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Abstract—Open Radio Access Network (O-RAN) has recently
emerged as a new trend for mobile network architecture. It is
based on four founding principles: disaggregation, intelligence,
virtualization, and open interfaces. In particular, RAN disag-
gregation involves dividing base station virtualized networking
functions (VNFs) into three distinct components - the Open-
Central Unit (O-CU), the Open-Distributed Unit (O-DU), and
the Open-Radio Unit (O-RU) - enabling each component to be
implemented independently. Such disaggregation aims to im-
prove system performance and allow rapid and open innovation
in many components while ensuring multi-vendor operability.
As the disaggregation of network architecture becomes a key
enabler of O-RAN, the deployment scenarios of VNFs over O-
RAN clouds become critical. In this context, we propose an
optimal and dynamic placement scheme of the O-CU and O-DU
functionalities either on the edge or in regional O-clouds. The
objective is to maximize users’ admittance ratio by considering
mid-haul delay and server capacity requirements. We develop an
Integer Linear Programming (ILP) model for VNF placement
in O-RAN architecture. Additionally, we introduce a Recurrent
Neural Network (RNN) heuristic model that can effectively
replicate the behavior of the ILP model. We get promising results
in terms of improving users’ admittance ratio by up to 10%
when compared to baselines from state-of-the-art. Moreover, our
proposed model minimizes the deployment costs and increases
the overall throughput.

I. INTRODUCTION

The entire telecom industry is going through a profound
transformation driving the move towards open architectures
and software-based networks. This trend is moving ahead
faster and gaining momentum thanks to open-source software
and standards for communication infrastructure components.
On the one hand, an open architecture approach can help
operators to emancipate themselves from vendors’ lock-in and
the derived high operational and capital expenditures. On the
other hand, vendors can then bypass complex and high-barrier
hardware design and production lines, focusing instead on
advanced functionalities, interfaces, and software life-cycle
maintenance and licensing models. As an initiative to drive
openness and intelligence for the next-generation wireless
networks, Open-Radio Access Network (O-RAN) has recently
emerged to break the last barrier in the development of fully
softwarized radio access networks [1] [2].

One of the fundamental principles underlying O-RAN is the
splitting of RAN functionalities into three distinct components
- the Open-Central Unit (O-CU), the Open-Distributed Unit
(O-DU), and the Open-Radio Unit (O-RU) - through a process
of disaggregation. This approach enables each component
to be implemented independently, thus promoting greater

flexibility and interoperability within the network [3]. Such a
disaggregation yields a wide range of functional split options.
The functional split in an Open RAN architecture refers to
the separation of the baseband processing functions (PHY,
MAC, RLC, etc.) between the O-CU and the O-DU in the
radio access network. O-RAN Alliance has evaluated the dif-
ferent functional split options proposed by 3GPP; the selected
RU/DU split option is the 7.2x split that strikes a balance
between the simplicity of the radio unit and the data rates
and latency required on the interface between the radio and the
distributed units [3]. This recent functional split concept has
altered the definition of the RAN and redirected the attention
of resource allocation solutions towards the O-CU and O-
DU, especially in terms of split deployment options. These
options comprise several configurations for placing O-CU,
O-DU, and the Near-Real-Time Radio Intelligent Controller
(Near-RT RIC) at regional and edge clouds. The Near-RT RIC
is responsible for intelligent edge control of RAN nodes and
resources. It controls RAN elements and their resources with
optimization actions that typically take 10 milliseconds to one
second to complete.

In this context, O-RAN envisions different strategies for
deploying its functional splits on either regional or edge
cloud locations, or at proprietary cell sites [4]. Fig. 1 depicts
the different O-RAN Cloud deployment scenarios [5]. For
instance, Scenario A refers to the case where all the network
components except the O-RUs are deployed at the edge cloud
of the network. Scenario B presents the case where the O-DU
and O-CU functionalities are located in the edge cloud while
the Near-RT RIC is in the regional cloud.

Unlike the commonly used static deployment strategies,
our research explores the potential benefits of dynamic de-
ployment of the O-CU and O-DU components in either edge
or regional clouds. We aim at satisfying users’ quality of
service (QoS) requirements while improving the network’s
overall efficiency and performance. This approach offers more
flexibility and adaptability to the network. We formulate an
Integer Linear Programming (ILP) model for optimally and
dynamically placing the O-CU and O-DU in the O-RAN
architecture. We explore various constraints concerning the
capacity of cloud servers, link capacity, and delay budget, as
well as the diverse service requirements of users, including the
enhanced mobile broadband (eMBB) services - which refers
to services requiring high data rates, the ultra-reliable and low
latency communications (URLLC) - which refers to mission-
critical applications with low latency, and massive machine-
type communications (mMTC) - which stands for massively



connected and energy-constrained services. Our objective is
to optimize user satisfaction while meeting the needs of these
services. We adopt the functional split 7.2x between O-RU and
0O-DU, the one selected by O-RAN alliance, and the option-
2 split between O-DU and O-CU. We focus on scenarios in
which the Radio Unit (O-RU) that handles the low-PHY layer
functions is always located at the cell site. The Distributed
Unit (O-DU), mainly responsible for high-PHY, MAC, and
RLC functionalities, is deployed on the Edge cloud. Lastly,
the Central Unit (O-CU) can choose either edge or regional
clouds to handle RRC, SDAP, and PDCP functionalities. Our
approach reflects a dynamic and flexible placement scenario
between scenarios B and C of Figure 1. Our results highlight
that it is possible to establish multiple connections between
an O-RU and several O-DUs in an O-RAN network, under
the concept known as Shared O-RU, defined in the Shared-
O-RU-Multi-O-DU feature [6]. This feature is particularly
useful for user dispatching, as it allows for more flexible
and efficient resource allocation within the network. Our
proposed solution outcomes significant benefits in terms of
user admittance ratio and cost reduction compared to three
baseline solutions, including a random placement of both O-
CU and O-DU functionalities among regional or edge clouds
and two static placements; one in which both O-CU and O-
DU are on edge clouds, and the other in which the O-CU and
O-DU are on regional and edge clouds, respectively. Finally,
we present a heuristic to solve the optimization problem
efficiently. We resort to a recurrent neural network (RNN)
based model. Numerous studies have investigated the potential
of deep learning (DL) to provide less-complex alternatives to
highly-complex optimal algorithms [8] and [9]. DL networks
not only exhibit comparable performance but also demonstrate
significantly shorter execution times, resulting in being well-
suited for practical deployments. Based on this perspective,
we develop an RNN-based model using a bidirectional LSTM
architecture trained with the output of the ILP model. The
RNN-based model can mimic the optimal placement of O-
CU and O-DU and achieve the desired benefits.

The rest of this paper is organized as follows: Section II
provides an overview of the related work. Our proposed ILP-
based model and deep learning-based heuristic are described
in Section III. and Section IV, respectively. The simulation
framework is detailed in Section V. Section VI quantifies the
behavior of the proposed algorithms, and finally, Section VII
concludes the paper.

II. RELATED WORK

Several works from the literature have addressed the place-
ment problem of O-RAN components from different per-
spectives to optimize resource allocation mechanisms but
with different objectives. In [10], the authors propose a deep
reinforcement learning method that explores the best O-
Cloud locations for O-DU and O-CU Virtualized/Cloud-native
network functions (VNFs/CNFs), along with the optimal user
equipment (UE) to O-RU associations. Their objective is to
minimize the delay while reducing the deployment cost. Ac-
cording to their findings, the proposed algorithm outperforms
the static allocation of the O-CUs and O-DUs, although they
do not consider the diverse service requirements of different
users. Authors in [11] tackle the flexible placement of the
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Figure 1: O-RAN Cloud deployment scenarios [5]

three-layer RAN slices (O-RU, O-DU, O-CU) over a multi-
tier aggregation sites network topology while adopting flexible
functional split options. Our consideration of edge-regional
servers infrastructure is similar to their multi-tiered network
infrastructure. However, they seek to maximize the profit of
the infrastructure provider. Moreover, in [12], the authors pro-
pose an optimization model that deploys O-RAN components
within regional and edge clouds while minimizing the network
outage. Scenario B is adopted in their work, where CU and
DU are always placed at an edge server while Near-RT RIC
is located on the regional cloud. The work of [13] suggests a
framework that optimizes the number of instantiated RUs in a
given area based on its long-term network statistics. Then, it
associates these RUs to open-access edge servers for hosting
the corresponding DUs and CUs. The main objective of their
work is to minimize the overall deployment cost by installing
the minimum number of RUs and open-access edge servers.

In conclusion, various studies in the literature have tackled
the placement problem of O-RAN components from different
perspectives. Some have focused on minimizing delay, reduc-
ing deployment cost, maximizing profit, minimizing network
outage, and reducing overall deployment cost. Our work
in this paper addresses the dynamic placement problem of
the O-RAN components with the aim of maximizing users’
admittance ratio while satisfying the diverse QoS requirements
of uRLLC, eMBB, and mMTC slices. Our proposed solution
enables the optimal and dynamic allocation of O-CU and O-
DU functions on either edge or regional clouds. The next
section of this paper provides a detailed description of the
ILP-based proposed model.

III. PROPOSED ILP-BASED OPTIMAL MODEL

To solve the placement problem of the O-CU and O-DU
in O-RAN architecture, our main intention is to optimize



TABLE I: Network Parameters and Notations

Parameters | Definition

S Set of all servers

Sreg Set of regional servers

Sedge Set of edge servers

A Set of all users

q‘)f;U Binary variable indicating that user ¢ chooses server
s for its functionality FU

Ziss! Binary variable indicating that user ¢ chooses s for
DU and s’ for CU

Cogr Link available capacity between server s and s’
(Gbps)

Bf“'d Link capacity required by user 7 on mid-haul (Mbps)

Rs Available computational capacity on server s (GOPS)

Rf v Required server capacity for the functionality F'U of
user ¢ (in GOPS)

acy Computational complexity of O-CU

apy Computational complexity of O-DU

[ Latency between server s and s’ (ms)

6;’“"1 Maximum mid-haul latency for user i (ms)

Wi Maximum achievable throughput by user ¢ (Mbps)

C_F;s Centralization factor of user i over server s

€; Priority value for user @

the usage of cloud resources, particularly computational re-
sources. We develop an ILP-based model that maximizes
users’ admittance ratio while moving toward the regional
cloud, considering the computational capacity at the O-cloud
servers, the delay budget, and the available link capacity. It
is worth mentioning that the processing costs at the edge O-
Cloud nodes are higher than those on regional O-Cloud nodes
[10]. Thus, we propose an optimal and dynamic allocation
of the resources between edge and regional clouds, which
encourages, for instance, the O-CU functionalities to be at
the regional clouds if users’ services requirements permit.
We consider a set of S servers randomly distributed over the
edge and regional clouds, where Scqg. and S, define the
sets of edge and regional servers, respectively. We define R,
as the available computational capacity on server s € S in
terms of Giga Operations Per Second (GOPS). Furthermore,
we define the link latency between two servers s and s’ by
dss'. The network includes a set of Z users, each belonging
to one of the three service types (eMBB, uRLLC, or mMTC),
with different service requirements. We denote the maximum
allowed latency on the mid-haul link (i.e., the link between
the O-CU and the O-DU) by each user i, by §7*¢. We recall
that the O-DU is set in our scenario to be at the edge cloud,
while O-CU can choose between the edge and regional clouds.
Table I summarizes the notations used throughout the paper.

The link and computational capacity requirements as well
as the delay budget are modeled using equations (1), (2), and
(3), respectively. The maximum achievable throughput by an
admitted user is formulated in equation (4).

e The mid-haul link (i.e., the link between the O-DU
and O-CU when adopting option-2 split) capacity B
needed for each user ¢ € Z is modeled as referred to [14]
and [17] by:

TBS - NTBS(IPpkt + Hppep)

(IPprt + Hppop + Hrrc + Hyac) - 1000
(D

B[ Mbps] =

where T'B.S represents the transport block (TB) size, Nrpgs
is the number of TBs per TTI, IP,; is the IP packet size,
and lastly, Hppcp, Hrrc and Hjy;ac the header size of
PDCP, RLC, and MAC layers, respectively. These parameters
are defined as in the standard specification in [18].

o The computational server capacity required by each user
1 € Z is modeled based on an estimation of the complex-
ity in terms of Giga Operations Per Second (GOPS). To
quantitatively determine the computational complexity
RFU of a functional unit FU for user i (FU refers
to either O-CU or O-DU functional units), we use the
computational model from [11]:

OéFU(3A +A24+M.-C- L/S)RB,

RFVIGOPS]) = T

2

where apy is a scaling factor that represents the com-
putational requirement of a specific functional unit F'U
with respect to the overall computational requirement.
The total computational capacity is distributed among
RU, DU, and CU based on the "PHY split’ and 'RLC-
PDCP split’. With the considered split-7.2x (between O-
RU and O-DU) and split-2 (between O-DU and O-CU),
40% of the processing is done by RU, 50% by DU, and
10% by CU as mentioned in [13]. Hence, apy and aoy
are respectively equal to 0.5 and 0.1. We denote by M,
the modulation bits (i.e., the number of bits per symbol),
C, the coding rate, L, the number of MIMO layers, A,
the number of antennas and RB;, the number of resource
blocks assigned to user .

o The link latency d,, between servers s,s’ € S is deter-
mined by the propagation delay in the fiber links, which
is the ratio of the distance between servers, dist(s,s’)
multiplied by the refractive index of the fiber optic cable
n’ (that is equal to 1.5) over the speed of light in the
fiber c.

dist(s,s") - n

c

688/ = (3)

o The maximum achievable throughput of a given user
t € Z, denoted as W;, is determined in equation (4) as
specified in [19].

Nyym - Ngc - M -C - L(1 — 0.14)RB;

W;[Mbps] = 1000

“4)

where Ny, is the number of symbols per sub-frame and
Ngc is the number of subcarriers per RB.

To model the placement problem of O-DU and O-CU on the
edge or regional clouds, we propose the following ILP-based



optimization problem:

maximize Z Z 0SY « C_Fig % €+ 0PV « C_Fig x ¢
7 5
%)
subject to 0SY 0PV € {0,1},i €I, s €S (6)
Ziss €{0,1},i€Z,5,5 €8S (7N
YoV <tier (8)
seS
RV <tlieT 9)
seS
Ziss' < (HZLS)U + giCS/U)/Q,S,S/ S S,’L el
(10)
Zigs > OV +0Y —1,5,5' €S,ieT (11)
Sopv=> "0l ie1 (12)
SES SES
Z OPU = 0,ieT (13)

8E€Sregional

ZBlmid(Ziss/ + Zis/s) < 053/7575/ € S,S 7’é s'

€T

(14)
ZBzmld * Zigs! < Oss’a 535/ S 875 =5
1€T

(15)
> RCUOSY + RPUORY < R, s€ S (16)
€T
s ¥ Ziger <OM1 €T, 5,5 €S 17)

The objective function in (5) aims at maximizing the number
of admitted users. 6V and 92U are the binary decision
variables indicating whether user ¢ € I chooses server s € §
for its O-CU and O-DU functionalities, respectively or not.
Our objective function includes C'_F;;, a distance-dependent
centralization factor. It is determined as follows: C_F;, is
set to be inversely proportional to the distance between the
edge server s and the O-RU, to which user ¢ is associated, if
5 € Sedge, and set to be 1 if s € S,.y. This setup aims to
encourage the O-DU functionality of each user to select the
nearest available edge server to its associated O-RU. As for
the O-CU functionality, which can be hosted either on edge or
regionally, it will prefer to choose the regional option, having
the higher weight of C'_F;, if the latency requirements allow.
However, if this is not feasible, it will choose the nearest
available server to its corresponding O-RU. Moreover, we add
to the objective function a priority parameter ¢; as a function
of the user’s service type, which allows us to prioritize eMBB
and uRLLC UEs over mMTC ones.

Our ILP problem has the following constraints: Constraint
(6) defines OV and #2U as binary integer variables. These
variables are set to 1 if and only if the CU and DU function-
alities of user 7 are admitted on the server s. Constraint (7)
defines z;44/, a binary decision variable that is set to 1 when
DU and CU functionalities of a user ¢ are allocated at servers
s and s’, respectively, i.e., ;55 represents the product of the
two decision variables 05V and 2V of the model. Constraints
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(8) and (9) ensure that the user’s functionalities CU and DU
are not allocated more than once. Constraints (10) and (11)
ensure that z;,, is set to one only if DU and CU of the user
¢ are allocated at servers s and s’, respectively. Constraint
(12) guarantees that either both functionalities of the user are
admitted or not, i.e., if one of the DU or CU functionalities is
not allocated, the whole user will be discarded. Constraint
(13) enforces that the DU functionality is never allocated
on a regional server. Constraints (14) and (15) ensure that
the link capacity required for user ¢ between the servers s
and s’ chosen for DU and CU does not exceed the available
capacity between these two servers Csg . The symmetry of
link capacity between the servers is taken into account in
these latter two constraints. Server computational capacity is
respected by constraint (16). And finally, the maximum link
latency is guaranteed by constraint (17).

IV. DEEP LEARNING-BASED SOLUTION

Due to the high complexity of solving the NP-Hard ILP
problem [21] defined in the previous section, finding a solution
to our ILP problem would take an impractical amount of
time. Thus, we need to consider alternatives with lower
computational complexity. Deep Learning has demonstrated
its potential to tackle complex tasks by learning a function
that maps the input to the desired output. A Recurrent Neural
Network (RNN) is a branch of deep learning that can handle
sequences of interdependent elements such as weather pre-
diction and language translation. In our task that involves
multiple users sharing common resources, RNN would be
beneficial (i.e., the placement decision of the user’s O-CU and
O-DU functionalities made at a specific time step will affect
the availability and suitability of O-Cloud resources for other
users in the network in the subsequent time steps, and this
dependency needs to be taken into account in order to ensure
optimal allocation). Long-Short-Term-Memory (LSTM) [20]



is a well-known architecture of RNN that can deal with long-
term dependencies in sequential data. The LSTM architecture
includes memory cells and gates, such as input, output, and
forget gates, that control the flow of information. At each
time step, the LSTM receives input and hidden state vectors
to update the memory cell and generate an output vector.
A traditional LSTM RNN architecture variant is the bidi-
rectional Long Short-Term Memory (BiLSTM) RNN model
[20]. The BiLSTM RNN model extends the traditional LSTM
architecture by simultaneously processing input sequences
in both forward and backward directions. By incorporating
information from both directions, the BiLSTM model can
capture more complex dependencies between input elements
and thus achieve higher accuracy.

In our study, we propose a heuristic approach, inspired
by the work in [7], that involves utilizing an RNN model
to learn and predict the optimal placement of O-CU and O-
DU among available servers. The model uses a sequence-to-
sequence classification, where each element in the sequence
corresponds to a user and produces an output that represents a
decision on the placement of O-CU and O-DU functionalities
for that user. The model is composed of a BILSTM RNN
layer and a fully connected layer, as illustrated in Figures 2
and 3, respectively. The BiLSTM layer receives a sequence
of users as input of size 7', where each user is represented
by a feature vector that includes several parameters, such as
its relative position with respect to the O-RU, number of
RBs, MCS index, associated O-RU, user requirements (i.e.,
maximum latency, GOPS required), slice type, priority, etc.
The output of the BiLSTM layer is then passed through
a sigmoid activation layer, producing an output vector of
F' elements. These outputs are fed into the fully-connected
layer that uses the softmax activation function for multi-class
classification. The classification layer includes O neurons,
where O represents the number of possible decisions or labels.
The labels are the combination of locations of O-CU and O-
DU among the available servers, plus an additional label to
indicate that a user is dismissed. The neuron with the highest
activation value corresponds to the decision.

To generate the training dataset, we conducted 25,000
experiments using the ILP model.

V. SIMULATION FRAMEWORK

We consider a network topology composed of 4 O-RUs,
distributed over an area of 1 km?. This assumption is based
on a real traffic profile for hourly UEs density variation in
a 1x1 km industrial area, as described in [13], in which the
optimal number of O-RUs to be instantiated was determined
to be 4. UEs are randomly distributed in the considered
area; an example of the network topology with 20 UEs is
depicted in Fig.4. The system uses a 20 MHz bandwidth, so
that each O-RU has 100 RBs available per transmission time
interval (TTI). UEs are associated with the nearest O-RU, and
we consider a number of 10 to 140 UEs spread following
the distribution presented in [13] for an industrial area that
has 25% eMBB users, 25% uRLLC users, and 50% mMTC
users. We assume the existence of three edge servers located
approximately 10 km from the O-RUs and one regional server
located between 40 to 80 km from the O-RUs [13].

e UEeMBB e UEURLLC UE_mMTC A O-RU

0.3

0.2

0.1

0.0 T T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

x (km)

Figure 4: An example of network topology with 20 UEs.

TABLE II: Radio parameters used in our simulations

Parameter  Value

A 4 Antennas

Nsym 14 symbols per sub-frame
Nsc 12 subcarriers

L 2 MIMO layers

M log2(64)

The computational capacity R, of edge servers follows a
uniform random distribution ranging from 100 to 200 GOPS,
while the regional server’s capacity ranges from 1000 to 2000
GOPS, as stated in [11]. The mid-haul latency bounds 5{’“"1
are considered as in [13] a random value in the range of 100 to
300 psec for uRLLC users, 500 pusec for eMBB, and 1000 psec
for mMTC. The radio resource allocation follows an approach
inspired from [13] that consists of allocating 50% of the total
available resource blocks (RBs) to eMBB users and 25% to
each of the uRLLC and mMTC users with no resource waste.
In addition, eMBB users are assigned a random number of
RBs between 10 to 20, while uRLLC and mMTC users are
assigned between 1 to 5 RBs, as in [16]. The MCS index for
each user is set as a random number between 17 to 28, with
all users assumed to have a 64-QAM modulation scheme, as
in [11]. We note that the MCS index impacts the code rate
and spectral efficiency, as referred to in 3GPP specification
[18]. The available bandwidth of the mid-haul link between
edge-edge servers is a random value ranging from 1 to 10
Gbps, while the bandwidth between edge-regional servers is
randomly chosen between 10 and 20 Gbps. Accordingly, these
values are selected so that the mid-haul link can support the
throughput demand of all admitted users as in [13]. Additional
radio parameters used in the experiments are outlined in Table
II. We note that our ILP-based problem is solved using IBM
CPLEX software [15], a mathematical optimization solver, on
a computer with 11th generation Intel® Core™ i9-11950H
Processor and 16 GB RAM.

VI. PERFORMANCE EVALUATION

In this section, we compare the performance of our pro-
posed algorithm, referred to as the Optimal scenario, along
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with the heuristic based on RNN model with respect to three
baselines defined as follows:

e An All_FEdge scenario; in which only the edge servers
are available (i.e., O-CUs and O-DUs are always on the
edge servers). This corresponds to scenario B of Fig. 1.

e A Static scenario; where O-CUs are always placed on
the regional servers while the O-DUs are always on the
edge servers. This refers to scenario C of Fig. 1.

e A Random scenario; where a random selection of servers
between edge and regional is adopted for both O-DUs
and O-CUs.

The performance metrics used in this paper are as follows:

o Average admittance ratio: It reports the average number
of admitted users among all users present in the network
at each transmission time interval (TTI).

o Throughput: It evaluates the average throughput of all
admitted users. The throughput of an admitted user ¢ € Z,
W, is determined based on Equation (4).

o Deployment Cost: This metric quantifies the average cost
of deploying O-CUs at the selected servers, whether
they are regional or edge servers. It is computed as
the cost of running the computational operations on
a server (in GOPS). As the regional server has more
processing capacity and uses less energy than the edge
server, running VNFs in regional servers is less expensive
than in edge servers [10]. At the edge server, according
[13] [14], 1 GOPS costs 1.59$ , while at the regional
cloud, it costs 0.5$/GOPS.
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Figure 7: RB allocation as increasing the number of users

o Fairness Index: For measuring how fair the users are
being admitted over the three service types (eMBB,
uRLLC, mMTC), Jain’s fairness index is used as for-
mulated in Equation (18) as follows:

N N
¢=(Q_AAR))*/(N-) AAR})  (18)

j=1

where N = 3 refers to the number of heterogeneous
service types, AAR; is the average admittance ratio of
users of service type j.

o Scaling factor ratio: It is defined by the ratio of acy
over apy. As previously defined, acpy and apy reflect
the computational requirement (in %) of both O-CU
and O-DU depending on their assigned functionalities,
respectively. Increasing the scaling factor ratio signifies
transferring more functionalities from O-DU to O-CU.
This distribution of functionalities between O-CU and
O-DU can be seen as having different functional split
options. We recall that 40% of processing is done at
O-RU, as earlier specified in Section III. Thus, 60%
of processing remains for both O-CU and O-DU (.e.,
acy + apy = 0.6). Keeping that in mind, we test our
optimal model performance with an increasing scaling
factor ratio.

We note that 100 simulations were performed, and confi-
dence intervals of 95% are provided in the following results.
We start our evaluation by analyzing the average admittance
ratio as a function of the number of users for each considered
scenario. The results, as depicted in Fig. 5, demonstrate that
the Optimal scenario outperforms all other scenarios in terms
of the average admittance ratio. The All_Edge scenario follows
the same trend, but with a 10% lower admittance ratio, due to
the limited computational resources of edge clouds in meeting
the diverse users’ requirements, namely eMBB users, which
are computationally more demanding. On the other hand,
the Random and Static scenarios have the poorest average
admittance ratio, which can be interpreted by the fact that
uRLLC users have low latency requirements; hence, placing
O-CUs in a regional cloud, whether randomly or statically,
increases link latency, leading to a lower probability of user
admission. Furthermore, we present the performance of our
proposed RNN model, illustrated in purple on the same graph
of Fig. 5. The results indicate that the RNN model is able to
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Figure 8: Admittance ratio for each service type as a function of the
total number of users in the system

closely replicate the optimal model’s admittance ratio, with
a difference of no more than 2% compared to the optimal
solution. Additionally, we clearly see from the figure that the
system starts experiencing a decline in the admittance ratio
when the number of users exceeds 50. To better understand
this behavior, Figures 6 and 7 report the GOPS and RB
allocation, respectively, in the system. As shown in Fig. 6,
the computational resources at the three edge servers become
utilized at more than 80% when the number of users in the
system exceeds 50, indicating that, at and beyond this point,
the capacity of the edge servers becomes the bottleneck for
more demanding users (i.e. eMBB users) as we will show later
on. On the other hand, as seen from Fig. 7, all RUs become
fully loaded when the number of users reaches 100, resulting
in extra users not being assigned by RBs and, therefore, not
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Figure 9: Total throughput as the function of the number of users in
the system
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Figure 10: O-CU deployment costs for each scenario

being admitted. Despite the system becoming overloaded with
more than 50 users, the Optimal model gives the best perfor-
mance in terms of admittance ratio, as mentioned earlier; that
is, the model strikes a balance between available resources and
users’ demands, taking into account their priorities. In order
to further investigate the admittance ratio for different service
types, we plot the admittance ratio for each service type for
the different placement scenarios in Figure 8. Comparing the
Optimal scenario with the All_Edge scenario, we notice that
the former scenario admits more eMBB and mMTC users
(Fig. 8a and Fig. 8c) and almost the same number of uRLLC
users (Fig. 8b). This can be explained by the fact that the
eMBB and uRLLC services are given higher priority over
mMTC services, and when cloud computational resources
are available and satisfy their latency requirements, they
are allocated accordingly. Moreover, moving to the regional
cloud provides more abundant resources, allowing for more
eMBB and mMTC users to be admitted, without penalizing
the uRLLC user, as is the case in the Optimal scenario.
Additionally, compared to the performance of the Optimal
scenario, the RNN model shows that fewer uRLLC users are
admitted while slightly more mMTC users are admitted. This
highlights the reason for the 2% gap in the total average
admittance ratio, seen in Fig. 5. The RNN model is suboptimal
in predicting the placement of VNFs for uRLLC users. Finally,
to draw a connection with the limited system capacity, we
focus on the Optimal scenario of plots of Figure 8. The
admittance ratio of eMBB and mMTC users reveals that they
become not fully admitted when the number of users in the
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system exceeds 50, while uRLLC users are fully admitted at
that stage. This means that the uRLLC users, having high
priority and less GOPS demand, are prioritized over other
users when the load on servers becomes more critical to meet
the model objective of maximizing the admittance ratio. These
results are consistent with the earlier analysis of the GOPS
load presented in Figure 6, highlighting the limitation of the
edge server capacity in our system.

In terms of throughput, Fig. 9 illustrates the overall through-
put achieved by deploying different placement scenarios. It
is evident that the Optimal scenario outperforms all other
scenarios in terms of throughput. This result is consistent with
the higher average admission ratio achieved by the Optimal
scenario, as shown in Fig. 5.

Moving to the computational cost evaluation, Fig. 10
presents the cost of deploying O-CUs for admitted users as a
function of the total number of users for different placement
scenarios. The Optimal placement scenario achieves up to
50% cost reduction compared to All_Edge scenario, as the
former utilizes more regional servers, which are less expen-
sive. The Static scenario has the lowest cost due to admitting
fewer users and having the only possibility to choose regional
clouds for hosting O-CUs.

An important consideration is the fairness of the admittance
ratio among the three service types as the number of users
in the system changes. The results are shown in Fig. 11
for the different scenarios. The Optimal scenario offers a
better fairness index among users compared to the other
scenarios. The RNN model achieves better fairness than the
optimal scenario by admitting more mMTC users at the cost
of admitting fewer uRLLC users, as we have seen before.

In addition to the performance improvements achieved by
our proposed model, it is important to state that the RNN
heuristic offers a significant advantage in terms of execution
time when compared to the ILP model. As shown in Fig. 12,
the RNN model achieves a remarkable 97% reduction in
execution time, even when the number of users increases.
The reduction in execution time becomes more significant
as the number of users increases because the ILP model is
relatively faster when the number of users is small. Both
models were executed in the exact same framework and on
the same computer, emphasizing the superior efficiency of the
RNN heuristic approach. Therefore, the RNN model offers
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Figure 12: Reduction in Execution time (in %) of the RNN model
compared to the ILP model as a function of the number of users

a practical solution with fast execution times (around 10
milliseconds) that can be implemented in the Near RT-RIC
component. It can serve as an XAPP that manages the network
resources through standardized interfaces and service models
in an O-RAN-compliant deployment.

The last research question we raise in this paper is the
impact of the functional split option on the performance of
the Optimal placement scenarios. To address this question, we
refer to the previously defined scaling factor ratio (introduced
as a ratio of aoy over aupy). Varying this ratio changes the
percentage of computational capacity required by the O-CU
and O-DU, which reflects different functional split options.
In all our previous results, we set acy and apy to 0.1
and 0.5, respectively, resulting in a scaling factor ratio of
0.2. It is worth noting that adding more network functions
to the O-CU increases the mid-haul bandwidth demand but
reduces the computational demand on the O-DUs. Nonethe-
less, the link bandwidth is not a limiting factor in our system.
Therefore, altering the functional split option can improve the
efficiency of our model by encouraging centralization, as we
will demonstrate later on. Fig. 13a and 13b display the average
admittance ratio and the deployment cost, respectively, as a
function of the scaling factor ratio for a system with 100
UEs. We note that the RNN model is not evaluated in this
study as it is only trained for the scaling factor ratio of
0.2. The results clearly demonstrate the advantages of our
Optimal placement scenario over other scenarios as the scaling
factor ratio increases. This is interpreted by the fact that as
the scaling factor ratio increases, the O-CU becomes more
resource-demanding, making it more challenging to be placed
at the edge clouds. The Optimal scenario solves this issue by
giving the possibility for the O-CU to be hosted at the regional
cloud if the latency constraints are met. The Static scenario
has the lowest cost because it simply allows users to choose
regional clouds to host O-CU and admits fewer users. This is
in contrast to All_edge and Random scenarios that exhibit the
lowest admittance ratio, but higher costs because they choose
edge clouds to host O-CUs more often. We remark that the
increase in the cost shown in Fig. 13b for all scenarios is a
consequence of having more functionalities at the O-CU as
the scaling factor ratio increases, and our calculations only
consider the deployment cost of the O-CU. The difference in
cost between all scenarios becomes more significant as the
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scaling factor increases; this is because the cost doubles as
the scaling factor increases while the admittance remains the
same after the scaling factor of 1.

VII. CONCLUSION

Access networks are evolving toward Open RAN archi-
tecture, pushing them into a new era marked by greater
openness, flexibility, and intelligence. This paper contributes
significantly to solving one of the Open RAN design problems
by focusing on the deployment scenarios of disaggregated net-
work elements O-CUs and O-DUs over the edge and regional
clouds. The objective is to find the optimal placement of the
network functions of DUs and CUs in the O-Cloud nodes (i.e.,
edge and regional clouds) by considering mid-haul link delay
and server capacity requirements. We propose Optimal model
for the CU-DU placement mechanism that aims to maximize
the number of admitted UEs while minimizing the deployment
cost of CU by moving it towards the regional cloud. We
compare our proposed optimal solution with three bench-
marks, two of which are found in the literature with fixed
CU and DU placement. The simulation results show that our
proposed model outperforms the benchmarks. Additionally,
we develop an RNN-based model that successfully mimics
the Optimal model in a time-efficient fashion. As a future
work, we aim to develop a joint optimization problem for the
placement problem and functional split selection, considering
more dynamic scenarios and diverse service types. We also
consider taking into account the radio resource allocation for

users connected to the different O-RUs and the front-haul link
capacities for an adaptive placement of O-RAN components.
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