
HAL Id: hal-04148855
https://centralesupelec.hal.science/hal-04148855

Submitted on 22 Jul 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License

Automaton-ABC: A statistical method to estimate the
probability of spatio-temporal properties for parametric

Markov population models
Mahmoud Bentriou, Paolo Ballarini, Paul-Henry Cournède

To cite this version:
Mahmoud Bentriou, Paolo Ballarini, Paul-Henry Cournède. Automaton-ABC: A statistical method
to estimate the probability of spatio-temporal properties for parametric Markov population models.
Theoretical Computer Science, 2021, 893, pp.191-219. �10.1016/j.tcs.2021.09.039�. �hal-04148855�

https://centralesupelec.hal.science/hal-04148855
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://hal.archives-ouvertes.fr


Automaton-ABC: a Statistical Method to Estimate the Probability of
Spatio-Temporal properties for parametric Markov Population Models

Mahmoud Bentrioua,∗, Paolo Ballarinia, Paul-Henry Cournèdea

aUniversité Paris-Saclay, CentraleSupélec, Laboratory of Mathematics and Informatics (MICS), Gif-sur-Yvette, 91190, France.

Abstract

We present an adaptation of the Approximate Bayesian Computation method to estimate the satisfaction probability
function of a temporal logic property for Markov Population Models.

In this paper, we tackle the problem of estimating the satisfaction probability function of a temporal logic property
w.r.t. a parametric Markovian model of Chemical Reaction Network. We want to assess the probability with which
the trajectories generated by a parametric Markov Population Model (MPM) satisfy a logical formula over the whole
parameter space. In therst step of the work, we formally define a distance between a trajectory of an MPM and
a logical property. If the distance is 0, the trajectory satisfies the property. The larger the distance is, the further
the trajectory is from satisfying the property. In the second step, we adapt the Approximate Bayesian Computation
method using the distance defined in therst step. This adaptation yields a new algorithm, called automaton-ABC,
whose output is a density function that directly leads to the estimation of the desired satisfaction probability function.
We apply our methodology to several examples and models, and we compare it to state-of-the-art techniques. We
show that the sequential version of our algorithm relying on ABC-SMC leads to an efficient exploration of the
parameter space with respect to the formula and gives good approximations of the satisfaction probability function at
a reduced computational cost.

Keywords:
Networks, Bayesian Inference, Approximate Bayesian Computation, HASL, Linear Hybrid Automata

1. Introduction

Approximate Bayesian computation (ABC) algo-
rithms have gained popularity over the last decade and
are applied for parameter inference in many modelling
fields, including systems biology [1, 2, 3, 4] and can-
cer research [5]. They proved decisive in many cases
when classical Bayesian parameter inference methods
are challenging to implement. ABC allows approximat-
ing the posterior distribution of a model without evaluat-
ing the likelihood function in complex models when the
computation cost is too high or even impossible. ABC
methods are likelihood-free and only rely on model sim-
ulations. Simply speaking, only parameters for which

∗Corresponding author.
Email addresses:

(Mahmoud Bentriou),
(Paolo Ballarini),
(Paul-Henry Cournède)

simulated summary statistics are close to observed ones,
relative to a distance, are preserved while the others are
dismissed. These parameters are sampled from the ABC
posterior, which approximates the true posterior distri-
bution. The initial idea of our work relies on transposing
this concept, initially developed for statistical inference,
to temporal logic. We want to adapt the ABC approach
so that only parameters which yield simulations that ful-
fil a given temporal logic formula are retained while oth-
ers are discarded.

In this paper, we propose a new method for paramet-
ric verification of Markov Population Models (MPMs)
based on the ABC algorithm. We use hybrid automata
to formally measure a
a logical property. In keeping with the ABC vocabulary,
this score will be called
this paper. We use this distance within the ABC frame-
work to estimate the subset of the parameter space in
which the logical property can be satisfied thanks to the
obtained ABC posterior. We show that the sequential

Preprint submitted to Theoretical Computer Science September 9, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0304397521005739
Manuscript_010bb9ccce1a73baab6a83ef607b4929

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0304397521005739
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0304397521005739


version of ABC is perfectly suited to the use of the dis-
tance from a property, leading to an efficient exploration
of the parameter space. Our method also allows the es-
timation of the satisfaction function of a formula, with
a remarkable result linking this satisfaction function to
the ABC posterior. We demonstrate the effectiveness
of our method by its application to several models of
Chemical Reaction Networks (CRN).

The work presented in this paper extends that intro-
duced in [6], in many aspects, including 1) the addition
of the methodology for estimating the probability sat-
isfaction function of the considered formula from the
output of modified ABC algorithms presented in [6]; 2)
an extended application part which better highlights the
potential of the framework through diverse case studies;
3) the addition of the proof of the soundness of the ap-
proach w.r.t. the satisfiability distances the framework
relies on.

The paper is organised as follows: Section 2 intro-
duces background material about parametric MPMs,
reachability problems, the hybrid automata specifica-
tion language, and the ABC framework. In Section 3,
the notion of satisfiability distance for reachability prob-
lems is introduced and plugged, via hybrid automata
specifications, within a novel ABC framework which,
therefore, allows for identifying the subspace of param-
eters for which the probability of satisfying the con-
sidered reachability properrty is strictly positive. The
novel ABC framework is demonstrated through several
experiments in Section 4 and Section 5, while some con-
clusive remarks and perspectives are discussed in Sec-
tion 6.

1.1. Related work
In the realm of computational systems biology [7],

probabilistic modelling has become increasingly rele-
vant [8], in particular for modelling of Chemical Re-
action Network systems that are characterised by low
molecular populations such as, for example, genetic
regulatory networks [9]. Stochastic simulation algo-
rithms [10] and the corresponding tools, e.g. [11], pro-
vide the modellers with practical means for observing
the dynamics of a CRN model resulting from a specific
parameter instance. On the other hand, stochastic model
checking approaches [12] in either their numerical [13]
or statistical (i.e. simulation-based) [14, 15] formula-
tion enrich the ability to analyse the dynamics of a CRN
instance through the assessment of formally specified
properties expressed in temporal logic terms [16]. There
exist two formulations of the stochastic model checking
problem, the so-called threshold problem, which is con-
cerned with establishing whether the probability that a

formula Φ is satisfied by a model instance Mθ fulfils
a probabilistic constraint ∼ p (with ∼∈ {≤, <, >≥} and
p ∈ [0, 1]) as opposed to the estimation problem, which
is concerned with estimating the probability that Mθ
fulfils Φ. In recent years, the parametric verification of
a probabilistic model (also referred to as parameterised
model checking) has received much attention. It is con-
cerned with combining parameter estimation techniques
with stochastic model checking, i.e. with studying how
the stochastic model checking problem for a property Φ
is affected by the parameters θ upon which a probabilis-
tic model (i.e. an MPM)M depends.

In this respect, a significant number of approaches
have been proposed that tackle parametric verification
w.r.t. the threshold problem perspective such as [17], in
which a bounded approximation of parameter space ful-
filling a CSL [18] threshold formula is efficiently deter-
mined through an adaptation of MPM uniformisation,
or also [19, 20] and, more recently, a novel ABC-based
method [21] that is based on observations even solves
parameter inference and statistical parameter synthesis
in one go.

Our method, on the other hand, tackles the estimation
problem in stochastic model checking and is in line with
the works of Bortolussi et al. [22], where the so-called
smoothed model checking (Smoothed MC) method to
estimate the satisfaction probability function of para-
metric MPM is detailed. Methods belonging to this fam-
ily do not solve the parameter synthesis problem explic-
itly but provide good estimates of the satisfaction func-
tion that can lead to parameter synthesis, e.g. [23] which
is also based on Smoothed MC.

2. Background

In this section, we briefly introduce the background
material upon which the remainder of the paper relies.
We recall the essential concepts of (i) Markov popula-
tion models (of chemical reaction networks); (ii) tem-
poral logic and reachability problems; (iii) Hybrid Au-
tomata Specification Language; and (iv) ABC methods
(whose automaton extension is introduced in Section 3).

2.1. Markov Population Models

A Markov population model (MPM) is a form of
continuous-time Markov chain (CTMC) [24, 25] suit-
able for modelling of population processes, i.e. sys-
tems whose states represent the number of individuals
of different species and whose transitions correspond to
adding/removal of individuals.

2



Definition 2.1 (Markov Population Model). A Markov
population model (MPM) for n ∈ N population species
is a tripleM = (S ,Q, π0) such that:

• S ⊆ Nn is a countable set of states

• Q : S × S → R: is the infinitesimal generator
matrix (with Q(si, si) = −� j�i Q(si, s j))

• π0 : S → [0, 1] is the initial state probability dis-
tribution1 (i.e.

�
s∈S π0(s) = 1).

As a consequence of the memoryless property of
MPMs, we have that the probability of observing state
changes within a given delay is driven by a negative ex-
ponential distribution. Therefore, given that the system
is in state s at time t, the probability of observing a tran-
sition to state s� within time t� is Pr((s, t) → (s�, t�)) =
P(s, s�) · (1 − e−E(s)·(t�−t)) where E(s) =

�
s��s Q(s, s�) is

the exit rate of state s, and P(s, s�) = Q(s, s�)/E(s) is the
(time-independent) probability of jumping from s to s�.

Since we are interested in assessing how the proba-
bility that an MPM exhibits a given (spatio-temporal)
behaviour changes in function of some model’s param-
eters in the remainder, we refer to the notion of paramet-
ric MPM (pMPM). In practice, we consider as potential
parameters of an MPM the rates of its transitions (i.e.
the entries of the infinitesimal generator matrix) yield-
ing the following notion of pMPM.
Parametric MPM. We say an MPM is parametric, de-
notedMθ = (S ,Qθ, π0) if Q depends on a set of param-
eters θ belonging to a parameter space Θ.

Chemical reaction networks. In the context of this pa-
per, we consider Chemical Reaction Networks (CRNs)
as a formalism for expressing population models. CRNs
use chemical equations to capture the dynamics of pop-
ulation models, and are commonly used for modelling
of biological systems as well as of epidemic spreading
scenarios. Although CRNs are often inherently mapped
on their continuous-deterministic semantics (by means
of which species quantities are given as concentrations
and their dynamics are described by a system of dif-
ferential equations) here we focus on their discrete-
stochastic semantics, by which species quantities are as-
sumed to be given as individual counts (hence the name
population) whose dynamics is described by a Markov
chain. Therefore the definition of CRN we give below is
inherently referred to the discrete-stochastic semantics.

1Whenever ∃so ∈ S : π0(s0) = 1 we useM = (S ,Q, s0) to denote
an MPM.

Definition 2.2 (Chemical Reaction Network). A (para-
metric) chemical reaction network (pCRN) with n
species and m reaction channels is a 4-tuple Nθ =
(Xn,Rm, θ,X0) defined as follows:

• Xn = {X1, . . . , Xn} is a set of species

• Rm = {R1, . . . ,Rm} is a set of reaction channels
where each Rj ( j ∈ {1, . . . ,m}) is characterised by
an equation with the following form:

Rj :
n�

i=1

a−i jXi
k j−→

n�

i=1

a+i jXi

where a−i j, a
+
i j ∈ N are the stoichiometric coef-

ficients of the reaction’s reactants, respectively,
products. Furthermore Rj is characterised by a
pair R j : (ν j, η j) with

– ν j = [ν1 j, . . . , νn j] the change vector,

– η j : Nn × Θ→ R≥0 is the propensity function
of R j.

• θ = [θ1, . . . , θd] is a d-dimensional vector of pa-
rameters affecting the kinetic rate of the reaction
channels, with θ ∈ Θ ⊂ Rd.

• X0 ∈ Nn is the initial state

The dynamics of a CRN is governed by its reactions
channels. Assuming the system is in state X ∈ Nn at
time t ∈ R≥0 reaction Rj : (ν j, η j) may occur, moving
the system to state X� = X + ν j, at time t� > t, with the
delay t�−t which is stochastically dependent on both the
current state X and the actual value of the parameters
θ (as we will see in the MPM semantics of CRNs the
probability distribution of delay t�−t is ∼Exp(η j(X, θ))).
Remark. For the sake of simplicity in our framework
we assume reactions to obey the mass-action law. That
means that the propensity functions are proportional to
the product of the non-null stoichiometric coefficients
of a reaction’s reactants.

Definition 2.3 (pMPM of a CRN). A pMPM model
Mθ = (S ,Qθ, π0) of a CRN Nθ = (Xn,Rm, θ) is defined
as follows:

• S ⊆ NN is a countable set of states whose elements
are vectors X = [X1, . . . , Xn] ∈ S where Xi is the
population of the i-th species.

• Qθ : S × S → R: is the infinitesimal generator
matrix whose entries are defined as:

Qθ(X,Y) =



�
{Rj |X+ν j=Y} η j(X, θ), if X � Y

−�Z�X Q(X,Z), otherwise

3



• π0 : S → [0, 1] is defined as π0(X0) = 1

Notice that by construction, the non-diagonal entries
of Qθ are given by the sum of the propensities of those
reactions whose occurrence leads the CRN to move
from state X to state Y. This is in line with the seman-
tics of Markovian events, according to which the distri-
bution of the minimum between a set of concurrent ex-
ponentially distributed reactions is itself exponentially
distributed with rate given by the sum of the rates of the
racing events.

Example 2.1 (CRN of infection spreading). As a first
example of CRN let us consider the SIR compartmen-
tal model [26], which describes the spread of infectious
disease among a constant population. The CRN for
the SIR is defined as NSIR = ({S , I,R}, {R1,R2}, {ki, kr})
where species S represents the susceptible individuals,
I the infected and R the recovered ones. The system’s
dynamics is given by two reactions channels encoded
by chemical equations (1).

R1 : S + I
ki−→ 2I R2 : I

kr−→ R (1)

Reaction R1 describes the infection step: a susceptible
person meets an infected person and gets infected. Re-
action R2 models the recovering step: infected may be-
come immune from the disease. The parameter vector
of the model is θ = (ki, kr). The CRN of the SIR yields
a finite-state MPM with the following kinds of state-
dependent transitions. For X = (XS ,XI ,XR) a state
such that XS > 0 ∧ XI > 0 two kinds of transitions are
possible, i.e. Qθ((XS ,XI ,XR), (XS−1,XI+1,XR)) = XS ·
XI ·ki and Qθ((XS ,XI ,XR), (XS ,XI−1,XR+1)) = XI ·kr.
For states such that XS =0 ∧ XI >0 only one transition
is possible i.e. Qθ((XS ,XI ,XR), (XS ,XI−1,XR+1)) =
XI · kr, whereas any state such that XI =0 is absorbing.

Paths/Trajectories of an MPM. In order to analyse the
dynamics of MPMs, we need to refer to the notion of
run of an MPM. Intuitively a run is an observation of
the model evolution in time. There are two equivalent
ways of representing a run either as a path [13], i.e. a
sequence of states interleaved by (real-valued) sojourn
times, or as a signal [27], i.e., a function that maps a
time domain T over a domain D (which is dependent
on the set of states of the MPM). In the remainder, we
stick with the notion of path for defining the semantics
of MITL temporal logic, knowing that such definitions
can straightforwardly re-formulated w.r.t. the notion of
signals. Given an MPM modelMθ whose initial state
is s0 ∈S , we denote PathMθ the set of all possible paths
(or trajectories) of the MPM originating in state s0. A

path/trajectory σ ∈ PathMθ is a (possibly infinite) se-

quence σ = s0
t0−→ s1

t1−→ . . .
tn−1−−→ sn . . ., with ti ∈ R>0

being the sojourn-time in state si ∈S . For σ∈PathMθ a
path, i∈N and t ∈R>0, we denote σ[i] = si the (i+1)-th
state of σ, δ(σ, i) = ti the sojourn-time of σ in si, σi

the suffix of σ starting at state σ[i], Tk =
�k

i=0 δ(σ, i)
the sum of the sojourn times up to and including state k,
σ@t the state of σ at time t and σ[t� the t-shifted suf-
fix of σ, i.e. the suffix of σ that starts at time t (hence
requiring the sojourn time of state σ@t to be modified

accordingly). Formally σ[t� = σ[k+1]
t−Tk+1−−−−→ σk where

k is the greatest index such that Tk ≤ t. For example,

for σ = s0
0.25−−−→ s1

0.5−−→ s2
0.15−−−→ s3

1−→ . . . we have
σ[1] = s1, δ(σ, 2) = 0.15, T1 = 0.75, T2 = 0.9 and

σ[0.8� = s2
0.1−−→ s3

1−→ . . . and σ[1.5� = s3
0.4−−→ . . .. No-

tice that trajectories of an MPM are càdlàg (i.e. step)
functions of time. In order to indicate the reaction event
that yielded a transition of the path of a CRN model,

we sometimes adopt the following notation σ= s0
0.25−−−→
R1 j

s1
0.5−−→
R2 j

s2
0.15−−−→
R3 j

s3
1−−→

R4 j
. . ., where Ri j indicates that reac-

tion Rj occurred on the i-th transition of the path.

Probability measure of MPM paths. An MPM inher-
ently induces a measure of probability2 on its paths [13].
For s0, s1, . . . , sk a sequence of states of an MPM M
such that Q(si, si+1) > 0 (0 ≤ i < k) and I0, . . . , Ik−1
a sequence of non-empty time intervals in R≥0, we
let C(s0, I0, s1, . . . , Ik−1, sk) be the cylinder set consist-
ing of all paths σ ∈ PathM such that σ[i] = si

(i ≤ k) and δ(σ, i) ∈ Ii (i < k). Furthermore we let
F (PathM) denote the smallest σ algebra containing all
sets C(s0, I0, s1, . . . , Ik−1, sk). The probability measure
on F (PathM) is then defined by induction w.r.t. k as
follows:

PrM(C(s0, I0, . . . , Ik−1, sk)) =


1, if k = 0
P(sk−1, sk) · (e−E(sk−1)·t − e−E(sk−1)·t� )·
·PrM(C(s0, I0, . . . , Ik−2, sk−1)), otherwise

(2)

where t = in f (Ik−1) and t� = sup(Ik−1). In essence PrM
states that for a CTMC/MPM M the probability of a
path is given by the product of the probability to ob-
serve each constituent transitions si → si+1 with a delay
that falls in the corresponding binding interval Ii. In

2Notice that the notion of probability measure for paths of an
MPM naturally extends to parametric MPMs which we target in the
remainder.

4



terms of vocabulary a measurable subset of trajectories
of PathM may be referred to as an event of M and its
probability is given by PrM. In the realm of probabilis-
tic model checking, temporal logic languages provide
the modeller with a powerful language for characteris-
ing relevant events of an MPM model in terms of formu-
lae (i.e. formal properties). The probability that a tem-
poral logic property ϕ is satisfied by an MPM modelM
is defined in terms of the probability measure PrM (see
Definition 2.4).

Regions of an MPM. In the remainder, we refer to the
notion of region associated with an MPM. A region, re-
spectively a time-bounded region, of an n-dimensional
MPM is any subset of Nn, respectively Nn×R≥0, charac-
terised by a collection of hyper-rectangles of dimension
no larger than n. A region is elementary if it is char-
acterised by a single hyper-rectangle. For example for
a bi-dimensional MPM with state space X = {X1, X2},
R1 ≡ [[1, 2]] × N is an elementary region, with X1
in [[1, 2]] (for n1, n2 ∈ N, with n1 ≤ n2 we denote
[[n1, n2]] the integer valued interval bounded by n1 and
n2) while X2 is unbounded. On the other hand R2 ≡
[[0, 3]] ∪ [[5, 8]] × [[5,∞[[ is a non-elementary region
(X1 is either in [[0, 3]] or [[5, 8]], X2 is larger than 5),
whereas TR1 ≡ ([[1, 2]]×N)× [0.2, 1.41] is an elemen-
tary time-bounded region (similar to R1, but with the
supplemental condition that the time is in [0.2, 1.41]).

2.2. Temporal logic and reachability problems

Temporal logics [28, 29] are formal languages that
state properties about the time evolution of a system and
define algorithms for automatically verifying whether
a system model satisfies a given property. Initially in-
troduced to target the verification of (untimed) non-
probabilistic models through either linear-time reason-
ing [30] or branching-time reasoning [31] they have
then been extended to different domains, including that
of real-time systems (e.g. [32, 27]) as well as that of
probabilistic systems (e.g. [33, 12, 13, 34]). In tempo-
ral logic reasoning, the term reachability problem iden-
tifies the class of problems consisting in establishing
whether a given model reaches (i.e., enters) at some
point during its execution a specific region of its state-
space usually associated with some state condition ϕ.
If the considered model inherently quantifies the elaps-
ing time (like MPMs), then one may also consider time-
bounded reachability for which the focus is on estab-
lishing whether the target region of the state-space is
entered within a time-interval [t1, t2] ⊂ R≥0. Temporal
logic formalisms are equipped with operators for ex-
pressing reachability problems. In the context of this

paper, we refer to a linear-time temporal logic such as
the Metric Interval Temporal Logic (MITL [27]), which
allows for stating time-bounded reachability problems
for MPM models by combining state-conditions (ex-
pressed through inequalities on state variables) with
time-bounded temporal operators.

MITL syntax. MITL formulae are terms of the follow-
ing grammar:

ϕ ::= � | µ | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 U[t1,t2] ϕ2

where � stands for the true formula, µ denotes an
atomic proposition (i.e. an inequality built on top of
model’s state-variables), ¬ and ∧ are the basic negation
and conjunction connectives of propositional logic and
U[t1,t2] is the time-bounded until temporal operator with
[t1, t2] ⊆ R≥0 being the bounding interval.

The truth of an MITL formula is defined w.r.t. to
a path σ (i.e. a function of time) issued by an MPM
model. Formally it is expressed through a so-called sat-
isfaction relationship, denoted |=. For σ a path of the
MPMMθ, σ |= ϕ reads: path σ satisfies ϕ.

MITL semantics for temporal formulae. For σ ∈
PathMθ a path of MPM model Mθ, t ∈ R≥0 a time in-
stant the satisfaction relation |= of MITL temporal for-
mula is defined as follows:

σ[t� |= � ⇔ true
σ[t� |= µ ⇔ σ@t |= µ
σ[t� |= ¬ϕ ⇔ σ[t� |=�|= ϕ
σ[t� |= ϕ1 ∧ ϕ2 ⇔ σ[t� |= ϕ1 and σ[t� |= ϕ2
σ[t� |= ϕ1U[t1,t2]ϕ2 ⇔ ∃t� ∈ [t+t1, t+t2] :

σ[t�� |=ϕ2 ∧ ∀t�� ∈ [t, t�],
σ[t��� |=ϕ1

Intuitively MITL semantics states that an atomic
proposition µ is satisfied by a path σ as of time t if the
state condition µ is satisfied in the state in which σ is at
time t (σ@t |= µ). On the other hand, a time-bounded
until formula ϕ1 U[t1,t2] ϕ2 is satisfied by σ as of time t if
and only if ϕ2 is satisfied by σ as of a future time instant
t� which is no further than the time-bounding interval,
(i.e. t� ∈ [t+ t1, t+ t2]) while ϕ1 is sustainedly satisfied
beforehand (i.e. ∀t�� ∈ [t, t�]). As usual, we consider
two derivations of the time-bounded until operator: the
time-bounded eventuality F[t1,t2]ϕ ≡ � U[t1,t2]ϕ, which
stands for “at some point within [t1, t2] ϕ is satisfied”
and the time-bounded globally G[t1,t2]ϕ ≡ ¬F[t1,t2]¬ϕ
which stands for “ϕ is always satisfied within [t1, t2]”.
In the remainder we assume that a path σ ∈ PathMθ sat-
isfies an MITL formula ϕ, denoted σ |= ϕ, if it does so
starting from t = 0, i.e. σ |= ϕ ⇐⇒ σ[0�ϕ. Further-
more, we restrict our focus to the non-nested fragment

5



of MITL, i.e., we consider only formulae such that the
operands of a temporal modality are Boolean combina-
tions of atomic propositions µ. While bearing a definite
limitation in terms of expressiveness, this constraint still
allows us to treat the most common reachability prob-
lems.

MITL formulae and MPM regions. MITL proposi-
tional formulae induce untimed regions over the state
space of an MPM. For example, for a bi-dimensional
MPM the formula µ1 ≡ x1 ≥ 1 ∧ x1 ≤ 2 induces
the region R1 ≡ [[1, 2]] × N while µ2 ≡ [(x1 ≤
3) ∨ (x1 ≥ 5 ∧ x1 ≤ 8)] ∧ x2 > 4 induces the region
R2 ≡ [[0, 3]] ∪ [5, 8] × [[5,∞[. By a slight abuse of vo-
cabulary, we say that two formulae µ1, µ2 are disjoint
if their corresponding regions are. In the remainder,
we assume regions are characterised by MITL propo-
sitional formulae in disjunctive normal form (DNF).

Model checking MPMs. In the context of this pa-
per, we consider the verification of MITL formu-
lae against probabilistic models, and more specifically
against MPMs. Generally speaking probabilistic model
checking boils down to assessing with what probabil-
ity a (temporal logic) formula ϕ is satisfied by a proba-
bilistic modelMθ, which we refer to as the satisfaction
probability of ϕ againstMθ, denoted Pr(ϕ |Mθ). Intu-
itively the satisfaction probability Pr(ϕ |Mθ) is given by
the probability measure of the set of paths that satisfy ϕ,
as stated in the following definition.

Definition 2.4 (Satisfaction probability of an MPM).
For Mθ an MPM and ϕ an MITL formula, the satis-
faction probability of ϕ w.r.t.Mθ is defined as:

Pr(ϕ|Mθ) = PrMθ ({(σ, 0) |= ϕ,σ∈PathMθ })
where PrMθ is the probability measure (2) induced by
Mθ over PathMθ .

Pr(ϕ|Mθ) may be assessed either exactly through nu-
merical model checkers [35, 36] (although these are af-
fected by the state-space explosion problem, hence they
are limited to models of reasonable size) or being es-
timated through statistical model checkers [37, 38, 39,
40] (through which the estimates of Pr(ϕ|Mθ) are ob-
tained by statistical inference based on trajectory sam-
ples of arbitrary size).

Parametric model checking of MPMs. If model
checking of MPMs is concerned with evaluating what is
the probability that a property ϕ is satisfied by a model
Mθ, that corresponds to parameters value θ ∈ Θ ⊆ Rd,
in many realistic applications, it is crucial to be able to
investigate how the satisfaction probability of ϕ changes

with the model’s parameters. Indeed, parametric model
checking [22] is concerned with evaluating the so-called
satisfaction function of a formula ϕ w.r.t. the domain of
a model’s parameters.

Definition 2.5 (Satisfaction probability function). Let
(Mθ)θ∈Θ be a parametric MPM. The function:

fϕ : Θ→ [0, 1]
θ → Pr(ϕ|Mθ)

is called the satisfaction probability function.

The satisfaction probability function expresses how
the satisfaction probability of ϕ changes with the
parameters.

An automata-based framework for estimating fϕ.
Our goal is to introduce a framework aimed at statis-
tically estimating fϕ. Since we opt for an (adaptation of
the) Approximation Bayesian Computation approach,
the estimation of fϕ relies on the capability to measure
(on-the-fly) how distant a model’s trace σ (issued by
stochastic simulation) is from satisfying an MITL for-
mula ϕ, which we denote d(σ,ϕ) (see Definition 3.1).
Although algorithms for assessing d(σ,ϕ) could be,
in principle, conceived based on the MITL syntax di-
rectly (as it is the case with, e.g. methods for assess-
ing the robustness of a formula against real-valued sig-
nals [41, 27]), in our framework we opted to rely on an
automata-based formalism: given a (non-nested) reach-
ability formula ϕ, we define a linear hybrid automa-
ton Aϕ that when synchronised with a trace σ is ca-
pable of measuring d(σ,ϕ). The benefit of such an ap-
proach is that, based on the operational semantics of the
Hybrid Automata Specification Language (HASL) [42],
we can straightforwardly assess d(σ,ϕ) simply by re-
producing the simulation of the synchronised product
process Mθ × Aϕ. Furthermore, by relying on linear
hybrid automata, our framework is suitable to be in-
tegrated within the COSMOS statistical model check-
ing platform [43] (although the experiments presented
in this paper have been obtained through a standalone
prototype developed on purpose for this paper).

2.3. Hybrid Automata Specification Language

The distance automata we introduce as part of our
framework for estimating fθ rely on the HASL [42]
formalism. HASL statistical model checking is based
on the idea of employing a linear hybrid automaton
(LHA) A as a monitor that filters trajectories issued by

6



a discrete-state stochastic process3 Mθ, while collect-
ing relevant statistics in the process. To this aim, HASL
defines a procedure for simulating the (synchronised)
product process Mθ × A whose trajectories are deter-
mined by two kinds of events: synchronised events, that
correspond to the occurrence of a transition inMθ that
drags along a synchronising one inA, and autonomous
events, that happen autonomously in A (i.e. without a
change of state in Mθ) as soon as a certain (e.g. state
or time) condition is satisfied in the current state of
Mθ × A. In the following, we give a short overview
of the HASL formalism, referring the reader to [42] for
an exhaustive treatment.

2.3.1. Hybrid Automata for monitoring of trajectories
An LHA for HASL is an automaton that has access

to certain elements of modelMθ, namely the events and
the state-variable ofMθ. Formally, an LHA is defined
as an n-tuple:

A = �E, L,Λ, Init,Final, X, flow,→�

where: E is a finite alphabet of events (the events of
Mθ that drive the synchronisation, in the context of this
paper E inherently corresponds with Rm the set of reac-
tions of a CRN); L is a finite set of locations; Λ : L →
Prop, a location invariant function (Prop being the set
of atomic propositions built on top of variables X); Init
is a subset of L called the initial locations; Final is a
subset of L called the final locations; X = (x1, ...xn) an
n-tuple of data variables; flow : L �→ Indn is a function
that gives, for each location, the rate at which variable
xi evolves (where the rate for variable xi is given by an
indicator function that depends on the state of the model
Mθ); →⊆ L×

�
(2E × Const) � ({�} × lConst)

�
×Up× L,

a set of edges, where for an edge (l, γ, E�,U, l�) ∈→,

denoted l
E�,γ,U−−−−−→ l� in the remainder, we have that E�

is either a subset of events E� ⊆ E or E� = � where
� denotes the autonomous event (i.e. an event trig-
gered by the LHA hence not corresponding to any event
of E) with Const the set of constraints, whose ele-
ments are Boolean combinations of inequalities of the
form

�
1≤i≤n αi xi + c ≺ 0 where αi and c are constants,

≺∈ {=, <, >,≤,≥}, whereas lConst is the set of left-
closed constraints, and U= (u1, ..., un)∈U p is an n-tuple
of functions characterising how each LHA variable xk is

3The class of stochastic processes targeted by HASL includes but
is not limited to MPMs as no restrictions are assumed on the nature of
the probability distribution associated with events. Therefore, memo-
rylessness is not a necessary condition.

going to be updated on traversal of the edge4.
Selection of a model’s trajectory with an automaton

A is achieved through synchronisation of Mθ with A
(see below), i.e. by letting A synchronise its transi-
tions with the transitions of the trajectory σ being sam-
pled. To this aim, an LHA admits two kinds of transi-
tions: synchronising transitions (associated with a sub-
set E ⊆ Σ of event names, with ALL denoting Σ), which
may be traversed when an event (in E) is observed on σ
(for example a reaction occurs), and autonomous transi-
tions (denoted by �) which are traversed autonomously
(and have priority over synchronised transitions), on
given conditions, typically to update relevant statistics
or terminate (accept) the analysis of σ. Since automata-
based formalisms are at least as expressive as temporal
logic based on classical temporal modalities (see [44]),
in the remainder we denote Aϕ the HASL automaton
equivalent to an MITL formula ϕ (i.e. Aϕ accepts a tra-
jectory σ of an MPM modelMθ if and only if σ |= ϕ).

Determinism constraints. An LHA for HASL must
ensure that the synchronisation of an arbitrary trajectory
σ∈PathMθ is finite and unique, hence ruling out possi-
ble Zeno-like divergences as well as non-determinism.
To this aim an LHA for HASL must comply with
the following constraints: c1 (initial determinism): at
most one initial location l ∈ I can have its invariant
Λ(l) verified ( ∀l � l� ∈ I, Λ(l) ∧ Λ(l�) ⇔ false); c2
(determinism on events): synchronisation of A w.r.t.
an arbitrary event e must be deterministic (∀E1, E2 ⊆ E

: E1∩E2 � ∅, ∀l, l�, l�� ∈ L, if l��
E1,γ,U−−−−−→ l and l��

E2,γ
�,U�

−−−−−−→ l�

then either Λ(l) ∧ Λ(l�) ⇔ false or γ ∧ γ� ⇔ false.); c3
(Determinism on �:): at most one autonomous transi-

tion can ever be enabled (∀l, l�, l�� ∈ L, if l��
�,γ,U−−−−→ l

and l��
�,γ�,U�
−−−−−→ l� then either Λ(l) ∧ Λ(l�) ⇔ false or

γ ∧ γ� ⇔ false); c4 (absence of �-labelled loops:) A
cannot contain a loop of autonomous transitions (i.e. for

all sequences l0
E0,γ0,U0−−−−−−→ l1

E1,γ1,U1−−−−−−→ · · · En−1,γn−1,Un−1−−−−−−−−−−→ ln
such that l0 = ln, there exists i ≤ n such that Ei � �).
The LHA automata we define as part of our framework
(Section 3.2) fulfil the above described constraints.

2.3.2. Synchronised product processMθ ×A
For the sake of brevity here, we provide only an intu-

itive description of the product process Mθ×A whose

4Each function uk (1 ≤ k ≤ n) of an edge update U = (u1, ..., un) ∈
U p is of the form xk =

�
1≤i≤n αi xi+c where the αi and c are indicators

of the MPM.

7



operational semantics is formally defined in [42]. The
states ofMθ×A are triples (s, l, ν)∈ (S × L× Val)� {⊥}
where s is the current state of theMθ, l the current lo-
cation of the A, ν : X → R the current valuation of
the variables of A and ⊥ denotes the rejecting state,
i.e., the state entered when synchronisation fails, hence
when a trajectory is rejected. Notice that a configuration
of Mθ × A has the following form ((s, l, ν), τ, sched�),
where (s, l, ν) is the current state of Mθ × A, τ ∈ R+

is the current time, and sched� is the schedule of the
enabled events ofMθ × A. The synchronisation starts
from the initial state (s, l, ν), where s is a possible initial
state ofMθ (i.e. π0(s) > 0), l is an initial location of the
LHA (i.e. l ∈ Init) and the LHA variables are all set to
zero (i.e. ν = 0)5. From the initial state, the synchro-
nisation process evolves through transitions where each
transition corresponds to traversal of either a synchro-
nised or an autonomous edge of the LHA6. Furthermore,
if an autonomous and a synchronised edge are concur-
rently enabled, the autonomous transition is taken first.
Assuming (s, l, ν) is the current state ofMθ×A, let us
describe how the synchronisation evolves. If in the cur-
rent location l of the LHA there exists an enabled au-
tonomous edge l

�,γ,U−−−−→ l�, then that edge will be tra-
versed leading to a new state (s, l�, ν�) where the state
of Mθ (i.e. s) is unchanged whereas the new location
l� and the new variables’ valuation ν� might differ from
l, respectively ν, as a consequence of the edge traversal.
On the other hand, if an event e ofMθ (corresponding
to transition s

e−→ s�) occurs in state (s, l, ν), either an en-

abled synchronous edge l
E�,γ,U−−−−−→ l� (with e ∈ E�) exists

leading to new state (s�, l�, ν�) of processMθ×A (from
which synchronisation will continue) or the synchroni-
sation halts hence the trace is rejected (formally this is
achieved with the system entering the rejecting state ⊥).

Example 2.2 (LHA for the SIR model). Figure 1 de-
picts a two-locations LHA (center) for time-bounded
measures (over the time interval [0, T ], T being a con-
stant) of the SIR model (left). The LHA has locations
L = {l0, l1} (with l0 the initial location, l1 the final lo-
cation), variables X = {t, x1, n2} with t a clock variable,
x1 a real-valued variable (for measuring the average
population of infected individuals I) and n2 an integer

5Notice that because of the ”initial determinism” of LHA, there
can be at most one initial state for the product process.

6Notice that because of the determinism constraints of the LHA
edges (conditions c2 and c3), at most only one autonomous or syn-
chronised edge can ever be enabled in any location of the LHA.

variable (for counting the number of occurrences of the
R2 reaction). While in l0, t changes with flow 1 (i.e.
as t is a clock) while x1 flow is given by XI (i.e. the
population of I, hence x1 measures the integral of the
population I while in l0). The synchronisation with a
path σ (i.e. with its I-projection denoted σI ) of the SIR
model is as follows. At time t = 0, the LHA starts in l0
and stays there up to t = T. As soon as t = T, the syn-
chronisation with σ ends as the autonomous transition
l0
�,t=T,{x1/=T }−−−−−−−−−−→ l1 becomes enabled hence is fired (by def-

inition, autonomous transitions have priority over syn-
chronised transitions in HASL). As long as t < T the
LHA is in l0 where it synchronises with the occurrences
of the SIR reactions: on the occurrence of R2, transition

l0
{R2},t<T,{n2++}−−−−−−−−−−−→ l0 (which is synchronised on event set

{R2}) is fired hence increasing the counter n2, whereas
on the occurrence of any other reaction (i.e. R1 in this

case), transition l0
ALL\{R2},t<T,∅−−−−−−−−−−−→ l0 (which is synchro-

nised on event set ALL \ {R2}, where ALL stands for the
reactions set Rm of the considered CRN) fires without
updating any variable. Finally, on ending the synchro-
nisation with σ (when t = T), variable x1 is updated
to x1/T which corresponds to the average population of
I observed over the time interval [0, T ]. Figure 1 (bot-
tom) includes an example of a path σ of the SIR model
(σI being the I-projection of σ) and the corresponding
synchronisation with the LHA (denoted σI ×A) assum-
ing T = 4 as time-bound of the synchronisation. Notice
that the states of σI × A are denoted (sI , l, [t, x1, n2])
with sI the I-projection of the current state ofMθ, l the
current location of A and [t, x1, n2] ∈ R3 the values of
the variables ofA.

2.4. The ABC method

Given a parametric modelMθ and an MITL (reach-
ability) formula ϕ, our goal is to estimate the satisfac-
tion probability function fθ, i.e. the function that char-
acterises how the probability that ϕ is satisfied by Mθ
varies w.r.t. the parameter θ ∈ Θ. To this aim, we rely
upon the class of Bayesian inference methods known
as Approximate Bayesian Computation (ABC). Gener-
ally speaking, statistical inference is interested in in-
ferring properties of an underlying probability distribu-
tion based on some data observed through an exper-
iment yexp. Bayesian inference methods rely on the
Bayesian interpretation of probability. Starting from
some prior distribution π(.), which expresses an initial
belief on the distribution over the parameters domain
Θ, Bayesian methods estimate the posterior distribution

8



R1 : S + I
ki−→ 2I

R2 : I
kr−→ R

l0
ṫ : 1

ẋ1 : XI

l1
�,t = 4,{x1/=T }

{R2},t < T ,{n2 + +}

ALL \ {R2},t < T ,∅
0 1 2 3 4

0

1

2

3

4

5

6

7

8

9

10

time

X
I
(I
n
fe
ct
ed
)

σI

x1=
�

XIdT

σI : (1)
0.5−−→
R1

(2)
1.5−−→
R1

(3)
1−−→

R2
(2)

0.5−−→
R2

(2)
1.5−−→ · · ·

σI ×A : (1, l0, [0, 0, 0])
0.5−−→
R1

(2, l0, [0.5, 0.5, 0])
1.5−−→
R1

(3, l0, [2, 3.5, 0])
1−−→

R2
(2, l0, [3, 6.5, 1])

0.5−−→
R2

(1, l0, [3.5, 7.5, 2])
0.5−−→
�

(1, l1, [4, 8/4, 2])

Figure 1: An LHA (center) for assessing the average of the population of infected individuals (i.e. XI ) over time-interval [0,T ] for the SIR
model (left). Plots (right) show the projection (blue plot) σI (w.r.t. species I) of a possible trajectory σ issued by the SIR model (blue plot) and
the corresponding evolution (red plot) of the LHA variable x1 (that stores the integral of the population of I i.e. ẋ1 = XI ) resulting when σI is
synchronised with the LHA. Notice that on ending the measurement (i.e. at time = T ), the LHA set x1 = x1/T , which is indeed the average
population of I over [0, T ].

π(θ|yexp) over Θ based on the observed data yexp. For-
mally, the posterior distribution is defined by:

π(θ|yexp) =
p(yexp|θ)π(θ)�

θ� p(yexp|θ�)π(θ�) dθ�

where p(y|θ) denotes the likelihood function, that is, the
function that measures how probable y is to be observed
given the model’s parameters θ.
An inherent drawback of Bayesian statistics is in that,
by definition, the posterior distribution relies on the ac-
cessibility to the likelihood function p(yexp|θ), which,
particularly for complex models, may be too expensive
to compute or even intractable. ABC algorithms have
been introduced to tackle this issue, i.e. as a likelihood-
free alternative to classical Bayesian methods (we refer
to [45, 46] for exhaustive surveys of ABC or rejection-
sampling methods).
Simple ABC method. The basic idea behind the ABC
method is to obtain an approximate estimate, denoted
πABC,� , of the posterior distribution π(θ|yexp), in the form
of a number of parameter samples θi drawn from the
ABC posterior distribution. This is achieved through an
iterative procedure (Algorithm 1) by which, at each it-
eration, we start off by drawing a parameter vector θ�

from a prior, i.e. θ� ∼ π(.) , we simulate the model
M�
θ, and we accept parameter θ if the corresponding

simulation y� is “close enough” to the observations ac-
cording to a chosen threshold �. Notice that in Algo-

Algorithm 1 Simple ABC
Require: N: number of particles, yexp observations, tolerance
�, distance ρ, summary statistics η

Ensure: (θi)1≤i≤N drawn from πABC,�

for i = 1 : N do
repeat
θ� ∼ π(.)
y� ∼ p(.|θ�)

until ρ(η(y�), η(yexp)) ≤ �
θi ← θ�
yi ← y�

end for

rithm 1, η : Y → S ⊂ Rk1 represents summary statis-
tics7 computed on the observations yexp and on the sim-
ulated trace y�, while ρ : S × S → R+ is a distance
in the space of summary statistics. The accepted pa-
rameters θi together with the corresponding traces y�i
give samples (θi, yi) drawn from the joint distribution:
πABC,�(θ, y|yexp) ∝ 1A�,yexp

(y)p(y|θ)π(θ) where A�,yexp =

{y�/1ρ(η(y�),η(yexp))≤�} (with 1ρ(η(y�),η(yexp))≤� denoting the in-
dicator function representing the set of traces whose dis-
tance from yexp is within the tolerance �). πABC,� approx-
imates the posterior distribution: the smaller the � , the
closer the simulations yi are to the observations yexp, so

7The choice of summary statistics is a crucial point in ABC (see
for example [47]).

9



the better the approximation.
The ABC-SMC method. The chosen value of � is cru-
cial for the performance of the simple ABC algorithm:
a small � is needed to achieve a good approximation.
However, this may result in a high rejection rate leading
to cumbersome computations. To overcome this issue,
the more elaborate algorithm known as ABC Sequential
Monte Carlo (ABC-SMC), has been proposed [48]. It is
an SMC based approach [49] through which a popula-
tion of N particles is iteratively sampled with increasing
accuracy until the targeted level of accuracy �M is ob-
tained. At the first iteration, the particles are initialised
through the simple ABC algorithm using a large enough
�1 to limit the computation cost. �1 possibly equals in-
finity, which is equivalent to only sampling from the
prior distribution. Then, at each step i, i = 2, . . . ,M,
the particles are moved by a transition kernel K(.|.) (for
example, a Gaussian one [49]) until they match the next
level, tighter, approximation constraint �i. At iteration
M, we finally get N particles that fulfil the desired ap-
proximation �M . Some ad-hoc strategies are proposed
to find a proper sequence (�i)1≤i≤M ensuring an efficient
convergence towards the posterior distribution.

Algorithm 2 ABC Sequential Monte Carlo
Require: N : number of particles, yexp, (�i)1≤i≤M , ρ, η
Ensure: (ω j)1≤ j≤N , (θ j)1≤ j≤N weighted samples drawn from
πABC,�M
Iteration i = 1 : find (θ(1)

j )1≤ j≤N with algorithm simple ABC
ω j ← 1

N
for i = 2 : M do

for j = 1 : N do
repeat

Take θ
�
j from (θ(i−1)

j )1≤ j≤N with prob. (ω j)1≤ j≤N

θ(i)j ∼ K(.|θ�j)
y� ∼ p(.|θ(i)j )

until ρ(η(y�), η(yexp)) ≤ �i
ω j ←

π
�
θ

(i)
j

�

N
Σ

j�=1
ω

(i−1)
j� K(θ(i)j |θ

(i−1)
j� )

end for
Normalize (ω j) j

end for

A basic point about ABC algorithms is that, by def-
inition, they all rely on a notion of distance (between
the simulations y� and observations yexp). Based on
this characteristic, in Section 3, we introduce an HASL-
based adaptation of the ABC scheme to estimate the sat-
isfaction probability function fθ. In essence, we plug a
distance automaton in the ABC procedure and use it as
machinery to assess how far trajectories issued by an
MPM model with parameter θ are from satisfying an

MITL formula ϕ. Furthermore, as we will demonstrate,
distance automata yield a null distance for any simu-
lation that satisfy the considered formula ϕ. With the
HASL-based extension of ABC, we are going to esti-
mate the ABC-posterior using a zero tolerance, i.e. with
� = 0.

2.5. Kernel density estimation
ABC methods only deliver samples (θi)i drawn from

the ABC posterior distribution. However, our goal is to
approximate a continuous (density) function (related to
fθ). Therefore, we resort to kernel density estimation
(KDE) [50], [51].

The goal of KDE is to derive an approximation �π of
an unknown probability density function π given a finite
number of samples ((θi)i in our case) of a random vari-
able. The approximation�π is obtained by the sum of the
application of some kernel function K to the samples.
A kernel function is a continuous function. Its applica-
tion to a sample captures the contribution, in terms of
probability mass, brought by the sample to the density
π to be estimated (i.e. essentially, a kernel is a manner
to weight data samples).

Definition 2.6 (Kernel function). A function K : R →
R≥0 is a kernel function if:

1.
�

R
K(u)du = 1

2. ∀u ∈ R,K(u) = K(−u)

Based on kernel functions, one can define a kernel
density estimator [50].

Definition 2.7 (Kernel density estimator). Let
θ(1), . . . , θ(N) be N i.i.d samples from an unknown
density π on Θ. The kernel density estimator �π
associated with a kernel function K on X is:

∀θ ∈ Θ,�πh(θ) =
1
N

N�

i=1

Kh(θ, θ(i))

Kh is a rescaled function based on kernel K. The
scale factor h is called the bandwidth parameter. h is
either a scalar, a vector or a matrix, depending on the
dimension of Θ and the choice of Kh.

With this estimator, each sample contributes to the
probability mass over the whole setΘ, with the idea that
the further we are from the observation, the lower the
probability is.

Several choices for the kernel function and the cal-
ibration method of the bandwidth are available [50],
[51]. In our work, we select the bandwidth by minimis-
ing the Least Squares Cross-Validation criterion, and

10



use Gaussian and Beta kernels [52] with the multivariate
estimator of [53]. In Section 3.4 we introduce an adap-
tation of the KDE approach to our goal, that is, given
the samples θi issued by the Automaton-ABC method,
we adapt KDE for approximating the satisfaction prob-
ability function fθ.

3. Methods

We introduce an ABC-based methodology to ap-
proximate the satisfaction function (Definition 2.5) of
a time-bounded reachability MITL formula ϕ w.r.t. a
parametric MPM model Mθ. Our methodology con-
sists of four aspects: i) the formalisation of the no-
tion of distance of a model’s path from a reachability
region (i.e. a time-bounded MPM region related to a
time-bounded reachability problem), ii) the introduction
of the corresponding HASL specifications to measure
such distance, iii) the definition of a novel ABC method
adapted to reachability problems, i.e. an ABC algorithm
in which the convergence is driven by the distance from
a reachability region, and, finally, iv) the derivation of
the normalisation constant through which the satisfac-
tion function is obtained from the ABC posterior den-
sity.

3.1. Satisfiability distances for reachability problems
ABC algorithms (Algorithm 1 and Algorithm 2) al-

low one to explore a model’s parameter space through
an iterative procedure whose convergence is based on a
notion of distance (of a model’s path from some obser-
vations). In order to adapt them to reachability prob-
lems, we introduce the notion of satisfiability distance
(named simply distance in the remainder) of a model’s
pathσw.r.t. a reachability property ϕ. The distance ofσ
from ϕ should be defined so to comply with the follow-
ing guidelines: i) it should express how “far” σ is from
satisfying ϕ (i.e. the farther σ is from satisfying ϕ the
largest the distance), ii) it should evaluate to zero when-
ever σ |= ϕ and iii) it should favour the convergence of
the ABC algorithm. We point out that the step-function
nature of the paths of MPMs8 induces some peculiarities
on the characterisation of such a distance, particularly
w.r.t. the convergence of the ABC scheme (see details
below). Furthermore, we stress that the notion of satisfi-
ability distance we need to introduce is strictly related to
that of time-bounded satisfiability regions (Section 2.1),
i.e. the part of the space-time domain the satisfiability
of the considered formula depends upon.

8i.e an MPM path consists of a sequence of jumps

Based on MITL formulae, we distinguish three kinds
of reachability problems: eventual reachability prob-
lems (FIµ) are concerned with paths entering a region
µ within a given time interval I= [t1, t2], global reacha-
bility problems (GIµ) are concerned with paths never
leaving a region µ within a time interval I, and con-
ditional reachability problems (µ1UIµ2) are concerned
with paths entering a region µ2 within a time inter-
val I and without ever leaving a region µ1 beforehand.
F[t1,t2]µ and G[t1,t2]µ formulae induce a simple time-
bounded satisfiability region which we denote S [t1,t2]

µ in
the remainder, i.e. S [t1,t2]

µ = S µ × [t1, t2], where S µ is
the set of states where µ is satisfied, whereas µ1U[t1,t2]µ2
formulae induce a compound satisfiability region given
by S [0,t1]

µ1 ∪ S [t1,t2]
µ2 ∪ S [t1,t2]

µ1

Based on the notion of satisfiability region associated
with a propositional formula µ, we introduce the notion
of satisfiability distance of a path from a satisfiability
region. Such a satisfiability region is associated with
different types of temporal formulae built on top of µ.

Definition 3.1 (Satisfiability distance). Given a path
σ∈PathM of a n-dimensional MPMM with state space
S ⊆ Nn, a closed time-bounding interval [t1, t2] ⊂ R≥0,
an elementary propositional formula µ, we define the
distance d(σ,ϕ) from the satisfiability region for the
following kinds of temporal formulae built on top of µ:

1) ϕ≡F[t1,t2]µ

d(σ,F[t1,t2]µ) =

=



de((σ@tl(t2), tl(t2)), S [t1,t2]
µ )

if tl(t2) < t1 ∧ σ@tl(t2) �|= µ
min
�
de((σ@tl(t1), tl(t1)), S [t1,t2]

µ ),

min
t∈[t1,t2]

(de((σ@t, t), S [t1,t2]
µ ))

�

otherwise
(3)

where tl(t∗) = min{t ∈ [0, t∗] : ∀t� ∈ [t, t∗],σ@t� =
σ@t} is the time instant of the last jump oc-
curred on σ before t∗ and de((s, t), S 1 × T1) =

min
t�∈T1,s�∈S 1

�
(t − t�)2 +

�n
i=1(s[i] − s�[i])2 denotes the eu-

clidean distance of a point (s, t) ∈ S × R≥0 from the
closest point of a time-bounded region S 1 × T1.

For non-elementary propositional formulae µ ≡ � µi,
we define the distance:

d(σ,F[t1,t2]
�
µi) = min

i
d(σ,F[t1,t2]µi)

where µi are elementary formulae.

11



2) ϕ≡G[t1,t2]µ

d(σ,G[t1,t2]µ) =
� t2

t1
de(σ@t, S µ)dt (4)

where de(s, S 1) = min
s�∈S 1

��n
i=1(s[i] − s�[i])2 denotes the

euclidean distance of a point s∈ S from the closest state
of a state space subset S 1 ⊆ S ⊆ Nn. d(σ,G[t1,t2]µ) is
the integral of the Euclidean distance from S µ of any
point of σ that occurs within [t1, t2],

Similarly, for non-elementary propositional formu-
lae, we define the distance

d(σ,G[t1,t2]
�
µi) = min

i
d(σ,G[t1,t2]µi)

where µi are elementary formulae.

3) ϕ≡µ1U[t1,t2]µ2

d(σ, µ1U[t1,t2]µ2) =d(σ,G[0,t1[µ1) + d(σ,F[t1,t2]µ2)+
d(σ,G[t1,tmin](µ1 ∨ µ2))

(5)

where tmin = min(arg min
t∈[t1,t2]

de(σ@t, S µ2 )) is the earliest

time corresponding to the closest point between σ and
region µ2.

Remark 3.1 (Null distance). In agreement with the se-
mantics of the temporal modalities, the distance (3) of
an MPM path σ from a F[t1,t2]µ, formula is 0 if and only
if σ has at least one point traversing region S [t1,t2]

µ (e.g.
Figure 2a), while the distance (4) from a G[t1,t2]µ for-
mula is 0 if and only if within t ∈ [t1, t2] all points σ@t
fall in S [t1,t2]

µ (Figure 2b), and finally the distance (5)
from a µ1U[t1,t2]µ2 formula is 0 if and only if there exists
t� ∈ [t1, t2] such that σ@t� is in S [t1,t2]

µ2 while is consis-
tently in S [0,t�]

µ1 beforehand (Figure 2c).

Remark 3.2 (Positive distance). Conversely, dis-
tance (3) of σ from F[t1,t2]µ yields a positive value,
given by minimal Euclidian distance between σ and
S [t1,t2]
µ , wheneverσ contains jumps in [t1, t2] (Figure 2d),

whereas distance (4) of σ from G[t1,t2]µ yields a posi-
tive value, corresponding with the volume of the hyper-
rectangle delimited by the segments of σ that (within
[t1, t2]) lie outside S [t1,t2]

µ (Figure 2e). Finally, for an
Until formula µ1U[t1,t2]µ2, we observe that distance (5)
bears 3 components: d(σ,G[0,t1[µ1) which accounts for
the fact that a path satisfying (µ1U[t1,t2]µ2) must never
leave region µ1 before t1, d(σ,F[t1,t2]µ2) that accounts

for the fact that σ must enter region µ2 within [t1, t2]
and d(σ,G[t1,t�](µ1 ∨ µ2)) that accounts for the fact that
there must be a time t� where σ switch from region µ1
to region µ2 directly, i.e. without spending time in any
intermediate region: if that is not the case (i.e. if σ
within [t1, t2] has points in the complementary region
¬(µ1 ∨ µ2)) then (5) yields a positive value given which
accounts for the sum of the minimal distances of each
such point from either regions µ1 or µ2 (see plot in Fig-
ure 2f).

Remark 3.3 (ABC convergence aspects). In order to
be employed in ABC frameworks, satisfiability distances
shall account for the convergence of the ABC algo-
rithms, in the first place by ensuring that each path
is ranked with an as large a value of distance as the
path is further from satisfying the considered formula,
which, indeed (3), (4) and (5) do. Experimental evi-
dence showed that the convergence of ABC algorithms
for eventual formulae F[t1,t2]µ is affected by a peculiar
aspect of a model’s path σ, that is, the presence/lack of
jumps within the bounding interval [t1, t2]. Specifically
if, within [t1, t2], σ does not contain any jump (and lies
outside region S [t1,t2]

µ ) then it is more convenient (from a
convergence standpoint) that the distance d(σ,F[t1,t2]µ),
i.e. (3), is set to the Euclidian distance between region
S [t1,t2]
µ and the point entered at the last jump occurred

before entering [t1, t2] even if within [t1, t2] the path is
actually closer to S [t1,t2]

µ (e.g. Figure 3a). Such an as-
pect ensures that the ABC-driven parameter search is
not mislead by anomalous situations such as, e.g. pa-
rameters θ ∈ Θ that yield a modelMθ for which there
is a non-null probability of reaching an absorbing state
before t1. On the other hand, if σ contains jumps in
[t1, t2], then it is more convenient that d(σ,F[t1,t2]µ) is set
to the Euclidian distance of the closest point amongst
the point corresponding to the last jump before t1 and
those corresponding to jumps occurring in [t1, t2] (e.g.
Figure 3c).

Below we prove that the satisfiability distances for F,
G and U formulae are sound w.r.t. the second criteria
listed above, that is: if a pathσ satisfies a formula ϕ then
the distance is d(σ,ϕ) = 0. We start off by proving such
property for F and G formulae concerning elementary
regions, we then extend the proof to F and G concern-
ing non-elementary regions and finally, based on results
proved for F and G, we extend the prove also to U for-
mulae.

Lemma 3.1 (Soundness elementary F). For σ∈PathM
a path of an MPMM and µ an MITL proposition cor-

12



distance = 0 distance > 0

t1 t2

σ

µ

t1 t2

σ µ

t1 t2

σ

t0

µ1

µ2

t1 t2σ

µ

t1 t2

σ
µ

σ3
µ1

t1 t2t0

µ2

F[t1,t2]µ G[t1,t2]µ µ1U[t1,t2]µ2 F[t1,t2]µ G[t1,t2]µ µ1U[t1,t2]µ2

(a) (b) (c) (d) (e) (f)

Figure 2: Examples of paths with zero-distance (left) and positive distance (right) from an F, a G and a U region (positive distances are depicted in
red).

responding to an elementary region then

σ |= F[t1,t2]µ⇐⇒ d(σ,F[t1,t2]µ) = 0

Proof. ⇒ Let us assume that σ |= F[t1,t2]µ. which
means (σ, 0) |= F[t1,t2]µ. Then from MITL seman-
tics ∃t∗ ∈ [t1, t2], (σ, t∗) |= µ hence σ@t∗ ∈ S µ.
By definition, de((t∗,σ@t∗, [t1, t2] × S µ) =

min
t�∈[t1,t2],s�∈S µ

�
(t∗ − t�)2 +

�n
i=1(σ@t�[i] − s�[i])2.

Since t∗ ∈ [t1, t2] and σ@t∗ ∈ S µ then trivially
de((t∗,σ@t∗, [t1, t2] × S µ) = 0 hence d(σ,F[t1,t2]µ) = 0.

⇐ Let us assume that d(σ,F[t1,t2]µ) = 0. It means
tlast ≥ t1 and min

t∈[t1,t2]
de((t,σ@t), [t1, t2]×S µ) = 0 (the first

case of distance computation cannot produce 0). Then
∃t∗ ∈ [t1, t2] : de((t∗,σ@t�), [t1, t2] × S µ) = 0. As de is a
distance, (t∗,σ@t∗) ∈ [t1, t2] × S µ, i.e (σ, t∗) |= µ. From
MITL semantics, (σ, 0) |= F[t1,t2]µ.

Lemma 3.2 (Soundness elementary G). For σ∈PathM
a path of an MPMM and µ an MITL proposition cor-
responding to an elementary region then

σ |= G[t1,t2]µ⇐⇒ d(σ,G[t1,t2]µ) = 0

Proof. ⇒ Let us assume that σ |= G[t1,t2]µ which means
(σ, 0) |= G[t1,t2]µ. By definition, G[t1,t2]µ = ¬F[t1,t2]¬µ.
From MITL semantics it follows ∀t ∈ [t1, t2],
(σ, t) �|= ¬µ i.e. ∀t ∈ [t1, t2], σ@t |= µ. ∀s� ∈ S µ,
de(s�, S µ) = 0. So ∀t ∈ [t1, t2], de(σ@t, S µ) = 0
hence

� t2
t1

de(σ@t, S µ)dt = 0. In conclusion,
d(σ,G[t1,t2]µ) = 0.

⇐ Suppose that d(σ,G[t1,t2]µ) = 0. Let us prove σ |=
G[t1,t2]µ.

We have :
� t2

t1
de(σ@t, S µ)dt = 0. As t →

de(σ@t, S µ) is a non-negative continuous function and
its integral equals 0, then this function is the null func-
tion over [t1, t2]. So, ∀t ∈ [t1, t2], de(σ@t, S µ) = 0.
This means ∀t ∈ [t1, t2],σ@t ∈ S µ. In other words,
σ |= G[t1,t2]µ.

Having proved the soundness of the satisfiability dis-
tance for F and G formulae with elementary regions,
we straightforwardly extend this result to formulae that
involve non-elementary propositions.

Proposition 3.1 (Soundness non-elementary F and G).
For σ ∈ PathM a path of an MPM M and µ ≡ � µi

an MITL propositional formula in DNF where each µi

corresponds to an elementary region then

σ |= F[t1,t2]µ⇐⇒ d(σ,F[t1,t2]µ) = 0

σ |= G[t1,t2]µ⇐⇒ d(σ,G[t1,t2]µ) = 0

Proof.

d(σ,F[t1,t2]� µi) = 0 ⇔ min
i

d(σ,F[t1,t2]µi) = 0

⇔ ∃i | d(σ,F[t1,t2]µi) = 0
⇔ ∃i | σ |= F[t1,t2]µi

⇔ σ |= F[t1,t2]� µi

d(σ,G[t1,t2]� µi) = 0 ⇔ min
i

d(σ,G[t1,t2]µi) = 0

⇔ ∃i | d(σ,G[t1,t2]µi) = 0
⇔ ∃i | σ |= G[t1,t2]µi

⇔ σ |= G[t1,t2]� µi

For Until formula, result follows from σ |=
µ1U[t1,t2]µ2 ⇔ σ |= G[0,t1]µ1 ∧ G[t1,tmin]µ1 ∧ F[tmin,t2]µ2
and the proof of the distances for eventual and global
regions.

13



Lemma 3.3 (Soundness U). For σ ∈ PathM a path of
an MPMM and µ1 and µ2 two MITL propositions cor-
responding to elementary regions then

σ |= µ1U[t1,t2]µ2 ⇐⇒ d(σ, µ1U[t1,t2]µ2) = 0

Proof. The proof of the above equivalence is a direct
consequence of the following decomposition of a time-
bounded U formulae as a combination of time-bounded
F and G formulae:

σ |= µ1U[t1,t2]µ2 ⇐⇒ σ |= G[0,t1[µ1∧
∃t� ∈ [t1, t2] :σ |= F[t�,t�]µ2 ∧ G[t1,t�](µ1 ∨ µ2)

which follows straightforwardly from the semantics of
the U operator.
⇒ Assuming σ |= µ1U[t1,t2]µ2 then σ |= G[0,t1[µ1 and
therefore, from Lemma 3.2, d(σ,G[0,t1[µ1) = 0. Fur-
thermore if σ |= µ1U[t1,t2]µ2 then also ∃t� ∈ [t1, t2] such
that 1) σ |= F[t�,t�]µ2, hence, from Lemma 3.1, also
d(σ,F[t1,t2]µ2) = 0 and 2) since de(σ@t�, µ2) = 0 then
tmin in (5) is tmin = t� and since G[t1,t�](µ1 ∨ µ2) then,
from Proposition 3.1, also d(σ,G[t1,tmin](µ1 ∨ µ2)) = 0.
Thus the three addends in (5) are all zero which proves
the implication ⇒.
⇐ similar approach by reversing ⇒.

3.2. HASL specifications for satisfiability distances
Based on the HASL formalism, we discuss the prob-

lem of defining hybrid automata specifications to mea-
sure the satisfiability distances introduced in the previ-
ous section. For the sake of simplicity, the automata
presented here refer to temporal formulae built on top
of a generic mono-dimensional (elementary) proposi-
tion µ≡ x1 ≤ xO ≤ x2, where xO denotes the population
of an observable quantity O of an MPM modelMθ and
x1 < x2 ∈ N. Distance automata for formulae based on
n-dimensional regions are simply adaptations of those
in Figure 3 and Figure 4.

Distance automaton AF . Automaton AF (Figure 3)
is designed to measure the distance (3) of a path σ
(of an MPM model Mθ) from the region associated
with F[t1,t2](x1 ≤ xO ≤ x2), i.e. the region correspond-
ing to the observed species xO ∈ [x1, x2] within time
t ∈ [t1, t2]. It uses 4 variables: d (computed distance),
t (current time along the path), n (population of the ob-
served species O after the most recent occurrence of a

reaction) and n� (population of O before the most re-
cent occurrence of a reaction). The synchronisation of
σ with AF is managed through a number of mutually
exclusive autonomous transitions (from l1 to l3), plus
a single synchronised transition (from l3 to l1), which
results in the automaton looping between l1 and l3 up
until a termination condition is fulfilled. It is straight-
forward to show that AF complies with the HASL de-
terminism constraints (Section 2.3.1) and therefore the
synchronisation of an arbitrary path σ yields a unique
path in the product processM×AF . Specifically, syn-
chronisation of σ with AF works as follows. At the
start (l0 → l1) the distance is initialised to d := ∞ and
the initial value of the observed species are stored in
n := xO. Once in l1, the analysis of σ begins and is
driven by seven mutually exclusive autonomous tran-
sitions. If initially σ is inside the region (and this in-
clude even initially with t = 0 in case t1 = 0 too),

then transition l1
�,t1≤t≥t2∧(x1≤n≤x2),{d:=0}−−−−−−−−−−−−−−−−−−−→ l2 occurs im-

mediately and the synchronisation stops with distance
d = 0. On the other hand if, while in l1, the path has not
entered [x1, x2], distance d must be computed depend-
ing on different conditions (that correspond to 4 mutu-
ally exclusive autonomous transitions linking l1 → l3).
Specifically: in case t < t1 (i.e. σ has not yet temporally
reached the time interval [t1, t2]) then either σ has en-
tered [x1, x2], in which case d is correctly set to d := 09

through firing of l1
�,(t<=t1)∧(x1>n∨n>x2)−−−−−−−−−−−−−−−−→

{d:=0,n�:=n}
l3 or, σ has not

entered [x1, x2] and then d is set to the Euclidian dis-
tance of the current point of the path from the nearest
corner of the region (either (t1, x1) or (t1, x2)) through

firing of l1
�,(t<=t1)∧(x1>n∨n>x2)−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→

{d:=min(
√

(t−t1)2+(n−x2)2,
√

(t−t1)2+(n−x1)2)}
l3. On

the other hand if t ≥ t1, in accordance with (3), the dis-
tance of the current point of the path is either: i) left

unchanged (by firing of l1
�,(t≥t1)∧(n=n�)∧(x1>n∨n>x2)−−−−−−−−−−−−−−−−−−−−−→

∅
l3),

if the last occurred reaction had not produced a jump
w.r.t. the observed species (i.e. n� = n), or, conversely,
ii) to the minimum between the previous value of d and
the distance of the current point from [x1, x2] (by firing

of l1
�,t≥t1∧(n�n�)∧(x1>n∨n>x2)−−−−−−−−−−−−−−−−−−−−−→
{d:=min(d,min(|n−x1 |,|n−x2 |))}

l3) if the last occurred re-

action did produce a jump w.r.t. O.

9this is because MPM paths are càdlàg functions of time, if the
next reaction occurs at time t ≥ t1 then it is certain that the current
path has at least one point within the considered region hence the path

will be then accepted (l1
�,(d=0)∧(t≥t1)−−−−−−−−−−−→ l2) and the finally measured

distance will be d = 0).

14



l0
ṫ:1

l1
ṫ:1

l2
ṫ:1

l3
ṫ:1

�,�,{n:=xO ,d:=∞}

�,t≥t1∧d=0, ∅

�,t≥t2∧(n>x2∨x1>n),
∅

�,(t1≤t≤t2)∧(x1≤n≤x2), {d:=0}

�,t≤t1∧(x1>n∨n>x2),
{d:=min(

√
(t−t1)2+(n−x2)2,

√
(t−t1)2+(n−x1)2),n�:=n}

�,(t≤t1)∧(x1≤n≤x2),{d:=0,n�:=n}

�,t≥t1∧(n�n�)∧(x1>n∨n>x2),
{d:=min(d,min(|n−x1 |,|n−x2 |)),n�:=n}
�,t≥t1∧(n=n�)∧(x1>n∨n>x2),

∅

ALL,t≤t2,{n:=xO}
�,t>t2,∅

t1 t2

x2

x1

XO

t

d

σ

t1 t2

x2

x1

XO

t

d=0 σ

t1 t2

x2

x1

XO

t

d
d0

σ

t1 t2

x2

x1

XO

t

d1

d2=0

d3

d4=d3 σ

(a) (b) (c) (d)

Figure 3: Automaton AF (top) for measuring the distance of a path σ for an eventual property concerning observed species XO and examples
(bottom) of measured distance d: positive distance (a), null distance (b), selection of the minimum distance (c) in case of presence of jumps in
[t1, t2] and evolution of the computed distance d along a path (d).

Proposition 3.2. Let XO be a species of an MPM model
M,AF be the distance LHA corresponding to the MITL
reachability formula ϕ ≡ F[t1,t2]x1 ≤ xO ≤ x2 and σ ∈
PathM be a path ofM, then:

AF(σ).d = d(σ,F[t1,t2]x1 ≤ xO ≤ x2)

whereAF(σ).d denotes the value stored in variable d of
automataAF whenAF has synchronised with σ.

Proof. See Appendix A.

Distance automatonAG. AutomatonAG (Figure 4) is
designed to measure the distance of a path σ w.r.t. to a
formula G[t1,t2](x1 ≤ xO ≤ x2), based on (4). It uses the
same variables asAF (hence d stores the measured dis-
tance corresponding with the integral of the segments
that, within [t1, t2], fall outside the region) plus an ex-
tra timer t�, to measure the duration of a segment falling
outside the region within [t1, t2], and a boolean flag in,
which is set to true if the last segment of the path orig-
inates in [t1, t2] outside of the region [x1, x2]. in is used
to distinguish cases where the path is out of the region
[x1, x2] with t� < t1 and a new event occurs after a time
t�� > t1, in order to add (t�� − t1) ∗ min(|n − x1|, |n − x2|)

instead of (t�� − t�) ∗min(|n − x1|, |n − x2|). After the ini-
tialisation of variables (l0 → l1), analysis begins in l1:
for events occurring before t1, we distinguish two cases.
If σ@t∈ [x1, x2], the distance is set to zero (l1 → l3 top
arc). Otherwise, d is the distance of σ@t from [x1, x2]
otherwise (l1 → l3 midway arc). Indeed, if, for exam-
ple, the next jump of σ happens at t > t2, then the final
distance is given by d · (t2− t1) (l1 → l2 bottom arc). For
events occurring at t∈ [t1, t2], if σ@t� [x1, x2] (sequence
l1 → l4 → l1), the distance is incremented by the sur-
face defined by the path segment (of duration t�) laying
outside [x1, x2] and the closest border of [x1, x2]. The
distance is left unchanged if σ@t ∈ [x1, x2] (sequence
l1 → l3 → l1).

Distance automatonAG∧F . AutomatonAG∧F refers to
measuring the distance of paths from a sequence of re-
gions consisting of a G region (related to an observed
quantity O) temporally followed by an F region (re-
lated to an observed quantity O�). In practical terms,
such an automaton is associated with the MITL formula
G[t1,t2](x1≤ xO≤ x2)∧ F[t3,t4](x3≤ xO� ≤ x4), for which we
assume t2 ≤ t3 (i.e. the G region precedes the F region),
while x1, x2, x3, x4 ∈ N and xO, resp. XO� , denotes the
population of species O, resp. O�. This automaton is

15



l0G

ṫ:1

l1G

ṫ:1

l3G

ṫ:1
ṫ�:0

l4G

ṫ:1
ṫ�:1

l2G

ṫ:1

�,true,{n:=xO , d:=0,in:=true}

�,in∧t1≤t≤t2∧(x1≤n≤x2), {t�:=0}

�,t≤t1∧(x1≤n≤x2)
{d:=0,in:=false}

�,¬in∧t1≤t≤t2∧(x1≤n≤x2)
{d:=d·(t−t1),t�:=0}

�,t≤t1∧(n<x1∨n>x2), {d:=min(|x1−n|,|x2−n|),in:=false}

�,¬in∧t1≤t≤t2∧(n<
x1∨n>x2),

{d+=
d·(t−t1)}

�,in∧t1≤t≤t2∧(n<x1∨n>x2), ∅
�,t>t2 ,∅�,t>t2 ∧¬in,

{d:=d·(t1 −t2)}

in∧t≥t2

{d=d
·(t2−t1)}

¬in
∧t≥t 2,{∅

}

ALL,true,{n:=xO}

�,t≥t2,{d+=t�·min(|x1−n|,|x2−n|))}

ALL,true,{d
� +=t� ·min(|x1−n|,|x2−n|))},

{t� :=0,n:=xO,in
:=true}

Figure 4: AutomatonAG for global property.

a concatenation of the automata AG and AF , which is
illustrated in Appendix B.

3.3. Automaton-ABC: ABC with satisfiability distance

We now introduce the adaptation of the ABC al-
gorithms discussed in Section 2.4, which we name
automaton-ABC in the remainder, to estimate the satis-
faction probability function of a reachability formula ϕ
by a parametric MPM (Mθ)θ. A preliminary version of
the method was presented in [6], where ABC was used
to show regions where parameters were susceptible to
satisfying the probability. However, the method pre-
sented in [6] was not equipped with necessary means
for directly estimating the satisfaction probability func-
tion. We point out that with the Automaton-ABC, the
estimation of the ABC posterior distribution (πϕ−ABC)
is no longer computed as a limit approximation (i.e.
lim
�→0
π̂ABC,�(.|yexp)), as with classical ABC, but rather as

an estimation of the exact distribution, since paths are
accepted exclusively if their distance to the satisfiability
region is zero.

Simple ABC with satisfiability distance. With Algo-
rithm 3, we propose a modified version of the simple
ABC Algorithm adapted to satisfiability distances. The
algorithm takes as inputs a parametric MPM (Mθ)θ∈Θ,
a prior distribution π over Θ and a distance automaton
Aϕ corresponding to a reachability formula ϕ. It works
as follows: at each iteration, a parameter θ� is drawn
from the prior π(.), a path σ� is sampled from the MPM
Mθ� and the distance d(σ�,ϕ) is computed by synchro-

nisation of σ� with automaton Aϕ; θ� is accepted if the
distance from ϕ is d(σ�,ϕ)=0 (i.e. if σ� |= ϕ by Propo-
sition 3.1).

Algorithm 3 Automaton-ABC withAϕ automaton
Require: (M)θ∈Θ a pMPM, π(.) prior, Aϕ distance au-

tomaton for MITL formula ϕ, N : number of particles
Ensure: (θi)1≤i≤N drawn from πϕ−ABC

for i = 1 : N do
repeat
θ� ∼ π(.)
d(σ�,ϕ) ∼ (Mθ� ×Aϕ)

until d(σ�,ϕ) = 0
θi ← θ�

end for

Proposition 3.3 links Algorithm 3 with the satisfac-
tion probability function (Definition 2.5).

Proposition 3.3. For (Mθ)θ∈Θ a parametric MPM, ϕ an
MITL formula and π a prior distribution over the pa-
rameter set Θ, the (θi)1≤i≤N sampled by the Algorithm 3
are drawn from a density function πϕ−ABC:

πϕ−ABC(θi) = Pr(ϕ|Mθi )
π(θi)

K

where Pr(ϕ|Mθ) is the probability satisfaction function
of Definition 2.5 and K ∈ R≥0 is a positive constant.

Proof. Let CϕMθ = {σ ∈ PathMθ/σ |= ϕ}. Then
PrMθ (C

ϕ

Mθ ) = Pr(ϕ|Mθ). ABC is a reformulation of the

16



accept-reject algorithm. Thus, the samples (θi,σi)1≤i≤N

from Algorithm 3 are drawn from a density πϕ−ABC :

πϕ−ABC(θi,σi) ∝ 1d(.,ϕ)=0(σi)������������������
σi |=ϕ

pMθi (σi)������������
σi∼Mθi

π(θi)����
prior

where pMθi is the density related to the MPMMθi with
regard to a measure µ.

As σ ∈ CϕMθ ⇔ d(σ,ϕ) = 0, 1d(.,ϕ)=0(σi) = 1CϕMθ
(σi).

One can obtain the marginal distribution of θ by integra-
tion over the whole set of paths PathMθ :

πϕ−ABC(θ) ∝
�
σ∈PathMθ

1CϕMθ
(σ)pMθ (σ)π(θ)dµ

∝ π(θ)
�
σ∈CϕMθ

pMθ (σ)dµ

∝ PrMθ (C
ϕ

Mθ )π(θ)

As PrMθ (C
ϕ

Mθ ) = Pr(ϕ|Mθ), we can conlude that

πϕ−ABC(θ) = Pr(ϕ|Mθ) π(θ)K .

Algorithm 4 Automaton-ABC Sequential Monte Carlo
withAϕ automaton
Require: (M)θ∈Θ a pMPM,, π(.) prior, Aϕ distance automa-

ton for MITL formula ϕ, N : number of particles, α ∈ (0, 1),
K kernel distribution

Ensure: (ω j)1≤ j≤N , (θ j)1≤ j≤N weighted samples drawn from
πϕ−ABC

(θ(1)
j )1≤ j≤N ∼ π(.)

∀ j ∈ 1, . . . ,N, dj ∼ (M
θ

(1)
j
×Aϕ)

� ← quantile(α, dj)
(ω j)

(1)
1≤ j≤N ← 1

N
i ← 2
while � > 0 do

for j = 1 : N do
repeat

Take θ
�
j from (θ(i−1)

j )1≤ j≤N with prob. (ω(i−1)
j )1≤ j≤N

θ(i)j ∼ K(.|θ�j)
dj ∼ (M

θ
(i)
j
×Aϕ)

until dj ≤ �
ω j ←

π
�
θ

(i)
j

�

N
Σ

j�=1
ω

(i−1)
j� K(θ(i)j |θ

(i−1)
j� )

end for
Normalise (ω(i)

j ) j

� ← quantile(α, (dj)1≤ j≤N)
i ← i + 1

end while

This result transforms the regression of a smooth
function into the regression of a probability density

function. First, each parameter sampled from the
πϕ−ABC gives information, because it produced a sim-
ulation that verifies ϕ. Also, as πϕ−ABC is a probability
density function, the relative position of each parameter
to the other sampled parameters gives much information
about the satisfaction probability function. The denser
in sampled parameters a subset of parameters space, the
higher the satisfaction probability function over the sub-
set.

ABC-SMC with satisfiability distance. Following the
same approach, we formulate a comparable version of
the ABC-SMC Algorithm 4 with distance automaton,
resulting in a reduced runtime (w.r.t. Algorithm 3) yet
complying with Proposition 3.3.

The functioning/motivation behind Algorithm 4 may
be summarised by the following remarks. If with Algo-
rithm 3, we do not exploit the real-value of the measured
distance (i.e. we only accept/reject paths depending on
whether their distance is zero, i.e. if they satisfy ϕ.),
with Algorithm 4, we take advantage of the distance
value to rank paths and accept the parameters whose
corresponding paths are closer (i.e. better ranked) to the
satisfiability regions than others (even if they do not nec-
essarily satisfy ϕ). This can lead to a faster convergence
of the algorithm corresponding to a faster exploration of
the parameter space.

Algorithm 4 has the same inputs as Algorithm 3, plus
a kernel distribution K and a hyper-parameter α ∈]0, 1[
representing how fast the tolerance � decreases along
with the iterations.
It works as follows. Initially, N parameters/particles
(θ(1)

j )1≤ j≤N are drawn from the prior π(.), and the first tol-
erance level � to reach equals the α-quantile of the dis-
tances d j, resulting from the synchronised simulations
Mθ(1)

j
× Aϕ. Then, at each iteration i, each parameter

θ(i)j ( j ∈ {1, . . . ,N}) is moved by a kernel distribution
K, and the synchronised simulation Mθ(i)j

× Aϕ is per-
formed. This procedure is done until the resulting dis-
tance d j is below the current tolerance level �, which
means the parameter θ(i)j is kept. After doing so for the
N parameters, we compute a new tolerance level � that
equals the α-quantile of the distances d j. These itera-
tions are repeated until the last tolerance level � = 0 is
reached. The introduction of several steps with positive
decreasing tolerances leads to an efficient exploration of
the parameter space driven byAϕ.

3.4. Estimation of the satisfaction probability function

Based on the samples (θ(i))1≤i≤M of the Algorithm 4,
we can estimate the satisfaction probability function

17



thanks to Proposition 3.3. This procedure is twofold:
estimation of the ABC posterior density and estimation
of the constant K.

Estimation of the ϕ − ABC posterior distribution.
We estimate our ABC posterior based on the samples
(θi)1≤i≤N with kernel density estimation (Section 2.5).
Two kernels are used: Gaussian and beta [52]. Beta
kernels are useful when we have to estimate densities
over bounded supports with positive probabilities on the
boundaries, but are more computationally expensive for
the calibration of the bandwidth. The optimal band-
width is obtained by Least Squares Cross-Validation
minimisation [50].
Estimation of K. K is estimated by a single-point esti-
mation of Pr(ϕ|Mθ∗ )) and πϕ−ABC(θ∗). θ∗ should be cho-
sen wisely: verifying ϕ should not be rare, and θ∗ should
be in a region where πϕ−ABC can be well approximated (a
region of high posterior probability). Then, Pr(ϕ|Mθ∗ )
can be estimated with statistical model checkers. One
can choose several θ∗, estimate the constants, and com-
pute the mean to get a more stable kernel density esti-
mation.

4. Application

We applied the automaton-ABC method to tackle the
estimation of satisfaction probability function on three
models of biological systems: the enzymatic reaction
network (Michaelis-Menten kinetics), a model of viral
infection and the SIR chemical reaction network.

4.1. Enzymatic reaction system
4.1.1. Model

We consider the model of Enzymatic Reaction system
(Michaelis-Mentens kinetics [54]) described by Equa-
tion( 6), in which a substrate species S is converted into
a product P through the mediation of an enzyme E. The
dynamics depend on the kinetic rates that induce a pa-
rameter vector θ= {k1, k2, k3}. We thus consider the un-
derlying parametric MPM (M)θ∈[0,100]3 . The initial state
is (E0, S 0, ES 0, P0)= (100, 100, 0, 0).

R1 : E + S
k1−→ ES

R2 : ES
k2−→ E + S

R3 : ES
k3−→ E + P

(6)

Figure 5 shows two (4-dimensional) paths sampled from
the MPM model Mθ of the enzymatic reaction system
with parameters θ = (1, 1, 1) (top) and θ = (0.1, 1, 0.1)
(bottom). The dynamics of the ER system (Figure 5)

is such that the totality of the substrate (initially S 0 =

100) is converted into the product at speed dependent
on parameters θ. With θ = (1, 1, 1), the totality of S
is converted before time = 5, whereas with a tenfold
speed reduction in the formation of the ES complex and
synthesis of P (i.e. θ = (0.1, 1, 0.1)), we have that only
about 30% of S has been converted at time = 5.

Figure 5: Paths of the ER system with θtop = (1, 1, 1), θbottom =

(0.1, 1, 0.1).

Figure 6: Relationship between paths of ER system for species P cor-
responding to parameter configurations with fixed k1 = k2 = 1 and
different values of k3 ∈ {10, 20, 50} and three different regions TR1,
TR2 and TR3.

18



4.1.2. Preliminary tests of distance automata
Before actually applying the distance automata of

Section 3.2 to the ABC framework of Section 3.3,
we have executed several experiments aimed at testing
whether the distance measured by automata AF , AG

andAG∧F , in isolation, that is, not plugged within ABC
algorithms, give reasonable readings. The results are
shown in Figure 7. To this aim, we have used the statisti-
cal model checker Cosmos [43], i.e. we have developed
the MPM model of the ER system (in terms of a gen-
eralised stochastic Petri net model, the input modelling
formalism for Cosmos) as well the distance automata
with Cosmos.

More specifically, for these tests, we have considered
different configurations of the ER model and observed
whether the distance (from specific regions) measured
through the automata was in line with the dynamics ex-
hibited by several paths sampled from each configura-
tion. For example, Figure 6 shows batches of paths
of the ER model for species P, corresponding to the
parameter sets θ1 : (1, 1, 50), θ2 = (1, 1, 20) and θ3 =
(1, 1, 10) (i.e. only k3 varies). It appears that paths
forMθ1 (red) are likely to traverse TR1, those forMθ2
(blue) to traverse TR2 and those forMθ3 (green) to tra-
verse TR3. We have therefore considered the following
time-bounded reachability formulae, each of which is
associated to a corresponding time-bounded region:

• ϕ1 : F[0.025,0.05](50 ≤ P ≤ 75) associated with re-
gion named TR1,

• ϕ2 : F[0.05,0.075](50 ≤ P ≤ 75) associated with re-
gion named TR2,

• ϕ3 : F[0.05,0.075](25 ≤ P ≤ 50) associated with re-
gion named TR3,

• ϕ4 : F[8.0,10.0](5 ≤ P ≤ 15) associated with region
named TR4,

• ϕ5 : G[0.0,0.8](50 ≤ E ≤ 100) associated with re-
gion named TR5,

• ϕ6 : G[0.0,0.8](50 ≤ E ≤ 100) ∧ F[0.8,0.9](30 ≤ P ≤
100) associated with region named TR6.

We point out that formulae ϕ1,ϕ2,ϕ3 (which corre-
spond to region TR1, TR2, TR3 of Figure 6) are exam-
ples of formulae for which there is a fairly large subset
of values for k3 ∈ [0, 100] (with k1 = k2 = 1) which
yields a positive satisfaction probability. On the other

hand, ϕ4,ϕ5,ϕ6 are formulae where only a small sub-
set of k1, k2 ∈ [0, 100]2 (with k3 = 1) yields a positive
satisfaction probability.

Such intuition is confirmed by the plots showed in
the first row of Figure 7, which depicts the average
value of the distance of paths from time regions TR1,
TR2 and TR3 measured with Cosmos, as a function
of k3, using specific instances of AF , i.e. Aϕ1 , Aϕ2

and Aϕ3 . We observe that, for example, the measured
distance from region TR1 monotonically decreases as
k3 increases and cancels for k3 ≥ 30, while the distance
from region TR3 is zero when 10 ≤ k3 ≤ 15, whereas it
grows as k3 increases.

4.1.3. Satisfaction probability function estimation
We apply automaton-ABC Algorithm 4 to the ER

parametric MPM defined over [0, 100]3. TR1, TR2 and
TR3 corresponds to one-dimensional experiments: only
k3 varies over [0, 100] (k1 = k2 = 1.0 are fixed), a uni-
form prior π(.) ∼ U(0, 100) is set. TR4, TR5 and TR6
corresponds to two-dimensional experiments: k1 and k2
varies over [0, 100] (k3 = 1.0 is fixed), a uniform prior
π(.) ∼ U(0, 100) over each parameter is set.

Figure 8 illustrates the evaluation of the posterior
distribution πϕ−ABC and the estimation of the satisfac-
tion function probability w.r.t. parameter k3 (1D exper-
iments) obtained by application of the automaton-ABC
method (Algorithm 3 and 4) to a few examples of F
(eventual) formulae.

The estimated function of TR1 exhibits a rather uni-
form profile, with a 95% credibility interval that ϕ1 is
satisfied for k3 ∈ [20, 100] (approximately), which is in
agreement with the average distance measure (Figure 7,
first row). When the average distance is zero, the esti-
mated probability by both Prism model checking and
automaton-ABC is one. The estimated functions for
TR2 and TR3, instead, result in narrower 95% credi-
bility intervals with k3 ∈ [15, 50] (TR2) resp. k3 ∈ [5, 25]
(TR3), again in line with average measured distance
(Figure 7, first row).

Figure 9 depicts the results of the 2D experiments on
the ER system with examples of F, G, and G ∧ F for-
mulae. The triangular profile of the joint posterior in
experiments TR4 and TR5 (computed with k3 = 1 and
πk1 (.), πk2 (.) ∼ U(0, 100)) indicates that only very low
values of k1 (k1 ≤ 0.015 for TR4, k1 ≤ 1 for TR5) com-
bined with rather high values of k2 (i.e. k2 ∈ [40, 100]
for TR4, k2 ∈ [50, 100] for TR5) result in paths enter-
ing TR4, resp. never leaving TR5, which means that
the algorithm managed to catch the correlation between
the parameters. This is intuitively correct in both cases.

19



Figure 7: Average distances of the automata based on the six formulae ϕi, i ∈ {1, . . . , 6}, computed by Cosmos with approximation of 0.1 and 99%
level of confidence. First row: Aϕ1 ,Aϕ2 andAϕ3 . Second row: Aϕ4 ,Aϕ5 andAϕ6 .

TR1 TR2 TR3
F[0.025,0.05](50≤P≤75) F[0.05,0.075](50≤P≤75) F[0.05,0.075](25≤P≤50)

Figure 8: Weighted histogram of automaton-ABC posterior of each experiment with 1000 particles. In each experiment, k1 = k2 = 1 and πk3 (.) ∼
U(0, 100). In blue: the satisfaction probability function estimated with Prism model checker on a selection of points using the numerical engine of
Prism. In red : the satisfaction function estimated through kernel density estimation method based on automaton ABC samples.

In fact, TR4 corresponds to a very low synthesis of P,
which is not compatible with fast creation of the ES
complex (i.e. only very small k1 are not ruled out), and
even the compensation effect obtained by fast decom-
plexation (i.e. large k2) will not suffice for paths to stay
in TR4.

One can notice that the estimated satisfaction prob-
ability function of region TR4 (most-left bottom pic-
ture of Figure 9) has a lot of probability mass around
(0, 0). At first glance, one could conclude in a prob-
lem of bias of the kernel density estimator since the
satisfaction probability function estimated by Statistical
Model Checking (second row, first column picture) does
not show the same shape in this area. However, if we
run Statistical MC with a refined grid around zero (Fig-
ure 10), one can surprisingly notice that the probability
values are high around (0, 0). This behaviour was not

expected, and automaton-ABC algorithm allowed us to
discover this small area of high satisfaction probability
that was not caught by Statistical Model Checking with
the original grid of 20 points per axis.

Similarly to experiment TR4, TR5 limits the speed
of the initial decrease of E (with initially E0 = 100) to
50 within t ≤ 0.8, which again is compatible only with
slow ES complexation and cannot be compensated by
fast decomplexation.

The TR6 experiment caught an even more important
correlation between the two parameters. In fact, the pos-
terior for TR6 is contained in the one obtained for TR5,
which is expected because if a path verifies TR6, then it
also verifies TR5.

20



TR4 TR5 TR6

F[8.0,10.0](5≤P≤15) G[0.0,0.8](50≤E≤100)
G[0.0,0.8](50≤E≤100)∧
F[0.8,0.9](30≤P≤100)

Figure 9: Results of 2D experiments of ER system with 1000 particles (πk1 (.), πk2 (.)∼U(0, 100), k3=1).
Top: the 2D weighted histogram of the automaton-ABC posterior.
Middle: estimation of the satisfaction probability function with Prism by Statistical model checking (99% confidence interval with approximation
0.01).
Bottom: kernel density estimation of the satisfaction probability function.

Figure 10: Statistical Model Checking of the ER model with TR4 over
[0.0, 0.0005]× [0.0, 20.0]. 10 points for the first axis and 20 points for
the second axis.

4.1.4. Remarks

Results have been obtained by running Algorithm 4
with sample size N = 1000. There are no notable
differences in performance between Algorithm 3 and
4 for 1D experiments on TR1, TR2, TR3 because of
the large size of the resulting distributions. However,
simple automaton-ABC Algorithm 3 is not worth con-
sidering for TR4 and TR5. Given the large size of the
support for the considered priors ([0, 100]×[0, 100]), we
remark that the probability of sampling (a pair of) pa-
rameters in the resulting ABC posterior distribution is

about
90×0.03

2
100∗100 ≈ 10−4. This leads to an infinitesimal

probability of drawing from the prior N = 1000 parti-
cles that fall in such a narrow distribution, let alone the
fact that even a parameter sampled from the obtained
distribution could produce paths that do not satisfy ϕ.
By adding several transitional steps with the sequential
version (Algorithm 4), the problem becomes treatable.
The results for TR4 required about 2 ·105 simulations of
the model, which is the highest number of simulations
in all experiments.

21



Figure 11: Results for the SIR model with ϕ = G[0,100](I > 0) ∧ F[100,120](I = 0). On the top left figure: automaton-ABC posterior weighted
histogram with 1000 particles for the 1D experiment; in blue: the true satisfaction probability function computed with Prism model checker using
the numerical engine of Prism over 40 points; in red: the estimated satisfaction function with kernel density estimation method. The three other
figures correspond to the 2D experiment. On the top right figure: the 2D histogram of the automaton-ABC posterior. On the bottom left figure: the
kernel density estimation of the satisfaction probability function. On the bottom right figure: the estimation of the satisfaction probability function
by Prism model checker (numerical engine).

4.2. SIR

We consider the classical SIR compartmental model
[26] introduced in Example 2.1. We tested our al-
gorithm on a single formula ϕ = G[0,100](I > 0) ∧
F[100,120](I = 0) with one 1D experiment and one 2D
experiment. This formula means the considered epi-
demic is active within the time [0, 100] but disappears
during the time [100, 120]. In the 1D experiment, we fix
ki = 0.0012 and we take kr ∼ U(0.005, 0.2). In the 2D
experiment, both parameters vary: ki∼U(5·10−4, 0.003)
and kr ∼ U(0.005, 0.2). Figure 11 reports results for
such experiments, including the comparison of the prob-
ability satisfaction function obtained through the ABC-
automaton method with that obtained through Prism
model checker (numerical method for both 1D and 2D
experiments). One can see that the satisfaction proba-
bility function is well reconstructed in both cases.

Whereas the success is expected in the 1D experiment
because the histogram suggests a Gaussian-like shape of
the density, the result for the 2D experiment is more re-
markable because it is hard to guess the density shape
based on the 2D histogram. However, our algorithm
managed to reproduce the same complex shape and val-

ues given by the Model Checking estimates.

4.3. Intracellular viral infection

We consider a model of cell viral infection [55] de-
scribed by Equations (7).

N + T
k1XT cn−−−−−→ G + T T

k4XT−−−→∅

N +G
k2XGcn−−−−−→ T S

k5XS−−−→∅

N + A + T
k3XT cnca−−−−−−→ S + T G + S

k6XG XS−−−−−→V

(7)

N represents the nucleotides and A the amino acids.
G is the genomic nucleic acids, T the template nucleic
acids, S the viral structural protein and V the secreted
virus. In this model, we assume nucleotides and amino
acids have constant concentrations cn and ca: we sup-
pose these species are in large number.

Satisfaction probability function estimation. A 2D ex-
periment is considered with the following logical prop-
erty: ϕ = G[0,50]G ≤ 10 ∧ F[50,200]G > 100. This prop-
erty expresses that the species G remains stable and low

22



Figure 12: Results for the intracellular viral infection model with ϕ = G[0,50]G ≤ 10∧ F[50,200]G > 100. Left : the 2D histogram of the automaton-
ABC posterior. Center: kernel density estimation of the satisfaction probability function. Right: estimation of the satisfaction probability function
by Monte-Carlo simulations (based on a 99% confidence level and approximation 0.01).

within time [0, 50], and then a burst of speed in the cre-
ation of G occurs within [50, 100], which is needed ma-
terial to the creation of the virus V .

We vary the nucleotides and amino acids concentra-
tions: cn ∼ U(0.6, 1.1) and ca ∼ U(0.5, 2.0). Figure 12
reports the results of the experiment. Considering the
end time of the formula, each simulation of this model is
more computationally expensive than the other consid-
ered models. But our methodology still allows a proper
run of the experiment, and we get a good approximation
of the satisfaction function (about 7 · 103 simulations).

4.4. About implementation of automaton-ABC method

The implementation of automaton-ABC methods
leads to a Julia package10. It includes both simulation
and synchronised simulation of MPM, support for CRN
representation of MPMs and automaton-ABC related
methods.

ABC related algorithms are distributed and the
experiments were performed using HPC resources
from the “Mésocentre” computing center of Cen-
traleSupélec and École Normale Supérieure Paris-
Saclay supported by CNRS and Région Île-de-France
(http://mesocentre.centralesupelec.fr/).

Tables 1 and 2 shows performance results for the
whole set of experiments. We omit Kernel Density Es-
timation since it only depends on the number of par-
ticles N and the choice of the kernel. The computa-
tional time of Least-Squares Cross Validations can be
expensive when the kernel is a multivariate beta kernel
with a high number of particles (N ≥ 1000). However,
Least Squares Cross-Validation estimates are easily dis-
tributable.

When the number of jobs is 120, the run was dis-
tributed on the Mesocentre HPC cluster. Otherwise, it

10available at https://gitlab-research.

centralesupelec.fr/2017bentrioum/tcs2021

Exp ER TR1 ER TR2 ER TR3 SIR 1D
Num. of jobs 1 1 1 1
Num. of sim. 2263 4896 7197 25404
Time (sec) 7.5 10.9 8.7 7.1

Table 1: Performance results for the one-dimensional experiments of
automaton-ABC.

was run on a Dell XPS 9370 with CPU Intel i7 8550U
@ 1.8GHz x 8 cores.

Our tool for automaton-ABC is quite efficient be-
cause the run of an experiment is rarely higher than
one minute. For example, the experiment about the re-
gion TR4 of the ER model performs 256000 simula-
tions within a minute over the cluster (without counting
the other computations of the ABC algorithm), know-
ing that each simulation that reaches TR4 is about 2000
steps of Stochastic Simulation Algorithm [10].

The SIR 2D experiment has higher computational
time than the 1D experiment, even if it is run with 120
jobs. This is explained by the fact that creating and
dealing with many jobs has a higher computational cost
when the execution time per job is low. It is the case
here: less than 7 seconds of computation has to be dis-
tributed over 120 jobs, which is not helpful. The vi-
ral infection model has a higher computational cost per
simulation because it is a much more complex model
than the two others.

This computational time has to be put in perspective
to classical Statistical Model Checking methods. For
example, in experiment TR4, the Statistical MC run
over a grid of 200 points of a much smaller set than
[0, 100]× [0, 100]. It lasted more than one hour, and we
saw this grid missed a region of high probability for ϕ4
formula.

23



Exp ER TR4 ER TR5 ER TR6
Num. of jobs 120 120 120
Num. of sim. 256641 32367 47649
Time (sec) 66.18 29.2 31.9
Exp SIR 2D Viral inf.
Num. of jobs 120 120
Num. of sim. 17284 6125
Time (sec) 13.1 70.1

Table 2: Performance results for the two-dimensional experiments of
automaton-ABC.

5. Discussion

Comparison with Smoothed Model Checking. We
discuss some results of Smoothed MC algorithm for
which a Python version is given in [23]. The main idea
of Smoothed MC algorithm is to estimate the satisfac-
tion function θ → Pr(ϕ|Mθ) over an interval I ⊂ Θ
with Gaussian Processes (GP) in a Bayesian framework.
Initially, the function is estimated over d points of I
using classical stochastic model checking: this estab-
lishes a data set D. Given a GP prior and a likeli-
hood of the observations that are, by nature, Binomial,
one can then compute a posterior p(θ|D) that is also a
GP thanks to the Bayes rule (the constant of normal-
isation is computed with the Expectation-Propagation
algorithm). At each iteration i, a new θd+i ∈ I is
added in D and Pr(ϕ|θd+i) is estimated through classi-
cal stochastic model checking to increase the training
set D and therefore have a better accuracy until a con-
vergence criterion is met. For the sake of comparison,
we reproduced the 1D experiments for the ER model
(Section 4.1) using the Smoothed MC tool [23]. Fig-
ure 13 depicts plots of the satisfaction probabilities ob-
tained with Smoothed MC, which show a good agree-
ment with those obtained with the ABC-automaton ap-
proach (Figure 8). Table 3 reports the number of tra-
jectories generated by both algorithms, showing a clear
advantage for the ABC-automaton approach. In this ta-
ble, we do not include any simulation for the estimation
of Pr(ϕ|Mθ∗) for θ∗ ∈ Θ, which is required for the es-
timation of the constant K. On the contrary, this table
does not show the cost of normalisation constant esti-
mation in the Smoothed MC posterior by Expectation-
Propagation. Also, a default value of 600 trajectories is
set for each satisfiability probability estimation by sta-
tistical model checking, which should be higher if one
wants a high confidence level and an approximation of
0.01.

R1 R2 R3
Smoothed MC 27000 37200 32400
Automaton-ABC 2263 4896 7197

Table 3: Number of simulations before termination for both algo-
rithms. For automaton-ABC: number of N = 1000 particles. For
Smoothed MC: each point of the dataset is estimated with 600 trajec-
tories (default value).

In return, the ABC method does not have the same
statistical guarantees as Smoothed MC because it does
not assume any specific form for the ABC density πABC:
we minimise the Least Squares Cross-Validation crite-
rion to have the better trade-off between bias and vari-
ance over the N = 1000 particles in kernel density es-
timation. To run 2D experiments, we have adapted
the available Smoothed MC code, but preliminary tests
seem to indicate a prohibitive computational time. In-
deed, convergence for 2D experiments such as R4 re-
quired many more trajectories simulation (∼ 2 · 105).
The end time of simulations is much higher than the 1D
experiments (t2 = 10.0� 0.075). The 2D experiments
on the ER system show that our method gives an effi-
cient way to identify the region of the parameter space
where the satisfaction function is positive. Once such
exploration is performed, one can either use our ker-
nel density estimation based method as it is done in this
paper (on which a large literature exists), or regression
methods over the identified region, such as Smoothed
MC that trade higher computational cost for better sta-
tistical guarantees. We further remark that since the
main computational cost of the ABC approach is the
simulation of trajectories, our method is well suited for
distributed computing, which is not the case for all re-
gression methods (e.g. Smoothed MC is, by nature, se-
quential).

Comparison with robustness-based approaches. The
framework we introduce in this paper naturally com-
pares with approaches for assessing the robustness of
a temporal logic property w.r.t. (deterministic) contin-
uous and hybrid models [41, 56]. Intuitively the no-
tion of robustness has been proposed so to overcome
the limits of methods for establishing the Boolean sat-
isfaction of a formula (i.e. model checking) by in-
troduction of a scoring function that allow for quanti-
fying how “strongly” a trace σ (hence a model) sat-
isfy a formula ϕ. More precisely the robustness of
σ w.r.t. to ϕ is a real-valued function that expresses
how far σ is from dissatisfying (positive robustness) or
satisfying (negative robustness) ϕ. Initially introduced
only w.r.t. the space perspective, spatial-robustness [57]
has then been extended to the time perspective yielding

24



Figure 13: Estimation of the satisfaction probability functions in experiments R1, R2, R3 for the ER system reported in Figure 8 with Smoothed
MC algorithm. In blue: the estimated function; in green: the lower bound; in orange: the upper bound.

the notions of temporal-robustness as well as the com-
bined space/time-robustness [41]. Such robustness mea-
sures have then been plugged into dedicated simulation-
based procedures for identifying the subspace of a non-
probabilistic model’s parameters for which a formula is
guaranteed to hold (e.g. the BREACH tool [56]).
In our framework, on the other hand, the scoring of
traces is done through so-called satisfiability-distance
measures, e.g. (3), (4), (5), i.e. non-negative functions
that express how farσ is from satisfying ϕ by taking into
account the combined spatio-temporal dimension (and
yielding 0 if σ |= ϕ): therefore our satisfiablity-distance
semantically correspond to negative trace-robustness.
The main limitation of our approach is that the defi-
nition of satisiability-distances we gave is limited to a
fragment of the full STL syntax, whereas, conversely
robustness measures are defined (recursively) on the
entire STL language. It would be certainly worth, as
future developments, to consider whether the robust-
ness measures definition could be adapted, so to re-
place satisiability-distances, in our framework for ex-
ploring the parameter space of MPMs. In this respect
it is worth pointing out that existing robustness-based
frameworks [41, 56], being addressed to deterministic
(i.e. non-probabilistic) models, cannot straight away be
applied to probabilistic systems, as parameter search for
stochastic systems requires to plug a trace scoring mea-
sure within a procedure for estimating the probability
satisfaction function of ϕ. .

6. Conclusion

We developed a novel ABC-based framework to ad-
dress probabilistic verification of temporal logic formu-
lae against parametric MPMs. Our method allows an
efficient exploration of the parameter space thanks to a

formal definition of distance between the model’s tra-
jectories and the satisfiability region associated with the
considered formula. Such distances are measured with
linear hybrid automata.

We have shown that the estimation of the satisfac-
tion probability function for a formula ϕ can be achieved
thanks to a sound relation with the resulting ABC pos-
terior distribution of the automaton-ABC. The estima-
tion of the probability of satisfying ϕ boils down to a
density estimation problem, which opens up to future
improvements and tools from an active research area in
statistics. We tested this novel approach through many
case studies, which showed promising results. Our
method can also be used as a heuristic for estimating
the satisfaction probability function because it explores
the parameter space w.r.t a logical property in an effi-
cient manner and then can be combined with other re-
gression methods over a subset of the parameter space.
Some aspects remain to be considered to extend this
work, including i) support for automatic generation of
the LHA corresponding to a given formula (which is
currently done manually), including the case of formu-
lae for non-elementary regions; ii) the extension to a less
constrained set of formulae (currently the method only
considers a fragment of MITL temporal logic formu-
lae); iii) the integration of the automaton-ABC frame-
work within the Cosmos statistical model checking plat-
form.

References

[1] T. Toni, D. Welch, N. Strelkowa, A. Ipsen, M. P. Stumpf,
Approximate Bayesian computation scheme for parameter in-
ference and model selection in dynamical systems, Jour-
nal of the Royal Society Interface 6 (31) (2009) 187–202.
doi:10.1098/rsif.2008.0172.

[2] O. Ratmann, C. Andrieu, C. Wiuf, S. Richardson, Model
criticism based on likelihood-free inference, with an applica-
tion to protein network evolution, Proceedings of the National
Academy of Sciences (2009). doi:10.1073/pnas.0807882106.

25



[3] K. Koutroumpas, P. Ballarini, I. Votsi, P. H. Cournède,
Bayesian parameter estimation for the Wnt pathway: An in-
finite mixture models approach, Vol. 32, 2016, pp. 781–789.
doi:10.1093/bioinformatics/btw471.

[4] O. Lenive, P. D. Kirk, M. P. Stumpf, Inferring extrinsic
noise from single-cell gene expression data using approxi-
mate Bayesian computation, BMC Systems Biology (2016).
doi:10.1186/s12918-016-0324-x.

[5] V. Plagnol, S. Tavaré, Approximate bayesian computation and
mcmc, in: Monte Carlo and Quasi-Monte Carlo Methods 2002,
Springer, 2004, pp. 99–113.

[6] M. Bentriou, P. Ballarini, P.-H. Cournède, Reachability design
through approximate bayesian computation, in: International
Conference on Computational Methods in Systems Biology,
Springer, 2019, pp. 207–223.

[7] H. Kitano, Foundations of Systems Biology, MIT Press, 2002.
[8] D. J. Wilkinson, Stochastic modelling for quantitative descrip-

tion of heterogeneous biological systems, Nature Reviews Ge-
netics 10 (2) (2009) 122–133. doi:10.1038/nrg2509.
URL https://doi.org/10.1038/nrg2509

[9] A. Ribeiro, R. Zhu, S. A. Kauffman, A general modeling
strategy for gene regulatory networks with stochastic dynam-
ics., Journal of computational biology : a journal of com-
putational molecular cell biology 13 (9) (2006) 1630–1639.
doi:10.1089/cmb.2006.13.1630.
URL http://dx.doi.org/10.1089/cmb.2006.13.1630

[10] D. Gillespie, Exact stochastic simulation of coupled chemical
reactions, Journal of Physical Chemistry 81 (25) (1977) 2340–
2361.

[11] K. R. Sanft, S. Wu, M. Roh, J. Fu, R. K. Lim,
L. R. Petzold, StochKit2: software for discrete
stochastic simulation of biochemical systems with
events, Bioinformatics 27 (17) (2011) 2457–2458.
arXiv:https://academic.oup.com/bioinformatics/article-
pdf/27/17/2457/600221/btr401.pdf,
doi:10.1093/bioinformatics/btr401.
URL https://doi.org/10.1093/bioinformatics/

btr401

[12] M. Kwiatkowska, G. Norman, D. Parker, Stochastic model
checking, in: Formal Methods for the Design of Computer,
Communication and Software Systems: Performance Evalua-
tion, Vol. 4486 of LNCS, Springer, 2007, pp. 220–270.

[13] C. Baier, B. Haverkort, H. Hermanns, J.-P. Katoen, Model-
Checking Algorithms for Continuous-Time Markov Chains.,
Software Engineering, IEEE Transactions on 29 (2003) 524–
541. doi:10.1109/TSE.2003.1205180.

[14] K. Sen, M. Viswanathan, G. Agha, On statistical model check-
ing of stochastic systems, in: Proc. CAV’05, 2005.

[15] H. Younes, R. Simmons, Statistical probabilistic model check-
ing with a focus on time-bounded properties, Inf. Comput.
204 (9) (2006).

[16] C. Baier, J.-P. Katoen, Principles of Model Checking (Represen-
tation and Mind Series), The MIT Press, 2008.

[17] L. Brim, M. Češka, S. Dražan, D. Šafránek, Exploring param-
eter space of stochastic biochemical systems using quantitative
model checking, in: N. Sharygina, H. Veith (Eds.), Computer
Aided Verification, Springer Berlin Heidelberg, Berlin, Heidel-
berg, 2013, pp. 107–123.

[18] A. Aziz, K. Sanwal, V. Singhal, R. Brayton, Verifying con-
tinuous time Markov chains, in: R. Alur, T. A. Henzinger
(Eds.), Computer Aided Verification, Springer Berlin Heidel-
berg, Berlin, Heidelberg, 1996, pp. 269–276.

[19] T. Han, J. Katoen, A. Mereacre, Approximate parameter synthe-
sis for probabilistic time-bounded reachability, in: 2008 Real-
Time Systems Symposium, 2008, pp. 173–182.

[20] M. Češka, F. Dannenberg, M. Kwiatkowska, N. Paoletti, Pre-
cise parameter synthesis for stochastic biochemical systems, in:
P. Mendes, J. O. Dada, K. Smallbone (Eds.), Computational
Methods in Systems Biology, Springer International Publishing,
Cham, 2014, pp. 86–98.

[21] G. W. Molyneux, V. B. Wijesuriya, A. Abate, Bayesian verifica-
tion of chemical reaction networks (2020). arXiv:2004.11321.

[22] L. Bortolussi, D. Milios, G. Sanguinetti, Smoothed model
checking for uncertain Continuous-Time Markov Chains, Inf.
Comput. 247 (2016) 235–253. doi:10.1016/j.ic.2016.01.004.
URL https://doi.org/10.1016/j.ic.2016.01.004

[23] L. Bortolussi, S. Silvetti, Bayesian statistical parameter syn-
thesis for linear temporal properties of stochastic models, in:
D. Beyer, M. Huisman (Eds.), Tools and Algorithms for the
Construction and Analysis of Systems, Springer International
Publishing, Cham, 2018, pp. 396–413.

[24] V. Kulkarni, Modeling and Analysis of Stochastic Systems,
Third Edition, Chapman & Hall/CRC Texts in Statistical
Science, CRC Press, 2016.
URL https://books.google.it/books?id=

VgGRDQAAQBAJ

[25] L. Bortolussi, F. Cairoli, Bayesian abstraction of Markov pop-
ulation models, in: International Conference on Quantitative
Evaluation of Systems (QEST2019), Springer, 2019, pp. 259–
276.

[26] W. O. Kermack, A. G. McKendrick, A Contribution to the Math-
ematical Theory of Epidemics, Proceedings of the Royal Society
A: Mathematical, Physical and Engineering Sciences 115 (772)
(1927) 700–721. doi:10.1098/rspa.1927.0118.

[27] O. Maler, D. Nickovic, Monitoring temporal properties of con-
tinuous signals, in: Y. Lakhnech, S. Yovine (Eds.), Formal Tech-
niques, Modelling and Analysis of Timed and Fault-Tolerant
Systems, Springer Berlin Heidelberg, Berlin, Heidelberg, 2004,
pp. 152–166.

[28] E. M. Clarke, O. Grumberg, D. A. Peled, Model Checking, MIT
Press, 1999.

[29] C. Baier, J. Katoen, Principles of model checking, MIT Press,
2008.

[30] A. Pnueli, The temporal logic of programs, in: 18th Annual
Symposium on Foundations of Computer Science, Providence,
Rhode Island, USA, 31 October - 1 November 1977, IEEE Com-
puter Society, 1977, pp. 46–57. doi:10.1109/SFCS.1977.32.
URL https://doi.org/10.1109/SFCS.1977.32

[31] E. M. Clarke, E. A. Emerson, A. P. Sistla, Automatic verifica-
tion of finite state concurrent systems using temporal logic spec-
ifications: A practical approach, in: J. R. Wright, L. Landweber,
A. J. Demers, T. Teitelbaum (Eds.), Conference Record of the
Tenth Annual ACM Symposium on Principles of Programming
Languages, Austin, Texas, USA, January 1983, ACM Press,
1983, pp. 117–126. doi:10.1145/567067.567080.
URL https://doi.org/10.1145/567067.567080

[32] R. Alur, T. A. Henzinger, Logics and models of real time: A sur-
vey, in: J. W. de Bakker, C. Huizing, W. P. de Roever, G. Rozen-
berg (Eds.), Real-Time: Theory in Practice, Springer Berlin Hei-
delberg, Berlin, Heidelberg, 1992, pp. 74–106.

[33] H. Hansson, B. Jonsson, A logic for reasoning about time and
reliability, Formal Aspects of Computing 6 (1995) 512–535.
URL http://www.es.mdh.se/publications/13-

[34] A. Aziz, K. Sanwal, V. Singhal, R. Brayton, Model-checking
CTMCs, ACM Trans. on Computational Logic 1 (1) (2000).

[35] M. Kwiatkowska, G. Norman, D. Parker, {PRISM} 4.0: Ver-
ification of Probabilistic Real-time Systems, in: G. Gopalakr-
ishnan, S. Qadeer (Eds.), Proc. 23rd International Conference
on Computer Aided Verification (CAV’11), Vol. 6806 of LNCS,
Springer, 2011, pp. 585–591.

26



[36] C. Dehnert, S. Junges, J.-P. Katoen, M. Volk, A storm is com-
ing: A modern probabilistic model checker, in: Proc. 29th Inter-
national Conference on Computer Aided Verification (CAV’17),
2017.

[37] H. Younes, Ymer: A statistical model checker, in: Proc.
CAV’05, LNCS 3576, 2005.

[38] A. Legay, S. Sedwards, L. Traonouez, Plasma lab: A modular
statistical model checking platform, in: ISoLA (1), Vol. 9952 of
Lecture Notes in Computer Science, 2016, pp. 77–93.

[39] P. Ballarini, H. Djafri, M. Duflot, S. Haddad, N. Pekergin,
COSMOS: a statistical model checker for the hybrid automata
stochastic logic, in: Proceedings of the 8th International Confer-
ence on Quantitative Evaluation of Systems (QEST’11), IEEE
Computer Society Press, 2011, pp. 143–144.

[40] K. Sen, M. Viswanathan, G. Agha, Vesta: A statistical model-
checker and analyzer for probabilistic systems, in: Second Inter-
national Conference on the Quantitative Evaluation of Systems
(QEST’05), 2005, pp. 251–252. doi:10.1109/QEST.2005.42.

[41] A. Donzé, O. Maler, Robust satisfaction of temporal logic
over real-valued signals, in: Proceedings of the 8th Interna-
tional Conference on Formal Modeling and Analysis of Timed
Systems, FORMATS’10, Springer-Verlag, Berlin, Heidelberg,
2010, pp. 92–106.

[42] P. Ballarini, B. Barbot, M. Duflot, S. Haddad, N. Pekergin, Hasl:
A new approach for performance evaluation and model checking
from concepts to experimentation, Performance Evaluation 90
(2015) 53 – 77.

[43] Cosmos home page. https://cosmos.lacl.fr/.
[44] S. Donatelli, S. Haddad, J. Sproston, Model checking timed

and stochastic properties with CS LT A, IEEE Trans. on Software
Eng. 35 (2009).

[45] J.-M. Marin, P. Pudlo, C. P. Robert, R. J. Ryder, Approxi-
mate bayesian computational methods, Statistics and Comput-
ing 22 (6) (2012) 1167–1180. doi:10.1007/s11222-011-9288-2.
URL https://doi.org/10.1007/s11222-011-9288-2

[46] S. A. Sisson, Y. Fan, M. Beaumont, Handbook of approximate
Bayesian computation, Chapman and Hall/CRC, 2018.

[47] M. A Nunes, D. J Balding, On optimal selection of summary
statistics for approximate bayesian computation, Statistical ap-
plications in genetics and molecular biology 9 (2010) Article34.
doi:10.2202/1544-6115.1576.

[48] M. A. Beaumont, J.-M. Cornuet, J.-M. Marin, C. P. Robert,
Adaptive approximate bayesian computation, Biometrika 96 (4)
(2009) 983–990.
URL http://www.jstor.org/stable/27798882

[49] P. Del Moral, A. Doucet, A. Jasra, Sequential monte carlo
samplers, Journal of the Royal Statistical Society B 68 (3)
(2006) 411–436. doi:10.1111/j.1467-9868.2006.00553.x.
URL http://www.blackwell-synergy.com/doi/

abs/10.1111/j.1467-9868.2006.00553.x;http:

//onlinelibrary.wiley.com/doi/10.1111/j.

1467-9868.2006.00553.x/full

[50] B. W. Silverman, Density Estimation for Statistics and Data
Analysis, Chapman & Hall, London, 1986.

[51] J. Chacón, T. Duong, Multivariate Kernel Smoothing and its Ap-
plications, 2018. doi:10.1201/9780429485572.

[52] S. Chen, Beta kernel estimators for density functions, Computa-
tional Statistics & Data Analysis 31 (2) (1999) 131–145.

[53] T. Bouezmarni, J. V. Rombouts, Nonparametric density
estimation for multivariate bounded data, Journal of Sta-
tistical Planning and Inference 140 (1) (2010) 139 – 152.
doi:https://doi.org/10.1016/j.jspi.2009.07.013.
URL http://www.sciencedirect.com/science/

article/pii/S0378375809002249

[54] L. Michaelis, M. Menten, K. Johnson, R. Goody, The

Original Michaelis Constant: Translation of the 1913
Michaelis-Menten Paper, Biochemistry 50 (2011) 8264–8269.
doi:10.1021/bi201284u.

[55] E. Haseltine, J. Rawlings, Approximate simulation of cou-
pled fast and slow reactions for stochastic chemical ki-
netics, The Journal of Chemical Physics 117 (10 2002).
doi:10.1063/1.1505860.

[56] A. Donzé, T. Ferrère, O. Maler, Efficient robust monitoring for
stl, in: N. Sharygina, H. Veith (Eds.), Computer Aided Verifica-
tion, Springer Berlin Heidelberg, Berlin, Heidelberg, 2013, pp.
264–279.

[57] G. E. Fainekos, G. J. Pappas, Robustness of temporal logic spec-
ifications, in: K. Havelund, M. Núñez, G. Roşu, B. Wolff (Eds.),
Formal Approaches to Software Testing and Runtime Verifica-
tion, Springer Berlin Heidelberg, Berlin, Heidelberg, 2006, pp.
178–192.

27



Appendix A.

Proposition 3.2. Let XO be a species of an MPM
model M, AF be the distance LHA automaton cor-
responding to the MITL reachability formula ϕ ≡
F[t1,t2]x1 ≤ xO ≤ x2 and σ ∈ PathM be a path of M,
then:

AF(σ).d = d(σ,F[t1,t2]x1 ≤ xO ≤ x2)

whereAF(σ).d denotes the value stored in variable d of
automataAF whenAF has synchronised with σ.

Proof. We recall that (s, l, v) denotes a generic state of
the product processM×AF , where s is a state ofM, l is
a location of AF and v� a valuations of the variables of
AF . In the remainder we use the notation (s, l, v)

∗−→
(s�, l�, v�) to indicate that state (s�, l�, v�) of M × AF

is reachable from (s, l, v), i.e. (s, l, v)
∗−→ (s�, l�, v�)

means that there exists a finite sequence of (synchro-
nised/autonomous) transitions that takesM×AF from
(s, l, v) to (s�, l�, v�).

The proof boils down to showing that the synchroni-
sation of an arbitrary path σ ∈ PathM withAF leads the
product processM×AF to reach, from the initial state
(s0, l0, v0), a state (σ@t∗, l2, v∗), (i.e. l2 being the only
accepting location of AF), where t∗ ∈ R≥0 is the time
instant when (σ@t∗, l2, v∗) is reached and v∗(d) is equal
to d(σ,F[t1,t2]x1 ≤ xO ≤ x2) as in (3).

Given an arbitrary path σ ∈ PathM and its projection
w.r.t. the observed species XO, i.e. σO, we denote11

tl1 = tlast(t1), resp. tl2 = tlast(t2), the time instant of
the last jump contained in σO before t1, resp. t2 (see
examples in Figure A.14). We consider the following
partition of the set of paths of M, i.e. PathM =

Path
0=tl1=tl2
M ∪ Path

0=tl1<tl2
M ∪ Path

0<tl1=tl2
M ∪ Path

0<tl1<tl2
M

where Path
0=tl1=tl2
M is the set of paths whose projection

σO contain no jumps within t2, Path
0=tl1<tl2
M are the

paths that contain no jumps within t1 but at least one
jump in [t1, t2], Path

0<tl1=tl2
M the paths that contain at

least one jump within t1 and no jumps in [t1, t2] and
Path

0<tl1<tl2
M the paths that contain at least one jump

within t1 and at least one jumps in [t1, t2]. Examples
of paths characterising such a partition of PathM are
given in Figure A.14.
Let (s, l, [t, n, n�, d]]) denote a generic state of the
product process M × AF , where s ∈ S is a state of
M, l ∈ L is a location of AF and [t, n, n�, d] ∈ R4

are the values of the four variables of AF . In

11based on (3).

the remainder we denote µ the propositional for-
mula (x1 ≤ xO ≤ x2), st the state of an arbitrary
path σO is in at time t ∈ R≥0, i.e. st ≡ σO@t,

d0 = min(
�

t2
1 + (s0 O − x2)2),

�
t2
2 + (s0 O − x1)2) the

distance between the initial state s0 of σ and the region
[x1, x2] × [t1, t2] and dm(t) = min(|st − x1|, |st − x2|) is
the minimal distance from [x1, x2] for the segment of
σO delimited by time interval [t1, t] with t ∈ [t1, t2].

1) σ ∈ Path
0=tl1=tl2
M . In this case σO is constant (at least)

until t2. We distinguish between 2 cases:
a) t1 = 0 then either the condition µ is satisfied in
the initial state s0 i.e. x1 ≤ s0 ≤ x2 and hence
the synchronisation of σ with M yields the follow-

ing unique path on M × AF : (s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l2, [0, s0, 0, 0]) and therefore

AF(σ).d = 0 = d(σ,F[0,t2]x1 ≤ xO ≤ x2), or µ is not
satisfied in the initial state, i.e. x1 > s0 ∨ s0 > x2
in which case the synchronisation of σ with M
yields the following unique path on M × AF :

(s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l3, [0, s0, s0,min(|s0 − x1|, |s0 − x2|)]) 0−→
�

(s0, l2, [t2, s0, s0,min(|s0 − x1|, |s0 − x2|)])
b) t1 > 0 then either i) s0 |= µ hence the syn-
chronisation yields the following unique path on

M × AF : (s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l3, [0, s0, s0, 0])
0−→
�

(s0, l2, [t2, s0, s0, 0]) and there-

fore AF(σ).d = 0 = d(σ,F[0,t2]x1 ≤ xO ≤ x2),
or ii) s0 �|= µ hence the synchronisation
yields the following unique path on M × AF :

(s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l3, [0, s0, s0, d0])
0−→
�

(s0, l2, [t2, s0, s0, d0]) and

thereforeAF(σ).d = d0 = d(σ,F[0,t2]x1 ≤ xO ≤ x2).

2) σ ∈ Path0=tl1<tl2
M . In this case σO is constant until t1

and contains at least 1 jump in [t1, t2] and tl2 ∈ [t1, t2]
is the time of the last jump before t2. We distinguish
between 2 cases:
a) s0 |= µ, in this case the synchronisation of σ withAF

yields the following unique path (s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l2, [0, s0, s0, 0])
t�−→
r

(st� , l1, [0, st� , s0, 0])
0−→
�

(st� , l2, [t�, st� , s0, 0]) where

28



t� ∈ [t1, t2] is the time of the first jump that occurs on σO

within [t1, t2] and r is corresponding reaction occurred
at t�; thereforeAF(σ).d = 0 = d(σ,F[0,t2]x1 ≤ xO ≤ x2).
b) s0 �|= µ, in this case we distinguish be-
tween 2 further cases: i) ∃t� ∈ [t1, t2] such that
s�t |= µ, in this case the synchronisation of σ

with AF yields a unique path (s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l3, [0, s0, s0, d0])
∗−→

(st� , l1, [t�, st� , s0,min(dm(t�), d0)])
0−→
�

(st� , l2, [t�, st� , st� , 0] or ii) ∀t� ∈ [t1, t2], s�t �|= µ
and in this case the synchronisation of σ with

AF yields a unique path (s0, l0, [0, 0, 0, 0])
0−→
�

(s0, l1, [0, s0, 0,∞])
0−→
�

(s0, l3, [0, s0, s0, d0])
∗−→

(st� , l1, [tl2 , st� , s0,min(dm(t�), d0)])
0−→
�

(st� , l3, [tl2 , st� , st� ,min(dm(tl2 ), d0)]
t2−tl2−−−−→
�

(st� , l2, [t2, st� , st� ,min(dm(tl2 ), d0)] where t� ∈ [t1, tl2 ]
is the time instant of the last but one jump before t2.
Therefore AF(σ).d = min(dm(tl2 ), d0) = d(σ,F[0,t2]x1 ≤
xO ≤ x2).

3) σ ∈ Path0<tl1=tl2
M

Similar to previous cases.

4) σ ∈ Path
0<tl1<tl2
M

Similar to previous cases.

Appendix B. AutomatonAG∧F

Figure B.15 depicts automaton AG∧F corresponding
to the conjunction of a G formula with and F formula
such that the time-bounding interval of the G formula
temporally precedes that of the F formula. Automaton
AG∧F is simply obtained by concatenation of AG and
AF .

29



Path
0=tl1=tl2
M Path

0=tl1<tl2
M Path

0<tl1=tl2
M Path

0<tl1<tl2
M

t1 t2

x2

x1

XO

t

σ1

σ2

t1 t2

x2

x1

XO

t

tl2

σ2

tl2tl2

t1 t2

x2

x1

XO

t

σ1

σ2

tl1 tl1

t1 t2

x2

x1

XO

t

σ1

σ2

tl2tl2tl1 tl1

no jumps no jumps in [0, t1] no jumps in [t1, t2] jumps in [0, t1] and [t1, t2]

Figure A.14: Examples of paths belonging to the different subsets of the partition PathM = Path
0=tl1=tl2
M ∪Path

0=tl1<tl2
M ∪Path

0<tl1=tl2
M ∪Path

0<tl1<tl2
M .

Vertical dashed lines delimit an unspecified part of a path.

l0G

ṫ:1

l1G

ṫ:1

l3G

ṫ:1
ṫ�:0

l4G

ṫ:1
ṫ�:1

l2G

ṫ:1

l1F

ṫ:1
l2F

ṫ:1
l3F

ṫ:1

�,true,{n:=xO , d:=0,in:=true}

�,in∧t1≤t≤t2∧(x1≤n≤x2), {t�:=0}

�,t≤t1∧(x1≤n≤x2)
{d:=0,in:=false}

�,¬in∧t1≤t≤t2∧(x1≤n≤x2)
{d:=d·(t−t1),t�:=0}

�,t≤t1∧(n<x1∨n>x2), {d:=min(|x1−n|,|x2−n|),in:=false}

�,¬in
∧t1≤t≤t2∧(n<

x1∨n>x2),

{d+=
d·(t−

t1)}

�,in∧t1≤t≤t2∧(n<x1∨n>x2), ∅

�,t>t2 ,∅�,t>t2 ∧¬in,

{d:=d·(t1 −t2)}

in∧t≥t2

{d=d
·(t2−t1)}

¬in
∧t≥t 2,{∅

}

ALL,true,{n:=xO}

�,t≥t2,{d+=t�·min(|x1−n|,|x2−n|))}

ALL,true,{d
� +=t� ·min(|x1−n|,|x2−n|))},

{t� :=0,n:=xO,i
n:=tr

ue}

�,true,{n:=xO� ,
d� :=∞}

�,t≥t1∧d=0, ∅

�,t≥t2∧(n>x2∨x1>n),
∅

�,(t1≤t≤t2)∧(x1≤n≤x2), {d:=0}

�,t≤t1∧(x1>n∨n>x2),
{d:=min(

√
(t−t1)2+(n−x2)2,

√
(t−t1)2+(n−x1)2),n�:=n}

�,(t≤t1)∧(x1≤n≤x2),{d:=0,n�:=n}

�,t≥t1∧(n�n�)∧(x1>n∨n>x2),
{d:=min(d,min(|n−x1 |,|n−x2 |)),n�:=n}
�,t≥t1∧(n=n�)∧(x1>n∨n>x2),

∅

ALL,t≤t2,{n:=xO}
�,t>t2,∅

Figure B.15: LHA distance automaton AG∧F for formula G[t1 ,t2](x1 ≤ xO ≤ x2) ∧ F[t3 ,t4](x3 ≤ xO� ≤ x4), with t2 ≤ t3 (i.e. the G region precedes the
F region), and where xO, resp. xO� , denotes the population of species O, resp. O�

30




