
HAL Id: hal-04138695
https://centralesupelec.hal.science/hal-04138695v1

Submitted on 23 Jun 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scalable Algorithms Using Sparse Storage for Parallel
Spectral Clustering on GPU

Guanlin He, Stephane Vialle, Nicolas Sylvestre, Marc Baboulin

To cite this version:
Guanlin He, Stephane Vialle, Nicolas Sylvestre, Marc Baboulin. Scalable Algorithms Using Sparse
Storage for Parallel Spectral Clustering on GPU. IFIP International Conference on Network and
Parallel Computing (NPC 2021), Christophe Cérin; Depei Qian; Jean-Luc Gaudiot; Guangming
Tan; Stéphane Zuckerman, Nov 2021, Paris, France. pp.40-52, �10.1007/978-3-030-93571-9_4�. �hal-
04138695�

https://centralesupelec.hal.science/hal-04138695v1
https://hal.archives-ouvertes.fr


Scalable Algorithms Using Sparse Storage
for Parallel Spectral Clustering on GPU

Guanlin He1,2(B), Stephane Vialle1,2, Nicolas Sylvestre1, and Marc Baboulin1,3

1 Université Paris-Saclay, CNRS, LISN, Orsay 91405, France
guanlin.he@lisn.fr, {nicolas.sylvestre,marc.baboulin}@upsaclay.fr

2 CentraleSupélec, Gif-sur-Yvette 91192, France
stephane.vialle@centralesupelec.fr

3 Université Paris-Saclay, CNRS, CEA, Maison de la Simulation,
Gif-sur-Yvette 91191, France

Abstract. Spectral clustering has many fundamental advantages over
k-means, but has high computational complexity (O(n3)) and mem-
ory requirement (O(n2)), making it prohibitively expensive for large
datasets. In this paper we present our solution on GPU to address the
scalability challenge of spectral clustering. First, we propose optimized
algorithms for constructing similarity matrix directly in CSR sparse for-
mat on the GPU. Next, we leverage the spectral graph partitioning API
of the GPU-accelerated nvGRAPH library for remaining computations
especially for eigenvector extraction. Finally, experiments on synthetic
and real-world large datasets demonstrate the high performance and scal-
ability of our GPU implementation for spectral clustering.

Keywords: Spectral clustering · GPU computing · Similarity matrix
construction · Sparse matrix format · Parallel code scalability

1 Introduction and Positioning

Data Clustering. Also known as cluster analysis, data clustering refers to an
automatic process that discovers the natural groupings (i.e. clusters) of a set of
unlabeled data instances [7]. It belongs to unsupervised machine learning and
is one of the most important and challenging tasks in data analysis and pattern
recognition. Generally, the clustering process seeks to maximize intra-cluster
similarity and minimize inter-cluster similarity.

Various kinds of approaches to clustering have been proposed in the litera-
ture. The most well-known one might be the k-means algorithm, which tries to
minimize intra-cluster distance iteratively. Although k-means has the virtue of
simplicity and speediness, it only forms convex clusters, as shown in Fig. 1a &
1c. Besides, k-means usually suffers from the “curse of dimensionality” because
the Euclidean distance metric typically used in the k-means algorithm will lose
sensitivity in high-dimensional space [2,6]. Another disadvantage of k-means is

c© IFIP International Federation for Information Processing 2022
Published by Springer Nature Switzerland AG 2022
C. Cérin et al. (Eds.): NPC 2021, LNCS 13152, pp. 40–52, 2022.
https://doi.org/10.1007/978-3-030-93571-9_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-93571-9_4&domain=pdf
https://doi.org/10.1007/978-3-030-93571-9_4


Scalable Spectral Clustering on GPU 41

(a) bad (b) good (c) bad (d) good

Fig. 1. k-means vs. spectral clustering (SC) on 2D shape datasets

the sensitivity to randomized centroid initialization with respect to the result
of clustering. Consequently, k-means often gets stuck in local minima solutions,
and sometimes even generates arbitrarily bad clusterings, as shown in Fig. 1c. A
better centroid initialization approach is the k-means++ seeding method, which
chooses centroids by adaptive probabilistic sampling and generally improves both
the accuracy and the speed of k-means [1].

Spectral Clustering. A more recent clustering method with many fundamental
advantages over k-means is spectral clustering [10]. Based on graph theory, it
has a close connection with spectral graph partitioning which tries to minimize
the volume of connections between clusters relatively to their size, also known
as minimizing balanced cut [12]. Essentially, spectral clustering embeds data
into the sub-eigenspace of graph Laplacian and then performs k-means on the
embedded representation.1 However, contrary to k-means, spectral clustering can
discover non-convex clusters and is more likely to find the global minimum owing
to the embedding step, as shown in Fig. 1b & 1d. Moreover, as the embedding
step projects data from R

d to R
kc , it can play a role of dimensionality reduction

for high-dimensional data that has d dimensions and kc clusters with d > kc,
which will benefit the following k-means step. Additionally, when kc is unknown,
the eigenvalues and eigenvectors calculated in spectral clustering algorithm can
be exploited to estimate the natural kc [10,16,18].

Spectral clustering is attractive with the above features, but the algorithm
has an important disadvantage: O(n3) time complexity [17], mainly due to the
calculation of eigenvectors (O(n3) when using direct methods) and the construc-
tion of similarity matrix (O(n2d)), for a dataset with n instances in d dimen-
sions. Thus, spectral clustering will have a prohibitive computational cost as n
grows. On the other hand, storing the similarity matrix and the graph Laplacian
matrix both need O(n2) memory space. Therefore, the high complexities of both
computational and memory space requirements lead to a great challenge when
addressing large datasets with spectral clustering.

One way to meet the scalability challenge of spectral clustering is to employ
modern parallel architectures, such as multi-core CPU and many-core GPU.
The CPU can run a few dozen heavy threads in parallel, while the GPU can run
thousands of light threads in parallel and achieve a higher overall instruction
rate and memory bandwidth. Thus, the GPU is specialized for highly parallel
1 Therefore, spectral clustering may also be regarded as the combination of a heavy
preprocessing step (including main computations) and a classical k-means step.



42 G. He et al.

computations. Since spectral clustering needs to construct similarity matrix, and
to calculate eigenvectors through linear algebra computations, both with a high
degree of parallelism, it appears more interesting to exploit the massively parallel
nature of the GPU. However, the GPU has limited global memory resources. How
to store the memory-demanding similarity matrix and graph Laplacian matrix
on the GPU remains an important concern.

Related Works. There are existing studies related to GPU-accelerated spec-
tral clustering, but we observed the following limitations. First, the benchmark
datasets are usually of limited size [8,19]. Second, many studies [3,4,11] are
oriented to spectral graph partitioning instead of spectral clustering, thus they
typically assume the edge list or the adjacency list of a graph is available, ignor-
ing the construction of similarity matrix that would take O(n2d) arithmetical
operations in the general case of spectral clustering. Third, two research works
have reported some limitations in the speedup of similarity matrix construction
[19] and eigenvector computation [8]. Therefore, although adapted to the GPU
architecture, a particular attention should be paid to the parallelization of these
two calculation steps. An example of video segmentation through spectral clus-
tering in pixel level has been successfully implemented on a cluster of GPUs [14]
but unfortunately the authors introduced too briefly their parallelization details
and did not give performance analysis of their parallel implementation.

Positioning. In this paper, we focus on the parallelization of spectral clustering
algorithm on the GPU in order to address large datasets. The main contribu-
tions are our optimized parallel algorithms on the GPU for constructing similar-
ity matrix directly in Compressed Sparse Row (CSR) format. This can achieve
significant performance improvements, reduce substantial memory space require-
ment on the GPU, and make it possible to take advantage of the GPU-accelerated
nvGRAPH library for subsequent computations of spectral clustering. More-
over, we analyze the effectiveness and performance of eigensolver-embedded algo-
rithms in the nvGRAPH library.

The remainder of this paper is organized as follows. Section 2 reviews the
principles of spectral clustering. Section 3 illustrates our solutions and optimized
parallel algorithms for similarity matrix construction directly in CSR format
on the GPU. Then we present in Sect. 4 our analysis and exploitation of the
nvGRAPH eigensolver-embedded algorithms. Finally we conclude in Sect. 5.

2 Spectral Clustering Principles

Given a set of data instances X = {x1, ..., xn} with xi in R
d and the number

of desired clusters kc, the first step of spectral clustering is to construct similar-
ity graph and generate corresponding similarity matrix (see Algorithm 1). Two
things are worth noting as they can essentially affect the final clustering result.
(1) How to measure the distance or similarity between two instances.
There are a number of metrics, such as Euclidean distance, Gaussian similarity,
cosine similarity, etc. The choice of metric should depend on the domain the
data comes from and no general advice can be given [10]. The most commonly



Scalable Spectral Clustering on GPU 43

used metric seems to be the Gaussian similarity function (see Eq. 2.1), where the
Euclidean distance is embedded, the parameter σ controls the width of neigh-
borhood and the similarity is bound to (0, 1]. However, the cosine similarity
metric (see Eq. 2.2) appears to be more effective for data in high-dimensional
space [6]. (2) How to construct the similarity graph. There are several
common ways, such as full connection, ε-neighborhood and k-nearest neighbors
[10]. The first way generates a dense matrix. The last two ways yield typically
a sparse similarity matrix by setting the similarity sij to zero if the distance
between instances xi and xj is greater than a threshold (ε) or xj is not among
the nearest neighbors of xi, respectively. However, the k-nearest neighbors seems
more computationally expensive as it requires sorting operations.

Algorithm 1: Spectral clustering algorithm
Inputs: A set of data instances X = {x1, ..., xn} with xi in R

d, the
number of desired clusters kc

Outputs: Cluster labels of n data instances
1 Construct similarity graph and generate similarity matrix S;
2 Derive unnormalized (L) or normalized (Lsym or Lrw) graph Laplacian;
3 Compute the first kc eigenvectors of graph Laplacian, obtaining matrix U ;
4 Normalize each row of matrix U to have unit length;
5 Perform k-means clustering on points defined by the rows of U ;

Gaussian similarity metric: sij = exp (−‖xi − xj‖22
2σ2

) (2.1)

Cosine similarity metric: sij =
xi • xj

‖ xi ‖‖ xj ‖ (2.2)

The generated similarity matrix S is symmetric and of n × n size. Then we
derive the diagonal degree matrix D with degi =

∑n
j=1 sij . Next, we calculate

the (unnormalized) graph Laplacian L = D − S which does not depends on
the diagonal elements of the similarity matrix and whose eigenvalues and eigen-
vectors are associated with many properties of graphs [10]. Moreover, L can be
further normalized as the symmetric matrix Lsym := D−1/2LD−1/2 or the non-
symmetric matrix Lrw := D−1L. In order to achieve good clustering in broader
cases, it is argued and advocated [10] to use normalized instead of unnormalized
graph Laplacian, and in the two normalized cases to use Lrw instead of Lsym.
Obviously, choosing a Laplacian matrix and its properties impacts the choice of
solvers that can be used to calculate its eigenvectors (e.g. choosing Lrw will not
allow the use of the syevdx symmetric eigensolver in the cuSOLVER library).

From the graph cut point of view, clustering on a dataset X is equivalent to
partitioning a graph G into kc partitions by finding a minimum balanced cut.
Ratio cut and normalized cut are the two most common ways to measure the
balanced cut, however minimizing ratio cut or normalized cut is an NP-hard
optimization problem. Fortunately, the solution can be approximated from the
first kc eigenvectors (associated with the smallest kc eigenvalues) of graph Lapla-
cian matrix [10,11]. Let U denote the n × kc matrix containing the eigenvectors



44 G. He et al.

Fig. 2. Main computation steps in spectral clustering

as columns. Then each row of U can be regarded as the embedded representation
in R

kc of the original data instance in R
d with the same row number.

Finally, the k-means algorithm is applied on the embedded representation by
regarding each row of the matrix U as a kc-dimensional point, which therefore
allows to find kc clusters of original n data instances. In addition, before per-
forming the final k-means, it is customary to scale each row of matrix U to unit
length to improve the clustering result.

To summarize, spectral clustering involves several data transformation steps,
illustrated in Fig. 2. A similarity matrix is computed based on the nature of the
dataset and the clustering objective to model a connectivity graph, and then
a Laplacian matrix is deduced, highlighting some information about the graph
topology and the desired clustering. Eigenvectors are extracted, transcribing
the information from the Laplacian matrix and allowing to form a n×kc matrix
where the n input data are encoded in the eigenspace of the first kc eigenvectors.
In this space, a simple k-means can then group the input data into kc clusters.

3 Similarity Matrix Construction in CSR on GPU

In this section, we focus on the design of GPU parallel algorithms for construct-
ing similarity matrix directly in CSR sparse format, in order to address both the
O(n2d) computational challenge and the O(n2) memory requirement of similar-
ity matrix construction.

3.1 Need of Passing from Dense Format to Sparse Format

Initially we started from constructing the similarity matrix S simply in dense
format on the GPU. Then we chose to compute the normalized graph Laplacian
matrix Lsym (symmetric) instead of Lrw (non-symmetric) so that we could cal-
culate its smallest kc eigenvectors with syevdx, a dense symmetric eigensolver
in the GPU-accelerated cuSOLVER library from NVIDIA. Finally, we applied
our GPU parallel algorithm of k-means [5] on the points defined by the rows of
kc-eigenvector matrix to obtain the clustering result.

However, we quickly ran out of limited GPU memory when trying to process
datasets with larger n since the similarity matrix and the graph Laplacian matrix
were both constructed in dense format with O(n2) memory requirement.



Scalable Spectral Clustering on GPU 45

Fig. 3. An example for CSR format with an mr × nc matrix

On the other hand, the similarity matrix associated with ε-neighborhood
graph or k-nearest neighbors graph generally has a sparse pattern, i.e. containing
numerous zeros. Even for the similarity matrix associated with fully connected
graph, we observed typically a significant portion of elements are close to zero.
By setting a small threshold (e.g. 0.01) and regarding those under-threshold
similarities as zeros, we are likely to obtain a sparse similarity matrix. Storing
this array in a sparse format rather than a dense format significantly saves GPU
memory, which greatly increases the scale of datasets that can be processed.

3.2 Choice of CSR Sparse Format

There are several commonly used sparse formats for storing a sparse matrix,
such as Coordinate Format (COO), Compressed Sparse Row Format (CSR),
Compressed Sparse Column Format (CSC), Ellpack, etc. In our case of sparse
similarity matrix, we choose to use the CSR format for two reasons. First, the
CSR format can usually achieve a good trade-off between memory space require-
ment and operation flexibility, and is efficient both for regular sparsity pattern
and for power-law distribution [3]. With these advantages, the CSR format has
been widely used and supported in most libraries. Second, we intend to employ
the nvGRAPH spectral graph partitioning API but it supports only the CSR
format for graph representation.

A sparse matrix represented in CSR format consists of three arrays. We call
them csrVal, csrCol, csrRow. Figure 3 gives a simple example of CSR represen-
tation. The csrVal stores all nonzero values of the matrix in row-major format.
The csrCol contains the column index of every nonzero element. Considering
the first nonzero element in each row of the matrix (i.e. the circled red numbers
in Fig. 3), the csrRow holds their indices that count in the csrVal array (i.e. the
blue numbers circled by red ellipses) and contains in the end the total number
of nonzeros in the matrix.

3.3 Difficulties

We have not found any existing work on the construction of similarity matrix
in CSR format on the GPU, neither in the literature nor in numerous GPU-
accelerated libraries. Studies [3,4,11,12] in the field of graph partitioning often



46 G. He et al.

Fig. 4. Our two solutions for CSR similarity matrix construction on GPU

target graphs in COO topology represented by an edge list or in CSR topology
represented by an adjacency list. They typically assume the availability of these
sparse format lists, and do not consider or do not need the construction process.
Another work [8] constructs sparse similarity matrix in COO format but on the
assumption that the neighborhood information is given by an edge list.

In the standard case of spectral clustering, we have no such edge list or
adjacency list available, but only n data instances in R

d dimensions. To obtain
the similarity matrix in CSR format and save memory space, it makes no sense
to first construct a sparse similarity matrix in dense format and then transform
it from dense to CSR format. Thus, the construction of similarity matrix must be
directly in CSR format. However, this is difficult to be done in parallel especially
on the GPU, because (1) the total number of nonzeros is unknown, so we cannot
allocate memory for the csrVal and csrCol arrays; (2) the number of nonzeros
per row is unknown, so we cannot know in which segment of csrVal and csrCol
we should store the value and column index of each nonzero, respectively; (3)
although GPU threads can compute similarities and find nonzeros in parallel,
they cannot parallelly store nonzeros (values and column indexes) at the right
place of csrVal and csrCol, since each thread does not know the number of
nonzeros ahead of it.

3.4 Our Solutions

We propose two solutions for the similarity matrix construction in CSR on GPU.



Scalable Spectral Clustering on GPU 47

Table 1. Datasets and parameter settings of our benchmarks

Dataset (n, d, kc) Similarity metric Threshold Block size of CUDA kernels

MNIST-60K (60K, 784, 10) Cosine 0.8 (similarity) 64

MNIST-120K (120K, 784, 10) Cosine 0.8 (similarity) 64

MNIST-240K (240K, 784, 10) Cosine 0.8 or 0.84*(similarity) 64

Synthetic-1M (1M, 4, 4) Gaussian (σ = 0.01) 0.0002 (distance) 128

Synthetic-5M (5M, 4, 4) Gaussian (σ = 0.01) 0.0001 (distance) 128

Table 2. Performance comparison on GPU of our 2 solutions (S1 vs. S2)

Dataset Max

nnz in

a row

Average

nnz per

row

Total nnz Sparsity

(% of 0)

S1 (s) S2 (s) Best

speedup

S2 vs S1<1st HYPO> <2nd HYPO>

MNIST-60K 2196 251 15.1M 99.581% 7.16 5.29 <1024> 5.95 <2048> 1.35

MNIST-120K 3310 299 35.9M 99.751% 29.98 24.5 <1024> 24.39 <2048> 1.23

MNIST-240K 5552 478 114.8M 99.801% 126.85 103.75 <1024> 104.77 <2048> 1.22

MNIST-240K* 3520 199 47.8M 99.917% 125.17 91.75 <1024> 102.10 <2048> 1.36*

Synthetic-1M 54 23 23.4M 99.998% 13.57 10.20 <16> 8.35 <54> 1.63

Synthetic-5M 64 29 149.9M 99.999% 362.79 318.45 <32> 312.48 <64> 1.16

Solution 1. As shown in the left part of Fig. 4, our Solution 1 mainly consists of
two kernels with two complete passes across all the elements in similarity matrix.
The first pass in Kernel 1 computes the similarities of all pair of instances, find
the over-threshold similarities as nonzeros, and count the number of nonzeros
(nnz) per row. Then the csrRow can be obtained by performing an exclusive
scan on the array of nnz per row. Moreover, the total nnz can be known from
the last element of csrRow and we can therefore allocate csrVal and csrCol
arrays. With all these materials, we then launch the second pass in Kernel 2 to
recompute all the similarities, find nonzeros as the first pass, and finally fill the
csrVal and csrCol arrays.

Solution 2. As shown in the right part of Fig. 4, our Solution 2 is primarily
composed of three kernels performing a single pass or possibly two passes (when
running Kernel 3). It requires to predefine a hypothesis (HYPO) for the maxi-
mum number of nonzeros in a row, and allocate two temporary arrays of HYPO
size for csrVal and csrCol. Then the first pass in Kernel 1 needs to undertake
several tasks: not only compute all similarities, find nonzeros, count nnz per row,
but also store the information of nonzeros in the temporary arrays, and mean-
while record the restarting places for the additional pass in Kernel 3 in case
that our hypothesis is wrong. Then we can find the real maximal nnz in a row
(REAL) from the nnz per row array. Next, we compute the csrRow, the total nnz,
and allocate csrVal and csrCol arrays as our Solution 1. Thanks to the results
stored in the temporary arrays in Kernel 1, we can just fill csrVal and csrCol
arrays with Kernel 2. If our hypothesis is correct (REAL <= HYPO), then we
will obtain the complete result in Kernel 2. Otherwise, we need to conduct an
additional second pass in Kernel 3 to find the nonzeros out of hypothesis and
store them at the right place in csrVal and csrCol. Particularly, the additional



48 G. He et al.

pass will not traverse all elements but will only start from the restarting indices
recorded in Kernel 1.

Parallel Implementation on GPU. Both solutions are mainly implemented
with our optimized CUDA kernels. For each of the CUDA kernels in Fig. 4, we
create a 1D grid containing n 1D blocks. Each block of threads process one row
of the matrix in a loop fashion. For Solution 2, we pay particular attention to
the memory address alignment of restarting indexes on multiples of 32 memory
words, which proves to have an significant impact on performance.

3.5 Experiments with Our Two Solutions

We tested our two solutions on a GeForce RTX 3090 with the datasets and
parameter settings shown in Table 1. For the reason of comparison, we set the
same threshold (0.8) for all MNIST-based datasets (https://leon.bottou.org/
projects/infimnist). However, only the first two datasets yield satisfying cluster-
ings with this threshold, while the MNIST-240K needs a higher threshold (0.84,
marked with *) to generate a good clustering. Before clustering, we perform
feature scaling for the synthetic datasets to transform all values into the same
scale within the range [0,1]. Note that we do not have a version or benchmark
on CPU yet.

Table 2 shows the results of our benchmarks. We observed that the similarity
matrices are extremely sparse although they contain millions of nonzeros. Both
two solutions are scalable up to 5 million instances. With appropriate hypotheses,
our Solution 2 outperforms Solution 1 with a speedup from ×1.16 up to ×1.63.

However, this is conditional. Figure 5 shows the impact of hypothesis on the
performance of our Solution 2 with the MNIST-120K set. When the hypothesis
is small (HYPO < 256) or very large (HYPO > 2399), our Solution 2 is less
efficient than Solution 1. Specifically, a smaller hypothesis will leave more com-
putations and more memory accesses to Kernel 3 of Solution 2, while a greater
hypothesis will need Kernel 1 of Solution 2 to compute more and record more
in global memory. In particular, we observed two sudden increases of time when
the hypothesis grows from 2398 to 2399 and from 3038 to 3039. We think they
are caused by the decrease of the number of resident blocks in Stream Multi-
processors, because we use much shared memory when the hypothesis is large.
Although our Solution 2 can be influenced by the value of hypothesis, we found a
fairly wide range [256, 2399] where Solution 2 achieves better performance than
Solution 1. Hence finding an appropriate hypothesis should not be difficult if we
avoid extreme values. The Kernel 2 of Solution 2 consumes little time compared
to other kernels, so is omitted here.

https://leon.bottou.org/projects/infimnist
https://leon.bottou.org/projects/infimnist


Scalable Spectral Clustering on GPU 49

Fig. 5. Detailed comparison of our 2 solutions on the MNIST-120K dataset

4 Eigenvector Extraction for Spectral Clustering on GPU

4.1 Eigensolver Methods

As presented in Sect. 2, a key step of spectral clustering is to calculate the first
kc eigenvectors of Laplacian matrix. This can be done with eigensolver methods.
They include new matrix transformations to facilitate the eigenvectors extraction
and are not specific to spectral clustering. Three well-known methods are the
following:

– Arnoldi’s method [13]: it takes any input matrix (like L, Lsym or Lrw, see
Sect. 2) and transforms it into an Hessenberg matrix, then calls an eigensolver
(usually the solver QR). This is a generic but computationally expensive
method.

– Lanczos method [13]: similar to Arnoldi’s method but requires a real and
symmetric (or Hermitian) input matrix (like L or Lsym) which it transforms
into a tridiagonal matrix, before calling an eigensolver (like QR). This is an
efficient method but it suffers from numerical instabilities.

– LOBPCG method [9]: requires a symmetric input matrix (like L or Lsym)
or a pair of matrices with one symmetric and one symmetric positive definite
(like (L,D)), then starts extracting the smallest kc eigenpairs. The LOBPCG
method performs some transformations of the matrices and calls other eigen-
solvers on smaller internal submatrices. LOBPCG is more recent (released in
2000) than the previous two methods.

Implementations of these algorithms exist in different libraries. They require
input matrices in dense or sparse format and are sometimes improved to be
more robust to numerical instabilities.

4.2 Eigensolver-Embedded Algorithms in the nvGRAPH Library

With the similarity matrix in CSR sparse format defined in Sect. 3, the remaining
steps of spectral clustering can be completed by calling the spectral graph parti-
tioning API of nvGRAPH library [12], designed by NVIDIA for GPU-accelerated



50 G. He et al.

graph analytics. The API takes as input graph the similarity matrix only in CSR
format, and then performs spectral graph partitioning with the following three
selectable algorithms:

– Maximization of the modularity with Lanczos method. The modular-
ity measures how well a partitioning applies to the target graph compared
to a random graph. It can be approximately maximized by looking at the
largest eigenpairs of modularity matrix [3]. This modularity matrix instead
of the Laplacian matrix is constructed before eigenpair computation with the
Lanczos solver.

– Minimization of the balanced cut with Lanczos method. This algo-
rithm aims at minimizing the volume of inter-cluster connections relative to
the size of clusters (i.e. balanced cut). It constructs the Laplacian matrix and
then calls the Lanczos solver.

– Minimization of the balanced cut with LOBPCG method. Similar
principle to the second algorithm, but utilizes the LOBPCG solver to handle
the constructed Laplacian matrix.

Compared to Lanczos method, LOBPCG can handle eigenvalues with multi-
plicity (which often happens in spectral clustering). Moreover, the NVIDIA
implementation is able to restart the computation when it encounters numerical
instabilities. Thus this LOBPCG-embedded algorithm has appeared as the most
reliable solution on our benchmarks. Note that all the three algorithms contain
the k-means step at the end.

4.3 Experiments with nvGRAPH Library

Following the similarity matrix construction in CSR format (Sect. 3), we tested
the nvGRAPH spectral graph partitioning API to complete spectral clustering
on the GPU. The LOBPCG-embedded algorithm is selected for our benchmarks.
Several parameters need to be specified. We simply set the maximal number of
iterations to the nvGRAPH default value, i.e. 4000 for the LOBPCG eigensolver
and 200 for the final k-means. However, we found that the approximation toler-
ance for the eigensolver needs to be tuned because it has a significant impact on
the clustering quality and the execution time. Depending on the benchmarks,
a too small tolerance may lead to eigensolver divergence and too much execu-
tion time, while a too large tolerance can result in bad clusterings. Besides, the
tolerance for k-means is set to 0.0001.

Table 3 presents the elapsed time of our spectral clustering (including the
nvGRAPH API) on the GeForce RTX 3090, as well as the clustering quality
measured by three metrics: Rand Index (RI), Ajusted Rand Index (ARI), Nor-
malized Mutual Information (NMI) [15]. The last two metrics are stricter than
the first one. All metrics return a score less or equal to 1, and a score closer to
1 indicates a better clustering. Our benchmarks on the MNIST-based datasets
(handwritten digits) yielded relatively good clustering quality, while we found
perfect clusterings on the synthetic datasets (convex clusters).



Scalable Spectral Clustering on GPU 51

Table 3. Elapsed time and clustering quality of spectral clustering on GPU

Dataset Elapsed time (s) Quality metric

Data transfers Similarity

matrix constr.

in CSR

nvGRAPH LOBPCG <eigen.

tolerance>

Total RI ARI NMI

MNIST-60K 0.015 5.29 2.35 <0.005> 7.66 0.93 0.63 0.74

MNIST-120K 0.031 24.39 4.03 <0.005> 28.45 0.89 0.50 0.65

MNIST-240K 0.062 91.75 5.42 <0.005> 97.23 0.88 0.47 0.69

Synthetic-1M 0.002 8.35 3.61 <0.001> 11.96 1.00 1.00 1.00

Synthetic-5M 0.008 312.48 29.75 <0.0001> 342.24 1.00 1.00 1.00

With respect to the elapsed time, the similarity matrix construction turns
out to be the most time-consuming step of spectral clustering, mainly due to
its O(n2d) time complexity. Although the theoretical complexity of eigenvector
computation is O(n3), the nvGRAPH LOBPCG eigensolver did not take much
time compared to the similarity matrix construction. This is mainly due to the
fact that the eigensolver adopts an iterative and approximate method instead
of direct methods. The data transfers between CPU to GPU appears negligi-
ble. Finally, the large datasets demonstrate the scalability on a GPU of our
implementation of spectral clustering with algorithms optimized for CSR sparse
matrix generation (although it still dominates the runtime).

5 Conclusion and Future Work

We have presented our scalable parallel algorithms for spectral clustering on a
single GPU. We have proposed two solutions for the construction of similarity
matrix directly in CSR sparse format on GPU, which can save a large amount
of GPU memory space compared to dense format storage. Moreover, our matrix
generation in CSR format is compatible with nvGRAPH’s eigensolver-embedded
algorithms that require CSR matrices. With our sparse matrix construction and
nvGRAPH’s eigensolvers, we have obtained a parallelized end-to-end spectral
clustering implementation on one GPU. Finally, our experiments show that our
GPU implementation succeeds to scale up to millions of data instances.

To address even larger datasets, it would be interesting to parallelize spectral
clustering on multi-GPU machines which provide more computing power and
memory space. Another solution would be CPU-GPU algorithms incorporating
the representative extraction technique on the CPU to reduce the number of
data instances to process on the GPU. Moreover, a comparison with a purely
CPU multithreaded and vectorized version would be interesting in the future.

Acknowledgement. This work was supported in part by the China Scholarship
Council (No. 201807000143). The experiments were conducted on the research com-
puting platform supported in part by Région Grand-Est, Metz-Métropole and Moselle
Departement.



52 G. He et al.

References

1. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, New Orleans, Louisiana, USA (2007)

2. Domingos, P.: A few useful things to know about machine learning. Commun.
ACM 55(10), 78–87 (2012)

3. Fender, A.: Parallel solutions for large-scale eigenvalue problems arising in graph
analytics. Ph.D. thesis, Université Paris-Saclay (2017)

4. Fender, A., Emad, N., et al.: Accelerated hybrid approach for spectral problems
arising in graph analytics. Procedia Comput. Sci. 80, 2338–2347 (2016)

5. He, G., Vialle, S., Baboulin, M.: Parallel and accurate k -means algorithm on CPU-
GPU architectures for spectral clustering. Concurr. Comput. Pract. Exp., e6621
(2021). https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6621

6. Ina, T., Hashimoto, A., Iiyama, M., Kasahara, H., Mori, M., Minoh, M.: Outlier
cluster formation in spectral clustering. arXiv preprint arXiv:1703.01028 (2017)

7. Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8),
651–666 (2010)

8. Jin, Y., JáJá, J.F.: A high performance implementation of spectral clustering on
CPU-GPU platforms. In: 2016 IEEE International Parallel and Distributed Pro-
cessing Symposium Workshops, Chicago, IL, USA, pp. 825–834 (2016)

9. Knyazev, A.V.: Toward the optimal preconditioned eigensolver: locally optimal
block preconditioned conjugate gradient method. SIAM J. Sci. Comput. 23(2),
517–541 (2001)

10. von Luxburg, U.: A tutorial on spectral clustering. Stat. Comput. 17(4), 395–416
(2007)

11. Naumov, M., Moon, T.: Parallel spectral graph partitioning. Technical report,
NVIDIA Technical Report, NVR-2016-001 (2016)

12. NVIDIA: NVGRAPH library user’s guide (2019)
13. Saad, Y.: Numerical Methods for Large Eigenvalue Problems. SIAM, Philadelphia

(2011)
14. Sundaram, N., Keutzer, K.: Long term video segmentation through pixel level spec-

tral clustering on GPUs. In: IEEE International Conference on Computer Vision
Workshops, ICCV 2011 Workshops, Barcelona, Spain (2011)

15. Vinh, N.X., Epps, J., Bailey, J.: Information theoretic measures for clusterings
comparison: variants, properties, normalization and correction for chance. J. Mach.
Learn. Res. 11, 2837–2854 (2010)

16. Xiang, T., Gong, S.: Spectral clustering with eigenvector selection. Pattern Recog-
nit. 41(3), 1012–1029 (2008)

17. Yan, D., Huang, L., Jordan, M.I.: Fast approximate spectral clustering. In: Pro-
ceedings of the 15th ACM International Conference on Knowledge Discovery and
Data Mining, Paris, France, 2009 (2009)

18. Zelnik-Manor, L., Perona, P.: Self-tuning spectral clustering. In: Advances in Neu-
ral Information Processing Systems 17 (NIPS 2004), Vancouver, Canada, 13–18
December 2004, pp. 1601–1608 (2004)

19. Zheng, J., Chen, W., Chen, Y., Zhang, Y., Zhao, Y., Zheng, W.: Parallelization of
spectral clustering algorithm on multi-core processors and GPGPU. In: 2008 13th
Asia-Pacific Computer Systems Architecture Conference, pp. 1–8. IEEE (2008)

https://onlinelibrary.wiley.com/doi/abs/10.1002/cpe.6621
http://arxiv.org/abs/1703.01028

	Scalable Algorithms Using Sparse Storage for Parallel Spectral Clustering on GPU
	1 Introduction and Positioning
	2 Spectral Clustering Principles
	3 Similarity Matrix Construction in CSR on GPU
	3.1 Need of Passing from Dense Format to Sparse Format
	3.2 Choice of CSR Sparse Format
	3.3 Difficulties
	3.4 Our Solutions
	3.5 Experiments with Our Two Solutions

	4 Eigenvector Extraction for Spectral Clustering on GPU
	4.1 Eigensolver Methods
	4.2 Eigensolver-Embedded Algorithms in the nvGRAPH Library
	4.3 Experiments with nvGRAPH Library

	5 Conclusion and Future Work
	References




