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Abstract:
The mutual dependence between autonomous vehicles and human drivers is an open problem for
the safety and feasibility of autonomous driving. This paper introduces a game-theoretic trajectory
planner and decision-maker for mixed-traffic environments. Our solution accounts for interaction with
the surrounding vehicles while making decisions, and uses a clothoid interpolation method to generate
human-like trajectories. The Particle Swarm Optimizer (PSO) used here bridges the decision-making
and the trajectory generating processes for a joined execution. We chose an unsignalized intersection
crossing scenarios to demonstrate the feasibility of our method. Testing results show that our approach
reduces the dimension of the search space for the trajectory optimization problem and enforces geometric
constraints on path curvature.

Keywords: Decision Making, Game Theory, Trajectory optimization, Particle Swarm Optimization.

1 INTRODUCTION

Among the main challenges that have emerged from au-
tonomous driving, considering interactions with human drivers
in a mixed traffic flow is of great importance [Jafary et al.
(2018)]. However, the cohabitation between autonomous and
human-driven vehicles might create complex interactions.
Thus, the behavior of Autonomous Vehicles (AVs) must be
understood by other traffic participants, as each agent’s ac-
tion is dependent and influenced by other participants’ deci-
sions [Olaverri-Monreal (2020)]. Based on the outputs from the
decision-making systems, the motion planner determines a goal
trajectory that the vehicle executes and, in turn, influences the
evolution of the road scene. This makes us aware that, decision-
making and trajectory generation are highly coupled and thus,
require a joined execution.

Under this background, our work mainly focuses on model-
ing mixed traffic interactions between human-driven and au-
tonomous vehicles, when an autonomous car behaves approxi-
mately like a human-driven one.

The outline of our paper is as follows. Section 1 starts with an
introduction and a brief state-of-the-art. In section 2, we first
present a human-like clothoid-based model to depict vehicles’
trajectories. Next, we detail the proposed decision-making pro-
cess, aiming to capture the social nature of strategic interactions
via a game theoretic-based approach. Then, we devised a uni-
fied decision-making and route-planning framework, where the
decision-maker evaluates trajectory feasibility and the trajec-
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tory prompts the last token decision to update. The validation
of the proposed model and case study simulation results are
presented in section 3. Finally, some concluding remarks are
given in Section 4.

1.1 RELATED WORK

Autonomous vehicle trajectory design: Curve interpolation
techniques such as cubic splines, Bezier curves, and clothoids
are frequently used for AV’s trajectory modeling due to their in-
trinsic smoothness and parameterization through control points
[González et al. (2015)]. In our work, we are interested in the
last category, clothoids, also known as Euler curves. Clothoids
are parametric curves whose curvature varies linearly to the
arc length. This property counteracts curvature discontinuity,
which prevents the undesirable jerk and allows smooth cur-
vature transitions from straight to circular lines or vice versa
[Lambert et al. (2019)]. Clothoid curves are already used by
road network design standards. Therefore, the non-holonomic
behavior is structurally taken into account in clothoid-based
trajectory. Several studies explore the construction of clothoids
for trajectory generation. For example, [Funke and Chris-
tian Gerdes (2016)] addresses the problem of path curvature
jumps during lane-changing maneuvers via a path composed
of clothoids. Furthermore, a roundabout path planner based
on clothoid curves has been developed in [Silva and Grassi
(2018)] to ensure passenger comfort through curvature continu-
ity. Nevertheless, in these two studies, the authors focus on zero
heading and zero curvature. In their study, [Alhajyaseen et al.
(2013)] showed that turning trajectories can be approximated
as a combination of clothoids, circular arcs, and straight lines.



Vehicle interaction and decision-making: To tackle drivers’
tactical decisions and model a human-like decision-making
process, game theoretical frameworks have been explored in
the context of transportation research [Zhang et al. (2010)].
Game theory is a paradigm that provides an effective frame-
work to model, analyze, and solve social interaction between
strategic decision-makers. The study in [Mandiau et al. (2008)]
proposes a two-player normal-form game to describe the coor-
dination of AVs within intersections. The authors handle the
interactions between autonomous vehicles. However, vehicle
dynamics were not considered here. This problem is addressed
in the paper [Tian et al. (2018)] within autonomous round-
about crossing. Here, kinematics constraints are incorporated in
the decision-making module. Finally, the paper [Cleac’h et al.
(2022)] addresses the convergence problem and shows its com-
plexity. The authors formulate a trajectory optimization prob-
lem in a Nash-style, dynamic game. The proposed approach
shows a guaranteed local convergence, but not a global one.

2 JOINT PATH GENERATION AND DECISION MAKING

We consider the interactions between an autonomous car and a
human-driven one in an unprotected left-turn driving scenario.
Using the Nash equilibrium solution concept, we model a sym-
metrical, general-sum dynamic game. Communication between
the two vehicles is not allowed. Only the starting location ps
and target destination pg are observable. Our analysis focuses
on the formulation from the Ego vehicle’s standpoint.

2.1 Trajectory Generation Methodology

In this paper, we use the outcomes of the study [Abdeljaber
et al. (2020)] to describe vehicles’ trajectories. We simplify the
linkage of two clothoids without using the arc of the circle,
which does not affect the smoothness of the curve. We generate
feasible trajectories from the starting location and orientation
ps(xs,ys,θs) to pg(xg,yg,θg). Each trajectory T is composed
of straight and curve segments: T = C1

⊕
C2

⊕
C3. The curve

segment C2 comprises two clothoids C2 = C1
⊕

C2 determined
through integration procedures as:
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1
2
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′
τ
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2
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′
τ

2 +κ0τ +θ0

)
dτ,

(1)

Where (x0,y0), θ0 and κ0 are respectively the coordinates,
the orientation and the curvature of clothoid’s base point. κ ′

and s represent respectively the sharpness and the curvilinear
abscissa, linearly related according to κ (s) = κ0+κ ′ ·s. θ(s) is
the tangent angle at s defined as :

∀s,0≤ s≤LC ,θ(s)=
∫ s

0
κ (τ)dτ, θ(s)=

1
2

κ
′ ·s2+κ0 ·s+θ0

(2)
Where LC denotes the length of the clothoid C. The four parts
are joined via a set of points of interest, illustrated in figure
(1). Optimizing multiple trajectories can be challenging de-
pending on the problem formulation. In this work, we pro-
pose to simplify this problem by reducing the search space’s
dimension. Thus, we represent each trajectory through a set of
knot points P, then interpolate them using elementary clothoid
equations, as described in equation (1). These knots are poten-
tially discontinuity locations along the curvature profile κ(s).
Consequently, we enforce geometric and curvature continuities

Fig. 1. Trajectory description

along the path length at each point pm (xm,ym,θm) bridging
two adjacent segments S1, S2 ∈ {C1,C1,C2,C3} by holding the
following [Bertolazzi and Frego (2018)]:

∀pm ∈ P,
{

xS2(0) = xS1(LS1), θS2(0) = θS1(LS1)
yS2(0) = yS1(LS1), κS2(0) = κS1(LS1)

(3)

The uniqueness of the curve C2 is guaranteed using the outputs
of the late study, as indicated below:{

xC2(0) = x0, yC2(0) = y0, θC2(0) = θ0, κC2(0) = κ0
xC2(LC2

) = x2, yC2(LC2
) = y2, θC2(LC2

) = θ2, κC2(LC2
) = κ2

(4)

For simplification, we fixed p0 =
( l

2 ,−
L
3 ,

π

2

)
, here L predeter-

mined distance upstream of the conflict zone, l represents the
lane width. The orientations θ1 and θ2 at p1 and p2 respectively,
are known based on vehicles’ target destination. By making this
specific choice, only 4 degrees of freedom P= (x1,y1,x2,y2) ∈
R4 are required to completely design the trajectory T .

Under these assumptions, we designed a decision-making al-
gorithm that finds an optimal set P∗, ensuring the generation
of an efficient and conflict-free trajectory T (P∗). The main
advantage of our method is the combination of the search space
for trajectory optimization with the strategic space that will be
explored during the decision-making process.

2.2 Game theoretic decision-making process

This paper introduces a model that aims to improve social in-
teractions at intersections. The model incorporates the decision-
making process through Nash Equilibrium (NE), which ensures
that all players are treated equally regardless of their type. How-
ever, in the context of intersection crossing, both player’s objec-
tive function and constraints depend on the opponents’ strategic
space. Thus, our problem can be characterized as a specific
instance of Nash equilibrium, referred to as Generalized Nash
Equilibrium Problem (GNEP) [Facchinei and Kanzow (2010)].

Game structure:

Sv ⊂ Rn and So ⊂ Rm represent the sets of possible strategies
available to player v, and its opponent o, respectively. Both
players control their respective strategic spaces via n and m
decision variables.

S game(Sv,So)=Sv×So ∈Rn×m is the game strategic space.

Jp(sv,so) : Rn×m → R is the payoff function for player p.

The player v aims to solve the following optimization problem:



minimize
sv∈Sv

Jv(sv,so) s.t. sv,so ∈ S game(Sv,So) (5)

The player O’s objective function Jo and its optimization
problem are formulated similarly. Both players behave ratio-
nally in order to reach an equilibrium, following the ”best an-
swer” principle currently used in game theory. The equilibrium
(s∗,v,s∗,o)∈S game solves this problem respecting equation (6).

∀sv,∀so
{

Jv(sv∗,so∗)≤ Jv(sv,so∗)
Jo(sv∗,so∗)≤ Jo(sv∗,so)

(6)

We define a Generalized Nash Equilibrium problem for a two-
player game as follows:

f (sv,so) = max

{
sup

sv∈Sv

{
Jv(sv,so)− Jv(sv,so),0

}}
+

max

{
sup

s0∈So

{
Jo(sv,so)− Jo(sv,so),0

}} (7)

In this work, a player strategy sv
i ∈ Sv, and so

j ∈ So encodes
optimal knots sv

i = Pv
i ∈ R4, and so

j = Po
j ∈ R4 ,respectively,

that will be interpolated following equation (1).

Players payoff design: The aggregation of cost indicators
associated with player p’s trajectory Tp, determine its payoff
function Jp(sv,so) .

• Efficiency Awareness: The AV is incited to closely match
the speed limit as follows:

Ieff
(sv)

=
|Vmax − v(sv)|

Vmax
(8)

where v(sv) is the mean speed of a player executing a strat-
egy sv and Vmax is the higher speed limit in the intersection.

• Safety Enhancement: Each trajectory is enclosed within
an Oriented Bounding Box (B) representing the shape of
the vehicle. We also define a safety measure based on the
gap separating the two bounding boxes from a potential
collision, noted Gap To Collide (GTC) as stated below:

Isafe
(sv,so)

= min
tmin<t<tmax

e−
(

GTC(t)
Gcrit

)
(9)

[tmin, tmax] is the interaction time span. Gcrit is a critical thresh-
old that ought to be permanently maintained between vehicles.

Constraints: Collision avoidance constraints are expressed in
terms of an adaptive elliptic safety zone ψ as follows:

∀t ∈ [tmin, tmax], ψ(t)
⋂

Bo(t) = /0 (10)
Bo is the bounding box representing the opponent vehicle.

To handle this constraint, we check that equation(10) is verified
for each vertex vo

j(x
o
j ,y

o
j) ∈ Bo, ∀ j ∈ {1, ..,4} following:

[
cos(θ) · (xo

j − x)+ sin(θ) · (yo
j − y)

]2

dma j(sv)2 +[
sin(θ) · (xo

j − x)− cos(θ) · (yo
j − y)

]2

d2
min

> 1

(11)

With (x,y), and θ are, respectively, the center coordinates
and the orientation of the ellipse, which evolves according to
dma j(sv) and dmin, the major and minor elliptic semi-axes as
follows:

dma j(sv) =
1
2

Lv +TTC · v(sv), dmin =
1
2

lw +dsa f e (12)

Where: v(sv) is the speed while executing strategy sv. TTC is
the time left before the collision. Lv and lw are, respectively,
the vehicle’s length and wheelbase, dsa f e represents a minimum
lateral safety distance parameter.

Objective function formulation: The player’s objective func-
tion incorporates both safety and efficiency features.

h(sv,so) = ω1 · Isafe
(sv,so)

+ω2 · Ieff
(sv)

, 0 ≤ ωi ≤ 1 (13)

This function is constrained by non-linear constraints related to
the left-turning maneuver on the one hand, and the opponent’s
vehicle strategies on the other. The optimization problem a
player must solve is the following:

min
sv,so

h(sv,so), s.t. C(sv,so)≤ 0, (14)

Where C(sv,soth) summarized the constraints expressed in
equation (11).

2.3 Particle Swarm Optimization: A game-solving approach

Exhaustive exploration of all possible combinations in a search
space is computationally intensive and time-consuming. Con-
sequently, the optimization process requires sophisticated al-
gorithms such as heuristic methods, and meta-heuristic al-
gorithms, to attain satisfactory optimization results. Particle
Swarm Optimization (PSO) is a meta-heuristic algorithm that
mimics the collective swarm behavior. Recently, extensive ap-
plications of PSO can be found in the context of mobile robot’s
navigation Abdallaoui et al. (2022). In PSO, each random par-
ticle p represents a potential solution, has a fitness function
f (u) and searches for optima by adapting its position through
its individual experience and knowledge exchange with neigh-
boring particles. Given a P-particle swarm, exploring in a D-
dimensional search space, the notations are:

• Xk
p =

(
xk

p,1, · · · ,xk
p,D

)
,Vk

p =
(

vk
p,1, · · · ,vk

p,D

)
: position

and respectively velocity of particle p at the kth iteration.
• pk

best = arg min
1≤i≤k

f (Xk
p): best solution founded by particle

p until the kth iteration.
• gk

best = arg min
1 ≤ i ≤ k
1 ≤ j ≤ P

f (Xk
j ): best solution founded by the

entire swarm P until the kth iteration.

The update of each particle’s velocity and position from gener-
ation k to k+1 s governed by the following:{

Vk+1
p = ω ·Vk

p + c1 · r1 · (pk
best −Xk

p)+ c2 · r2 · (gk
best −Xk

p)

Xk+1
p = Xk

p +Vk+1
p

(17)

Here, the inertia weight ω governs the influence of the veloc-
ity. c1 and c2 represent cognition and social learning factors
respectively Gou et al. (2017). The terms r1 and r2 correspond
to random numbers uniformly generated in the range of [0,1].

In our research, each particle is a potential combination of
both players strategies (Sv,So), that explores the joined space
S game(Sv,So). Thus, the PSO-based algorithm is used to
reach the Nash Equilibrium described in equation (7).



3 SIMULATION RESULTS

We validate our algorithm and demonstrate the performance
of the proposed approach on two traffic scenarios commonly
encountered in intersection crossing.

Particle Swarm Optimizer Performance

The convergence of the proposed PSO-based solver is depicted
in the figures (2) and (3). From analyzing the best fitness value
gbest found over all the particles, we can see that Generalized
Nash equilibrium can be obtained in less than 40 iterations in
both scenarios. As iteration grows, the particles find a strategic
combination (sv∗,so∗) solving the two-player game in equation
(7). Besides, we can see that the global best solution founded
by the best particle in figure (2), converges faster and more
smoothly than the average objective Ck

= 1
P ∑

P
j=1 f (Xk

j ) illus-
trated in figures (3). This indicates that we can avoid falling
into a local optimum during the search process. From the above
results, the proposed PSO-based solver is appropriate for find-
ing Generalized Nash Equilibrium.

Scenario 1: This scenario is illustrated in the figure (4). We ob-
serve that both the autonomous vehicle and the human drivers
proceed to cross the intersection concurrently. This synchro-
nized action is based on their mutual anticipation that each
of them will select a trajectory deemed safe. The Ego vehicle
chose to proceed first at the intersection. The ego and the oppo-
nent vehicles successfully avoided collision and reached their
target destinations.
Scenario 2: In the second case, presented in figure (5), the ego
vehicle chose to cede the priority to the opponent vehicle, as it
predicted that the conflict zone would not be cleared in time.
This decision reflects the inability of ego vehicle to identify
a feasible trajectory that avoids a potential collision with the
trajectory being executed by its opponent, who would join the
intersection ahead. Therefore, Ego vehicle’s optimal response
is to stop, ensuring that the opponent vehicle safely traverses
the intersection.

4 CONCLUSIONS

This paper presents a comprehensive game theoretic ap-
proach for decision-making and trajectory optimization for au-
tonomous vehicles. the primary goal of our study is to enhance
interaction between autonomous and human-driven vehicles in
mixed traffic scenario. We present a framework that allows
autonomous vehicles to make decisions based on human drivers
expectations and to analyze their decisions. We used a solver
based on Particle Swarm Optimization to find Generalized Nash
Equilibrium and optimize trajectories that satisfy the required
safety constraints, while maintaining human-like behavior. The
proposed approach underwent validations and showed its ef-
fectiveness, allowing AVs to maneuver through challenging
driving situations and to effectively interact with other vehicles.

References

Abdallaoui, S., Aglzim, E.H., Chaibet, A., and Kribèche, A.
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