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Distributed Bounded Consensus-Based Control for Multi-Agent Systems
with Undirected Graphs

Andrei-Constantin Braitor, Alessio Iovine, Houria Siguerdidjane

Abstract— In this paper, we propose a distributed consensus-
based control method that guarantees agent states limitation
for networks of multi-agent systems with undirected commu-
nication graphs. This approach takes into account the general
linear dynamic models of n identical agents and, by employ-
ing Lyapunov methods and ultimate boundedness theory, it
ensures that each agent state remains within given bounds.
This latter feature is particularly useful in scenarios where
one must mitigate the occurrence of abnormal values being
transmitted within the network, thus, maintaining a relatively
safe consensus policy between agents. The developed strategy
requires, at each agent node, information from their respective
neighbours only, and it can be applied independently of any
global information of the communication graph, hence, it is fully
distributed. To highlight the developed controller capability and
effectiveness, a multi-converter microgrid system with a meshed
communication network has been used as a practical example.
Subsequent to the asymptotic stability proof for the overall
closed-loop microgrid system, the control framework has been
tested in a predetermined scenario.

I. INTRODUCTION

In the preceding decades, a surge in demand for the
cooperation of multiple interconnected systems took place,
which sparked the initiative towards the design of dis-
tributed controllers for networked multi-agent systems. The
underlying motivation stemmed from a plethora of graph-
described systems ranging from the world wide web, pinning
control [1], to industry fields such as vehicle platooning,
power networks [2], [3] or behavioural studies, such as fish
schooling, birds flocking, or insect swarming [4]–[6].

The state in which all agents in the network agree on
a common initial state-dependent value is referred to as
consensus. Consensus of multi-agent systems with gen-
eral linear dynamics has always interested researchers and
scholars, recent works for instance include [7]–[9]. On the
control side, different static and dynamic consensus proto-
cols are designed in [10]–[14], requiring the smallest non-
zero eigenvalue of the Laplacian matrix associated with
the communication graph to be known by each agent to
determine the bound for the coupling weight. However, the
Laplacian matrix depends on the entire communication graph
and, hence, is global information. That would make the
controller centralised, with the network of agents essentially
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becoming a single complex system. Thus, the complexity of
the centralised controller increases when the network scales
up due to the need to compute the eigenvalue. Moreover,
in most cases a centralised controller might fail to observe
the full state information due to communication constraints
among agents. Similarly, it might be subjected to failure
when network topology changes, as in plug and play sce-
narios. In other words, the consensus protocols in [10]–[14]
cannot be computed and implemented by each agent in a
fully distributed fashion, that is using only local available
information or shared information from its own neighbours.

Thence, given the spatial distribution of the agents and
limited sensing capability of sensors, implementable consen-
sus protocols for multi-agent systems should be distributed,
depending on the local state or output information of each
agent and its neighbours only. To address these shortcomings,
several improved distributed consensus protocols have been
proposed in [15]–[17], which are based on the relative states
combined with adaptive laws for adjusting the coupling
weights between neighbours. Most of these methods are
inspired by the edge-based adaptive strategy for the synchro-
nization of complex networks as in [18]. The downside of
these adaptive consensus approaches that introduce adaptive
coupling gains is that these gains could become considerably
large. A possible solution to address this issue would be
to implement an adaptive consensus protocol with decaying
gains as proposed in [19]. However, although a decaying
gain can tackle the unbounded coupling gain issue, it cannot
guarantee agent state boundedness. And, state boundedness
has recently become quite a crucial property to have in
modern complex systems, as for example in power networks
where the need for protection through control has never been
a more sought-after feature [20]–[22].

On the downside, distributive-based approaches suffer
from high-control effort and, sometimes, weak robustness.
To this end, a number of research works have explored dis-
tributed structures that seek a balance between system perfor-
mance and the coordination efforts, which can be quantified
either in communication or computational demands [23].
This two-fold goal has led to control structures incorporating
low-degree consensus networks, hence, avoiding the need
for full information sharing. As explained in [24], from a
static viewpoint, the problem is similar to that of system
partitioning, which searches for suitable decompositions of
the global system into subsystems and assigns variables to
different control agents

So far, however, a distributed consensus-based controller
that guarantees an upper bound for every agent state, to the



best of our knowledge, has never been proposed in this form.
The contribution of this paper can be briefly summarised
as follows: i) the proposed method addresses the issue of
large and unbounded coupling gains, by having a bounded
term acting as a coupling gain; ii) the design of control
framework can also guarantee bounded agent states, by virtue
of Lyapunov methods and ultimate boundedness theory; iii)
it is fully distributed and independent of the other agent
parameters or states; iv) it can seamlessly incorporate agent
clustering and/or network partition.

II. PRELIMINARIES AND MOTIVATION

Let 0n, 1n, and 0n×n, 1n×n denote the n-dimensional
vector and n × n dimensional matrix, respectively, of zero
and unit entries, respectively, and let In denote the identity
matrix. For an n-tuple (v1, . . . vn), let v ∈ Rn be the asso-
ciated vector. Given the ordered index set I of cardinality
|I| and a one-dimensional array {xi}i∈I , one defines [x] =
diag ({xi}i∈I) ∈ R|I|×|I| to be the associated diagonal
matrix. Its corresponding transpose matrix is denoted as [x]′.
Define the vector-valued function abs(v) = [|v1| . . . |vn|]′
as the vector function that has all vector entries as scalar
absolute values.

Consider a group of n identical agents with general linear
dynamics. The dynamics of the i-th agent would have the
following LTI dynamics written in matrix form, with x =
[x1 . . . xn]

′, and u = [u1 . . . um]
′

ẋ = Ax+Bu, (1)

where x ∈ Rn represents the state vector, u ∈ Rm is the
control input vector, while A ∈ Rn×n and B ∈ Rn×m are
constant matrices of compatible dimensions.

Consider the following assumptions and preliminaries
necessary for the subsequent theoretical developments.

Assumption 1. One assumes the matrix pair (A,B) is
controllable.

Since system (1) is controllable according to the above
assumption, then for every µ > 0, there exists a state
feedback controller u = −Kx, with K ∈ Rm×n a gain
matrix, that places all eigenvalues of the closed-loop system
ẋ = (A−BK)x on the complex semiplane R (λ) ≤ −µ.

Graph theory has been widely used to describe the commu-
nication topology among the multi-agent networked systems.
Consider the undirected, connected, and weighted graph G =
(V, E ,W ) represented as a set of vertices, or agents, V =
{i| i ∈ I}, connected by a set of edges, or communication
links, E ⊂ V × V , and induced by a symmetric, irreducible,
and non-negative matrix W ∈ Rn×n, namely the adjacency
matrix. The elements of W represent the weights, where
wij > 0 if the edge (νj , νi) ∈ E , otherwise, wi,j = 0. The
Laplacian matrix L ∈ Rn×n is defined as L = [W1n]−W ,
while its eigenvalues determine the global dynamics.

A variety of graph-based static and dynamic consensus
approaches have been proposed to guarantee agent consensus
with dynamics given by equation (1). A static consensus

based on the relative states between neighbouring agents
would look as proposed in [13],

ui = cK

n∑
i=1

wij (xi − xj) , i ∈ I (2)

with c > 0 being the coupling weight among neighbouring
agents, K is the feedback term, and wij is (i, j)-th entry
of the adjacency matrix W associated to G. When the
neighbouring agents i and j become equal, they are known
as reaching synchronisation as defined below for the entire
network.

Definition 1. Network system (1)-(2) is said to achieve
asymptotic synchronisation if and only if

lim
t→∞

(xi (t)− xj (t)) = 0, i, j : (νi, νj) ∈ E . (3)

Note that asymptotic synchronisation as defined above is
the most intuitive case of synchronisation, and it corresponds
to consensus among agents xi = xj , with j being a
neighbour of i, i.e. j ∈ Ni. There also exist other forms of
synchronisation, for instance, lag synchronisation as defined
in [25].

Lemma 1 ([13]). For G connected, the n agents reach
consensus with u defined as in (2), with K = −B′P−1 and
the coupling weight c ≥ 1

λ2
, where λ2 is the smallest non-

zero eigenvalue of the Laplacian L and P ≻ 0 is a solution
to the following linear matrix inequality

AP + PA′ − 2BB′ < 0. (4)

The coupling weight c should be greater than the inverse
of the second smallest eigenvalue of L to reach consensus.
Similarly, the control design in [14] depends on λ2 also.
However, λ2 is global information since it depends on the
entire network configuration. Therefore, the controller cannot
be implemented in a distributed fashion at each agent node.

Note that in equation (4), one does not formally imply
BB′ being positive-definite. Nevertheless, the controllability
of the pair (A,B) from Assumption 1 suffices to establish
that P is positive-definite, even if BB′ is not, a fact also
pointed out in [26, Ch.12]. To make matters clear and
mathematically rigorous, one makes a second assumption.

Assumption 2. Matrix B ∈ Rn×m is full row rank, i.e.
rank (B) = n.

This guarantees that symmetric matrix BB′ is full rank.
Moreover, matrix BB′ is positive-definite, thus invertible.
An important remark here, however, is that in line with
Assumption 2, matrix B dimensions should satisfy n ≤ m.

To avoid the limitation stated in Lemma 1, adaptive
approaches have been developed in [19], where c takes a
dynamic form

c =

N∑
j=1

wij (xj − xi) Γ (xj − xi)+

N∑
j=1

wij (cj − ii)−l (ci − κi)

(5)
where l > 0 and κi ≥ 0 are constants, the latter is estimated
by the i-th agent, while Γ is the adaptation game term. How-
ever, although the adaptive gain removes the issue of large



or unbounded coupling gain as these adaptive gains decay to
virtually zero, it cannot ensure agent state boundedness.

In turn, we propose, in the following section, a bounded
consensus approach that is fully distributed and additionally
attains an upper bound for the agent states.

III. BOUNDED CONSENSUS-BASED CONTROL

In this section, a distributed bounded consensus-based
controller is designed that achieves network consensus, and
additionally secures an upper bound for the agent states.

A. Controller design and analysis

Consider the control input vector taking the following
matrix form, with σ = [σ1 . . . σn]

′,

u = −Kx+
1

2
B′σ (6)

where one selects gain matrix K = B′Q, with Q =
diag{qi} ∈ Rn×n being a positive-definite diagonal matrix.
The control state σi takes the following dynamic form for
each i-th agent,

σ̇i =

(
1− (σi − qixi)

2

(qixi)
2

) ∑
j∈Ni

(xj − xi) (7)

with the purpose of maintaining σi within given bounds,
where xi is a positive constant. To explain this in more
depth, one proceeds to investigate the nonlinear dynamics
of equation (7).

Consider the following continuously-differentiable func-
tion

W =
σ2
i

2 (qixi)
2 . (8)

Then, by calculating its time derivative and using the con-
troller expression in (7), it yields

Ẇi =
σi

(qixi)
2 σ̇i

=
σi

(qixi)
2

(
1− (σi − qixi)

2

(qixi)
2

) ∑
j∈Ni

(xj − xi) (9)

From equation (9), one can notice that except at the synchro-
nisation when consensus is reached (i.e. xi = xj) or at the
origin where σi = 0, Ẇi becomes zero at the roots of the
parabola p(σi) as it can be seen in Fig. 1. This indicates that
if the initial condition of the controller state, σi0, is selected
in the set

Wi0 =
{
σi ∈ R : p(σi) = 1− (σi − qixi)

2

(qixi)
2 > 0

}
(10)

then, intuitively from equation (9), it becomes clear that Ẇi

will eventually become null as it travels on the parabola
p(σi) > 0, that is

Ẇi (t) → 0,∀ t ≥ 0. (11)

This leads to the result that σi will start and remain in the
set Wi0 for all t ≥ 0. In other words, the set Wi0 is a
positive invariant set. Hence, a choice for the initial condition

σi 

p(σi)

0

1

qixi

_
qixi

_
2qixi

_
2qixi

_

Fig. 1. Graphical representation of the p(σi) parabola

σi could be anywhere within 0 ≤ σi ≤ 2qixi. To remark
here that keeping the controller states on well-defined curves
has been encountered in several bounded control approaches.
For more details on the motivation behind the proposed
controller, the reader is referred to [27], [28].

Hence, by considering a typical initial condition of the
integral state σi, i.e. σi (0) = qixi, then the controller state
remains following the equilibria of equation (7), within the
interval σi (t) ∈ [0, 2qixi], for all t ≥ 0.

One has to remark that the control variable Ẇi becomes
zero when i)

∑
j∈Ni

(xj − xi) = 0 which ensures accurate
consensus among all network agents, or ii) σi = 0 and σi =
2qixi corresponding to agent state limitation as it shall be
explained in the following subsection.

B. State boundedness

When substituting the control input (6) into the open-loop
dynamics (1), one obtains the closed-loop system

ẋ = Ax−BB′Qx+
1

2
BB′σ (12)

Proposition 1. The solution xi (t) of system (12) with the
initial condition xi (0) ≤ xi is uniformly ultimately bounded,
i.e. |xi (t)| ≤ xi, at all times t ≥ 0.

Proof. Now consider the following Lyapunov function
candidate:

V =
1

2
x′x. (13)

By taking its time derivative, it yields V̇ = x′ẋ as shown in
the expansion below

V̇ =x′
(
Ax−BB′Qx+

1

2
BB′σ

)
≤x′ (Ax−BB′Qabs(x) +BB′Qx) . (14)

As in equation (4) in Lemma 1 regarding consensus reaching,
let matrix A be Hurwitz. Since B is a full row rank matrix, by
virtue of Assumption 2, then the symmetric matrix (BB′)

−1

exists and is positive-definite. Then, by diagonalisation ac-
cording to the lemmas in [29], matrix BB′Q is positive
stable, that is BB′Q has only positive eigenvalues. Then,
one has

V̇ ≤ x′Ax, ∀ abs(x) ≥ BB′Q (BB′Q)
−1

x ≥ x (15)

which guarantees, for each agent i, the desired state limita-
tion, i.e. |xi| ≤ xi. The proof is complete.



Notice that maintaining the agents states within bounds
is accomplished independently from the consensus function∑

j∈Ni
(xj − xi) that has to eventually tend towards zero.

Given some agents reach their limit, the others will still
attempt to keep consensus policy accurate between them.

Remark 1 (Implications on network scalability). Network
scalability is intrinsically connected to the algebraic connec-
tivity λ2 of the communication induced graph L. And con-
nectivity scales unfavourably with network size which points
to a fundamental limitation in the scalability of consensus
networks. However, this limitation applies only to consensus
networks with leaders, or when some network grounding
would occur (resulting in leader-follower consensus) [30].

IV. A DC MICROGRID EXAMPLE

To test and highlight the capabilities of the proposed
control approach, one considers a DC microgrid application.
Notice in Fig. 2, the multi-converter based DC network with
n converter nodes connected through RL lines to a common
DC bus, represented by the resistance R. Each converter
node shares information with its respective neighbours via
a meshed connected communication network.

By applying Kirchhoff’s Laws, the dynamics of the current
flowing from each node i to the DC bus can be expressed as

Li
dii
dt

= Ei −Riii −R

n∑
i=1

ii, (16)

where Ei and ii represent the converter-node voltage and
line current, respectively, the former being also the control
input. One can rewrite equation (16) in matrix form, yielding

L
di

dt
= E − (RL +R1n×n) i, (17)

with line inductance and resistance matrices L = diag{Li}
and RL = diag{Ri}, and input and state vectors E =
[E1 . . . En]

′ and i = [i1 . . . in]
′, respectively.

When the control input vector E takes the form

E = −Ki+
1

2
L−1σ, (18)

one obtains the following closed-loop system

Li̇ = −Ki+
1

2
L−1σ − (RL +R1n×n) i. (19)

The control state σ incorporates the bounded consensus
approach and takes the following nonlinear dynamic form

σ̇ =
(
In − ([σ]− gImax)

2
(gImax)

−2
)
Lmi. (20)

Matrix m = diag{mi} > 0 introduces different gains
to allow the implementation of a clustering policy among
converter nodes, while maintaining consensus between all
nodes in the network. The main task is to ensure current
consensus among all nodes. given the line currents at each
node i, do not exceed a specific imposed limit, i.e., ii ≤
Imax,i.

The stability of the closed-loop system (19)-(20) will be
analysed in the sequel.
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Fig. 2. Multi-converter based DC microgrid incorporating a meshed
communication network

A. Closed-loop stability analysis

One can trivially observe by checking the equilibria of σ,
that it has two equilibrium points, at 0n and 2gImax1n, with
the latter being of interest for stability investigation.

In this subsection, the local closed-loop stability is in-
vestigated around the equilibrium point denoted (ie, σe).
Consider the following proposition that guarantees closed-
loop stability.

Proposition 2. Closed-loop system (19)-(20) is locally
asymptotically stable.

Proof. The corresponding Jacobian matrix of the closed-
loop system (19)-(20) will look as displayed at the top of
the next page.

By writing the standard eigenvalue problem (SEP) for
(21), one has Jv = λv, with λ being an eigenvalue, and
v the corresponding eigenvector. Since the Jacobian matrix
can be written as a matrix multiplication as expressed below

J =

[
−L−1 0n×n

0n×n −2 ([σe]− gImax) (gImax)
−2

]
︸ ︷︷ ︸

X1

×

[
K+RL+R1n×n 0n×n

0n×n L

]
︸ ︷︷ ︸

X2

[
In 0n×n

0n×n m [ie]

]
︸ ︷︷ ︸

Q

, (22)

the SEP then becomes

X1X2Qv = λv. (23)



J =

[
−L−1 (K +RL +R1n×n)

1
2L

−2

0n×n −2 ([σe]− gImax) (gImax)
−2 Lm [ie]

]
(21)
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Fig. 3. DC network considered for simulation testing

Given matrix Q ≻ 0, let y = Qv resulting in

X1X2y = λQ
−1

y. (24)

The SEP becomes a generalised eigenvalue problem (GEP).
Matrix X2 is positive semidefinite with kernel spanned by
[0′

n 1′
n]

′ corresponding to the asymptotic synchronisation
(as in Definition 1) or the states reaching consensus, while
matrix X1 is positive definite with kernel spanned by 02n.
Similarly to the proof of [31, Th.2], by applying the Courant-
Fischer Theorem to the eigenvalue problem, for asymptotic
synchronisation, all eigenvalues of matrix J are real and
negative since Im (L) = 1⊥

n , and Im (X1) ∩ ker (X2) =
02n, which means that X2y is never in the kernel of X1.

Therefore, it is clear that ker (J) = ker (X2). Since the
image of matrix X1 excludes span

(
[0′

n 1′
n]

′), it follows that
Jy is the null vector if and only if y ∈ span

(
[0′

n 1′
n]

′) that
essentially corresponds to the asymptotic synchronisation.
Thus, matrix J is Hurwitz. The system is locally asymp-
totically stable. The proof is complete.

B. Simulation results

A 10-node network has been subjected to numerical test-
ing, with a meshed configuration as depicted in Fig. 3, with

TABLE I
SYSTEM AND CONTROL PARAMETERS

System and control parameters Values

L1...10 [mH] 0.25 0.23 0.22 0.17 0.2
0.21 0.24 0.24 0.25 0.23

R1...10 [Ω] 1.05 1.1 0.7 0.85 0.9
1.2 0.75 0.6 0.75 0.5

Imax,1...10 [A] 3.8 3.8 3.8 3.5 3.5 3.5
0.84 0.84 0.84 0.84

m1...10 21 21 21 10.5 10.5 10.5
7 7 7 7

g1...10 50 50 50 50 50 50
60 60 60 60
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Fig. 4. Dynamic response of the system and control states

the line currents being described by equation (16). Note that
the nodes have been clustered in three zones with the end
goal of guaranteeing different consensus with the zone within
their zone, than with the nodes in the rest of the network. At
each converter node, the bounded consensus approach has
been implemented in a distributed manner.

The simulation scenario runs for 6 s and the main tasks for
each agent is to show the controller operability, i.e. i) con-
sensus among all network agents, and ii) state boundedness
for each agent state. The results are displayed in Fig. 4.

At t = 0 s, the controllers start and after a 1 s settling
time, consensus is achieved among all agents. Note that
agents achieve equal consensus with their neighbours within
their zone and a 1 : 2 : 3 consensus with their respective
neighbours from zones other than their own.

After 3 s, the load power demand at the DC bus changes
causing the line currents to change as a response. The upper
limit is hit in zone III, the currents are successfully limited
while in the other zones the currents readjust to maintain the
consensus in place.



Remark 2. One could choose to keep the consensus only
among the nodes that have not reached their limit. That could
be implemented in a practical manner by simply removing
from the consensus the states that have reached the limit.
However, for the purpose of this demonstration, no such thing
has been put in place.

On the whole, the present approach manages to ensure
no violation occurs and keep the upper bound in place, i.e.
ii ≤ imax

i , ∀ t ≥ 0, even during transients.

V. CONCLUSIONS

In this paper, a distributed bounded consensus-based con-
trol method has been proposed for linear multi-agent systems
with undirected communication network induced graphs. By
using Lyapunov methods and ultimate boundedness theory,
an upper bound for each agent state can be analytically
guaranteed independently of the system states or parameters.
To verify the theoretical findings and verify the controllers
performance, a DC microgrid with meshed communication
network has been considered as a testing example. The
closed-loop stability of the DC system has been proven
around an equilibrium point. Lastly, the system has been
subjected to a simulation scenario, where it is clear that
the proposed method ensures accurate consensus among
converter-node currents, while keeping a fixed pre-set limit.
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