associated with zero (small) eigenvalues are the first p columns of the matrix Q(t); denote these columns by Q 0 (t) ∈ R n×p and the rest columns as

Q 1 (t) ∈ R n×q , then Q(t) = Q 0 (t) Q 1 (t) = Q 00 (t) Q 01 (t) Q ⊤ 01 (t) Q 11 (t)
, where Q 00 (t) ∈ R p×p , Q 11 (t) ∈ R q×q and Q 01 (t) ∈ R p×q are respective sub-blocks. At the same time, the columns of Q 1 (t) are the eigenvectors corresponding zero eigenvalues, σ i = 0, of the matrix G(t) defined in [START_REF] Glushchenko | Relaxation of conditions for convergence of dynamic regressor extension and mixing procedure[END_REF].

In the partial excitation case, the columns of Q 0 (t) span the same subspace of R n as the columns of C defined in Definition 3, corresponding to the kernel of Φ(t). Moreover, if Z is orthogonal to C, as discussed in Remark 1, then Q 1 (t) spans the same subspace as Z. Thus, Z is orthogonal to G(t) for all t ≥ t 0 , and

Z ⊤ d(t) = Z ⊤ G(t)θ = 0. (15) 
Equation ( 15) implies that for the specific choice of the regularization matrix H(t) as ( 13) with σ i = 0 for i = p + 1, . . . , n, the distortion d(t) is orthogonal to Z. Thus, in the absence of noise, the projection of the estimate [START_REF] Zolghadri | Turning theory to practice in model-based FDI: Successful application to new generation airbus aircraft[END_REF] under this regularization on the subspace orthogonal to C, i.e., where the regressor ϕ is exciting, is not affected by the distortion.

Let θss be the steady-state value of θ(t) in the absent of noise.

Then θss = C θ1 + d1 + Z θ2 ,
where d1 it the projection of d on C. Thus this representation can be used as an alternative to the reduced-order LRE (6).

In the case of feeble excitation,

d(t) = Q 00 (t)E(t)Q 00 (t) Q 00 (t)E(t)Q 01 (t) Q 01 (t)E(t)Q 00 (t) Q 01 (t)E(t)Q 01 (t) θ
which has a generic structure. In general case the regularization always perturb the estimation accuracy and optimization of its value in the presence of noise is desirable.

E. Trade-off estimation

Let us provide an estimate on H providing the desired tradeoff between the noise filtering and the bias error.

Define the estimation error for the algorithm [START_REF] Zolghadri | Turning theory to practice in model-based FDI: Successful application to new generation airbus aircraft[END_REF]:

e H (t) = θ(t) -θ = Φ-1 (t)Y (t) -θ = Φ-1 (t) (V (t) -H(t)θ) , (16) 
then our goal is to prove that under certain restrictions on the matrix H(t), and for a sufficiently big amplitude of the noise V (t) in comparison with the norm of θ, the estimation accuracy after regularization is better, i.e., ∥e H (t)∥ ≤ ∥e 0 (t)∥, ∀t ≥ t 0 ,

where e 0 corresponds to e H for H = 0, i.e., to the absence of regularization. The necessity of introduction of a relation between V (t) and θ is intuitively clear from the expression of e H : the last term V (t) -H(t)θ contains all variables of interest, which is multiplied on a common gain Φ-1 (t), and obviously, if H(t) is very big, the bias error H(t)θ starts to be dominating and corrupting the estimation error, as it has been already discussed.

Theorem 1: Assume that ∥θ∥ ≤ θ max for a given upper bound θ max > 0, the matrix Φ(t) is nonsingular for all t ≥ t 0 , and there exists a constant β > 0 such that ∥ Φ-1 (t)V (t)∥ ≥ ∥ Φ-1 (t)∥β for all t ≥ t 0 , then for

β √ 2θ max ≥ ∥H∥, Φ -1 H + HΦ -1 + HΦ -2 H ≥ 2I n
the desired relation [START_REF] Aranovskiy | On preserving-excitation properties of kreisselmeier's regressor extension scheme[END_REF] is satisfied.

This existence of β implies that the noise V (t) is sufficiently rich and not zero providing an excitation of the signal Φ-1 (t)V (t). If the noise is zero, it is straightforward that regularization is the only source of the inaccuracy in the estimation.

Proof: Since Φ -1 = Φ-1 + Φ -1 H Φ-1 , the can write:

e H = Φ-1 V -Φ-1 Hθ, e 0 = Φ-1 V + Φ -1 H Φ-1 V,
and consider the difference of the squares of these errors (all matrices H, Φ and Φ are symmetric):

e ⊤ 0 e 0 -e ⊤ H e H = V ⊤ Φ-1 Φ -1 H Φ-1 V + V ⊤ Φ-1 HΦ -1 Φ-1 V +V ⊤ Φ-1 HΦ -2 H Φ-1 V + V ⊤ Φ-2 Hθ +θ ⊤ H Φ-2 V -θ ⊤ H Φ-2 Hθ = Φ-1 V Hθ ⊤ Υ Φ-1 V Hθ , Υ = Φ -1 H + HΦ -1 + HΦ -2 H Φ-1 Φ-1 -Φ-2 .
We need to show that Υ ≥ 0 that implies [START_REF] Aranovskiy | On preserving-excitation properties of kreisselmeier's regressor extension scheme[END_REF] directly. Assume that

V ⊤ Φ-2 V ≥ 2θ ⊤ H Φ-2 Hθ, (18) 
which implies -θ ⊤ H Φ-2 Hθ ≥ θ ⊤ H Φ-2 Hθ -V ⊤ Φ-2 V , then by substituting this inequality into the estimate we get

e ⊤ 0 e 0 -e ⊤ H e H ≥ Φ-1 V Hθ ⊤ Υ Φ-1 V Hθ ,
where

Υ = Φ -1 H + HΦ -1 + HΦ -2 H -I n Φ-1 Φ-1 Φ-2 .
Then the property Υ ≥ 0 follows from the analysis of the Schur complement of this matrix:

Φ -1 H + HΦ -1 + HΦ -2 H ≥ 2I n ,
while the restriction ( 18) is also implied by the conditions of the theorem:

V ⊤ Φ-2 V ≥ ∥ Φ-1 ∥ 2 β 2 ≥ 2θ 2 max ∥H∥ 2 ∥ Φ-1 ∥ 2 ≥ 2θ ⊤ H Φ-2 Hθ.
The proof is finished.

Let us illustrate these result on an academic example.

V. EXAMPLE For an illustrative example, we consider the LRE (1) with n = 3, ℓ = 1, and

ϕ(t) = 1 sin(t) sin(t + s) (19) with constant s ∈ [0, π 2 ]. Choosing T = 2π, we obtain t+T t ϕ(τ )ϕ ⊤ (τ )dτ =   2π 0 0 0 π π cos(s) 0 π cos(s) π   ,
where the eigenvalues of this matrix are λ 1 = π (1 -cos(s)), λ 2 = π (1 + cos(s)), and λ 3 = 2π. The excitation properties of ϕ are summarized below.

• For any s > 0, the regressor ( 19) is (µ, 2π)-PE with µ = 2π 3 1 -cos 2 (s) , see Definition 1.

• A value of s close to zero makes the excitation feeble of order 1 in the sense of Definition 4, i.e., the eigenvalue λ 1 can be made arbitrary close to zero making the ratio λ2 λ1 arbitrary large. • For s = 0, the regressor is partially persistently exciting of degree 2 in the sense of Definition 3. This can be seen choosing

C =   0 1 -1   , Z =   1 0 0 1 0 1  
and verifying that ϕ ⊤ (t)C = 0 for all t ∈ R + and φ(t) = Z ⊤ ϕ(t) is PE. Note also that Z is orthogonal to C as discussed in Remark 1. Choose the vector of unknown parameters as θ = 1 -3 2 For the extension step of the DREM procedure, we apply [START_REF] Ortega | New results on parameter estimation via dynamic regressor extension and mixing: Continuous and discrete-time cases[END_REF], where a = 1 2 , Φ 0 = 0 and Y 0 = 0. It yields the extended LRE [START_REF] Pan | Efficient learning from adaptive control under sufficient excitation[END_REF], where the regularization and mixing can be performed as discussed in Section IV.

A. Persistently and Partially excited cases

For s = π 2 , both eigenvalue λ 1 and λ 2 equal to π, and all parameters can be estimated without a regularization. The estimation accuracy thus depends only on the noise filtering.

For s = 0, the smallest eigenvalue is zero, and the vector θ cannot be reconstructed. Then two options are available. The first is to compute the new regressor φ = Z ⊤ ϕ as discussed in Section II-A, and perform estimation based on the reducedorder LRE [START_REF] Kamalapurkar | Concurrent learning for parameter estimation using dynamic statederivative estimators[END_REF]. Note that if the matrix Z is not known a priory, it can be found based on the spectral decomposition of Φ, as discussed in Section IV-D. It is also interesting to see that due to the special structure of the matrix Z, the first element of θ2 coincides with the first element of θ allowing for its estimation.

Another option is to apply the regularization [START_REF] Goel | Recursive least squares with variable-direction forgetting: Compensating for the loss of persistency [lecture notes[END_REF]. Then, due to [START_REF] Glushchenko | Relaxation of conditions for convergence of dynamic regressor extension and mixing procedure[END_REF] and the form of the matrix Z, the first element of d is zero allowing for reconstruction of the first element of θ. 

B. Feeble excitation

Choose s = 0.1 making λ 1 small and the matrix t+T t ϕ(τ )ϕ ⊤ (τ )dτ poorly conditioned. Then, to improve the estimation accuracy, we introduce the constant regularization matrix H(σ) = σ diag(0, I 2 ), where I 2 is a 2 by 2 identity matrix, and σ > 0. Such a structure is motivated by the results presented in Section IV-C.

We are interested to see how the value of σ changes the estimation accuracy. Towards this end, for a given value of σ we compute e H(σ) (t) defined in ( 16) and find the mean value of |e H(σ) (t)| 2 over the simulation horizon after the transients (approximately 3 • 10 5 samples). These values, computed for σ varying from 0 (no regularization) to 0.01 are given in Figure 1. For no regularization, the noise impacts the accuracy; as σ increases, the noise sensitivity is improved, but for high σ the regularization-induced bias becomes dominating.

To better illustrate this bias/variance trade-off, we also present the mean values of the estimation errors θ(t) -θ in Figure 2 and their standard deviations from the mean in Figure 3. The results confirm the previous discussion: the mean error (bias) increases as σ increases, and the deviations decreases as σ grows. Moreover, the results illustrate that the chosen structure of the H matrix primarily affects the components θ2 and θ3 of the estimate.

VI. CONCLUSIONS

The LRE problem with measurement noise was investigated. Two concepts of partial and feeble excitation were introduced, which determine the conditions of a lack of persistent or interval excitation, or that the excitation is not enough for a reliable estimation with perturbations. Regularization was introduced for DREM and the conditions of improvement of the accuracy were evaluated. An extension to the case of timevarying parameters is left for future research. 
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  and let v(t) be a uniform bounded noise, |v(t)| ≤ v, where v = 0.3.
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 1 Fig. 1. Mean value of |e H(σ) (t)| 2 as a function of σ.
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 2 Fig. 2. Mean values of the estimation error θ(t) -θ.
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 3 Fig. 3. Standard deviations of the estimation error θ(t) -θ.