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Shrink & Cert: Bi-level Optimization for Certified Robustness

Kavya Gupta * 1 Sagar Verma * 1

Abstract

In this paper, we advance the concept of shrinking
weights to train certifiably robust models from the
fresh perspective of gradient-based bi-level opti-
mization. Lack of robustness against adversarial
attacks remains a challenge in safety-critical ap-
plications. Many attempts have been made in lit-
erature which only provide empirical verification
of the defenses to certain attacks and can be easily
broken. Methods in other lines of work can only
develop certified guarantees of the model robust-
ness in limited scenarios and are computationally
expensive. We present a weight shrinkage for-
mulation that is computationally inexpensive and
can be solved as a simple first-order optimization
problem. We show that model trained with our
method has lower Lipschitz bounds in each layer,
which directly provides formal guarantees on the
certified robustness. We demonstrate that our ap-
proach, Shrink & Cert (SaC) achieves provably
robust networks which simultaneously give ex-
cellent standard and robust accuracy. We demon-
strate the success of our approach on CIFAR-10
and ImageNet datasets and compare them with ex-
isting robust training techniques. Code : https:
//github.com/sagarverma/BiC

1. Introduction
Machine learning models are used as solutions to many prob-
lems, but they can be easily fooled by perturbations such as
adversarial attacks on the input (Szegedy et al., 2013; Paper-
not et al., 2016), rendering them impractical for safety and
security-critical application. Hence, evaluating the robust-
ness and training of robust deep neural networks is a central
point for researchers. Heuristic adversarial defenses and ver-
ification methods are often broken by more carefully crafted
stronger attacks (Athalye et al., 2018). Hence these methods
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only provide empirical robustness without any formal guar-
antees. On the other hand, formal robustness methods verify
the neural network behaviors by mathematically deriving
the prediction bound of a neural network with respect to
certain inputs and thus evaluate the certified robustness of
the neural network. Formal guarantees are of much impor-
tance in critical applications, where we need guarantees that
any norm-bounded adversary will not be able to alter the
prediction of the network and is thus certifiably robust.

In this paper, we are concerned about the certified robust-
ness of neural networks under ℓp-norm perturbations on the
input. The vulnerability of neural networks is linked to their
Lipschitz properties, and the models with small Lipschitz
constants are more robust (Cisse et al., 2017; Fazlyab et al.,
2019; Virmaux & Scaman, 2018) and provide deterministic
certificates of robustness (Tsuzuku et al., 2018). Computing
the exact Lipschitz constants of CNNs is NP-hard owing
to the non-linear activation functions. Existing approaches
look to regularize the norms of individual weight layers.
These approaches of norm regularization are motivated by
the idea that reducing norms of individual layers can reduce
the global Lipschitz constant, and reducing the global Lips-
chitz constant can ensure smaller local Lipschitz constants
and thus improve robustness. In (Cisse et al., 2017), authors
proposed Parseval network where the ℓ2 norms of linear and
convolutional layers are constrained to be orthogonal. Par-
seval network only slightly improves adversarial robustness
in most cases and even reduces robustness in some cases.
(Miyato et al., 2018) showed control on the Lipschitz con-
stant using spectral normalization for GANs. In (Anil et al.,
2019), authors combined GroupSort, which is a gradient
norm-preserving activation function, with norm-constrained
weight regularization to enforce tight Lipschitz bounds in
dense networks while maintaining the expressiveness of the
models. In (Li et al., 2019), authors further extended Group-
Sort to convolution layers by proposing Block Convolution
Orthogonal Parameterization (BCOP), which restricts the
linear transformation matrix of a convolutional kernel to be
orthogonal and thus its ℓ2 norm is bounded by one. How-
ever, the robustness performances are still not as good as
other certification methods, and none of these methods can
provide good certified results for ℓ∞ robustness. Contrary
to the existing methods, authors of (Liang & Huang, 2021)
argue that large ℓ2 and ℓ∞ norms of convolutional layers are
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bad for adversarial robustness. In this work, we show the
advantages of shrinking the norms of weight layers not only
helps the adversarial robustness but also provides certified
robustness with guarantees. To this effect we formulate
our training strategy as a bi-level optimization problem. To
the best of our knowledge, this is the first work linking
robustness guarantees with bi-level optimization.

Our contributions are summarized as follows :

• We rethink the normalization of weight layers as a bi-
level optimization problem. To train certifiably robust
models, we formulate the upper-level objective as train-
ing loss minimization and the lower-level objective as
regularization of the norms of the weight layers.

• Our method, Shrink & Cert (SaC), can be solved as
a first-order optimization problem, which is computa-
tionally inexpensive and can be used for larger models.
Therefore overcoming a bottleneck in existing state-of-
the art.

• We show our method successfully reduces the Lips-
chitz bounds of each of the individual layers and hence
provides deterministic guarantees on the robustness.

• We show results on CIFAR-10 and Imagenet datasets.
Compared to state-of-the-art methods, our method
gives better certified accuracy under both ℓ2 and ℓ∞
perturbations.

2. Related work
2.1. Lipschitz bounding approaches

In (Miyato et al., 2018), authors reshape the 4D convolu-
tional kernel into a 2D matrix and use power iterations to
compute the ℓ2 norm of the weight matrix. Although this
method can improve the image quality produced by WGAN,
the norm of the reshaped convolutional kernel does not re-
flect the true norm of the kernel. Based on the observation
that the result of power iterations can be computed through
gradient back-propagation, (Virmaux & Scaman, 2018) pro-
posed AutoGrad to compute the ℓ2 norm. (Sedghi et al.,
2018) theoretically analyzed the circulant patterns in the
unrolled convolutional kernel, based on which they discov-
ered a new approach to compute the singular values of the
kernels. Using the computed spectrum of convolution, they
proposed singular value clipping, a regularization method
that projects a convolution onto the set of convolutions with
bounded ℓ2 norms.

Lipschitz based methods (Szegedy et al., 2013; Leino et al.,
2021) compute a global Lipschitz constant with respect to ℓ2
norm by multiplying the spectral norm of all weight matrices
where the spectral norm can be computed by power iteration

algorithm to obtain tight Lipschitz bounds. The global Lips-
chitz constant is usually loose but can be efficiently regular-
ized during training. Global Lipschitz constant computation
is efficient and scalable to models on bigger datasets, (Leino
et al., 2021). Global Lipschitz bound can be improved by
finer-grained analysis on convolutional layers (Lee et al.,
2020), by computing local Lipschitz bound (Fazlyab et al.,
2019) or by combining with IBP (Lee et al., 2020). Recently,
(Gupta & Verma, 2023) proposed reducing the global Lip-
schitz certificates in case of transformer layers. Currently,
such Lipschitz based certification methods can certify ro-
bustness against only ℓ2 adversary. A multivariate aspect of
understanding Lipschitz properties is discussed in (Gupta
et al., 2022b) to analyze the sensitivity of individual inputs.

Another thread of research proposes specific layer structures
in the network and regulates the Lipschitz constant for these
layer structures. There are different designs of orthogonal
convolutional layers (Trockman & Kolter, 2021; Li et al.,
2019). They usually use parameterization or transformation
to explicitly construct trainable convolutional layers, which
are orthogonal and thus Lipschitz constant of 1. To main-
tain a good trade-off between robustness and performance
(Gupta et al., 2022a) proposes a control loop with a known
Lipschitz target. When the Lipschitz constant of the network
is small, Lipschitz based certification can provide efficient
robustness guarantees. However, again these approaches
are just restricted to ℓ2 adversary. Recently, (Zhang et al.,
2021a) proposed a novel activation function called ℓ∞ neu-
ron and is 1- Lipschitz with respect to ℓ∞ norm. This design
enables general Lipschitz based verification to certify ro-
bustness against ℓ∞ adversary. Combined with effective
training (Zhang et al., 2021b), this approach can certify
state-of-the-art ℓ∞ certified robustness.

2.2. Smoothed Classifiers

(Cohen et al., 2019) authors introduced randomized smooth-
ing, which considers Gaussian smoothing and derives a tight
ℓ2 robustness radius based on the Neyman-Pearson lemma.
Against ℓ1 adversary, (Levine & Feizi, 2021) and (Teng
et al., 2020) consider Laplacian smoothing and derive ℓ1
robustness radius. Against ℓ∞ adversary, (Yang et al., 2020)
empirically show and theoretically justify that it yields the
highest ℓ∞ certified radius by using Gaussian smoothing and
transforming Neyman-Pearson-based ℓ2 robustness radius
to ℓ∞ radius: r → r/

√
d where d is the input dimension.

Certifying robustness against ℓ∞ for high-dimensional input
is proven to be intrinsically challenging (Yang et al., 2020;
Blum et al., 2020).

2.3. Gradient based bi-level optimization

Bi-level Optimization (BLO) is a unified hierarchical learn-
ing framework where the objective and variables of the
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upper-level problem depend on the lower-level problems.
The nested structure of the BLO problem in its generic form
is difficult to solve since it is hard to characterize the in-
fluence of the lower-level optimization on the upper-level
problem. The efficient gradient descent methods provide a
promising solution to the complicated bi-level optimization
problem and thus are widely adopted in many deep learn-
ing research work. In practice, BLO has been successfully
applied to optimize hyper-parameters (Chen et al., 2019a),
meta-learning (Rajeswaran et al., 2019; Zhong et al., 2022),
data poisoning attack design (Huang et al., 2020), and re-
inforcement learning (Chen et al., 2019b). In (Zuo et al.,
2021), authors formulated the adversarial training problem
using a Stackelberg Game, a special bi-level optimization
case. In (Zhang et al., 2022) proposed Fast-BAT, authors
formulated min-max optimization (MMO) problem of ad-
versarial training by using bi-level optimization. Although
effective in robust training, the method provides defenses
against attacks such as PGD and does not provide any theo-
retical guarantees on the robustness. In our work, we utilize
BLO for training certifiable robust models with guarantees.

3. Training with Shrink & Cert (SaC)
Bi-level optimization is an optimization problem involv-
ing two optimization tasks, where the lower-level task is
nested inside the upper-level task. More precisely, it has the
following generic form:

minimize
u∈U

f(u, v∗(u))

s.t. v∗(u) = argmin
v∈V

g(v, u) (1)

where U and V are the feasible sets for the variables u and v,
respectively; f() and g() are the upper and the lower-level
objective functions, respectively. The lower-level task in
equation 3 builds the relationship between the lower and
upper-level variables.

We now formulate the problem of shrinking model weights
through the lens of BLO and develop SaC. Our algorithm
can be visualized as having two objectives. The first objec-
tive is determining a shrinking matrix (s), and the second
is training the shrinking weight matrix to achieve good
accuracy. The shrinking matrix s is controlled by hyperpa-
rameter α, determining the maximum extent to which the
weight can be shrunk. This leads to the shrinking matrix
s ∈ M , where M = {s|s ∈ [0, α]n}, where α ∈ (0, 1)
and the model weight variable θ ∈ Rn, where n denotes the
total number of model parameters. The shrunk model s⊙ θ
will have smaller values of the weights, leading to lower
Lipschitz bounds of the network and providing theoretical

guarantees on the robustness. We also allow the shrinking
matrix s to have zeros, leading to sparsity in the matrix. This
will further ensure lowered norms of the weight matrices.
To this end, we interpret the shrinking task and the model
retraining task as two optimization levels, where the former
is formulated as an upper-level optimization problem and
relies on optimizing the lower-level retraining task.

To make the above intuition precise, we use the upper-level
problem to model the training loss minimization, while the
lower-level problem to shrink the weight values in each
layer and consider the following BLO problem:

minimize
s∈M

L(s⊙ θ∗(s),Dval)

s.t. θ∗(s) = argmin
θ∈Rn

L(s⊙ θ,Dtrain) (2)

where L denotes the training loss of the network, s and θ are
the upper-level and lower-level optimization variables re-
spectively, θ∗(s) signifies the lower-level solution obtained
by minimizing the objective function given the shrinking
matrix s. We can easily solve SaC as the first-order alter-
nating optimization. Dtrain and Dtrain denote different
data batches to train the upper-level and lower-level tasks
mimicking meta-learning formulations.

This bi-level optimization formulation optimizes the cou-
pling between the two tasks through the implicit gradient
(IG)-based optimization module. Implicit gradient refers to
the gradient of the lower-level solution θ∗(s) with respect to
(w.r.t.) the upper-level variable s, and its derivation calls the
implicit function theory (Gould et al., 2016). Also, follow-
ing the Hessian-free assumption (Zhang et al., 2022; Finn
et al., 2017), the implicit gradient can be obtained using
the first-order derivatives. Upper-level and lower-level tasks
are solved alternatively, using stochastic project gradient
descent in the implicit gradient descent direction for the
upper-level task to obtain s for the shrinking task, interlaced
with stochastic gradient descent for the lower-level task to
obtain model parameters θ. We summarize the iterative SaC
algorithm as follows:

Lower-level solution to update θ(t) : Applying SGD to the
lower-level problem at iteration t, given s(t−1) and θ(t−1)

with randomly selected batch.

θ(t) := θ(t−1) − γ1[s
(t−1) ⊙∇L(s(t−1) ⊙ θ(t−1),Dtrain)]

(3)

Upper-level solution to update s(t): Applying Stochastic
projected gradient descent to the upper-level problem along
implicit gradient descent direction at iteration t, given s(t−1)
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Figure 1. 4C3F model trained on CIFAR-10. Left: Effect of hyperparameter α on Lipschitz bounds for different layers in CNN. We
obtain an optimal value of α = 0.20 with clean accuracy = 82.5% and certified accuracy = 60.23%. We can verify that each layer’s
Lipschitz bounds are close to 1. Right: Variation of Lipschitz bounds with each epoch in SaC training. We see an overall decreasing trend
of lowered Lipschitz bounds for each layer. Also, note that the Lipschitz bound of each layer is less than 1. Note: C1-C4 represents the
first four convolutional layers, and L5-L7 represent the last three linear layer of 4C3F.

and updated θ(t) with randomly selected batch different
from the lower-level step.

s(t) := Ps[s
(t−1)−γ2θ

(t)⊙∇L(s(t−1)⊙ θ(t),Dval)]
(4)

Where Ps denotes the Euclidean projection onto the feasible
set M and γ1, γ2 denotes the learning rates for lower and
upper-level tasks, respectively.

Train from scratch by starting with a random initialization
of θ and s.

4. Experiments
We perform various experiments to demonstrate our pro-
posed method’s effectiveness in making neural network
models more robust and provide a good trade-off between
clean and certified accuracy. We perform experiments on
ResNet-110 trained on CIFAR-10 and ResNet-50 trained
on ImageNet for ℓ2 perturbations, and we use the 4C3F
network from the prior works for comparisons for ℓ∞ per-
turbations. We use a single node with 8 A100 GPUs for
all our experiments. Although more experiments can be
performed with larger networks, this set of experiments is
sufficient to demonstrate our method’s effectiveness and
was approachable within our computing budget.

Training details: For a fair comparison, we follow the same
training details used in (Cohen et al., 2019) and (Salman
et al., 2019). We consider three different networks for each
model configuration obtained by varying the noise level

σ ∈ 0.25, 0.5, 1.0. During inference, we apply randomized
smoothing with the same σ used in training. To train 4C3F
and ResNet-110 on CIFAR-10 using SaC, we use a batch
size of 128, SGD optimizer, and a single A100 GPU. For
the lower-level of SaC, we use a learning rate of 0.1 and
step schedule for the shrinkage matrix and a learning rate of
1e− 4 for the implicit gradient learning. For the upper-level
of SaC, we use a learning rate of 0.1 and cosine schedule
with weight decay of 1e−4 and momentum of 0.9. We train
both networks for 100 epochs. We tried the following values
for α in the given order (0.99, 0.01, 0.90, 0.05, 0.50, 0.1,
0.25, 0.15, 0.22, 0.20) and found α = 0.20 to be giving best
certified network. Training details for ResNet-110 are the
same as 4C3F. In this case, we search for the best α in the
neighborhood of 0.20; specifically, we tried following in the
given order (0.30, 0.10, 0.25, 0.15, 0.23, 0.16, 0.21, 0.18)
and found α = 0.16 giving the best result. We train ResNet-
50 on ImageNet using SaC for 100 epochs with a batch size
of 200 per GPU, SGD optimizer, and 8 A100 GPUs. For
the lower-level of SaC, we use a learning rate of 0.1, a step
schedule for the shrinkage matrix, and a learning rate of
1e− 4 for the implicit gradient learning. For the upper-level
of SaC, we use a learning rate of 0.01 and a cosine schedule
with weight decay of 1e− 4 and momentum of 0.9. We try
the following values for α in the given order (0.50, 0.10,
0.45, 0.15, 0.35, 0.20, 0.30, 0.25, 0.16, 0.19, 0.17, 0.18) and
found α = 0.17 to be giving best certified network.

Evaluation of ℓ2: To evaluate certified robustness for a
given classifier f , we aim to compute the certified test ac-
curacy at radius r, which is defined by the fraction of the
test dataset that f can certify the robustness of radius r with
respect to the certifiable lower bound. We use (Cohen et al.,
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Dataset ϵ Method Clean PGD Certified

CIFAR-10

2/255

CAP(Wong et al., 2018) 0.68 - 0.54
CROWN-IBP (Zhang et al., 2019) 0.71 0.60 0.54

IBP (Shi et al., 2021) 0.67 - 0.53
COLT (Balunović & Vechev, 2020) 0.78 - 0.60

Randomized Smoothing (Cohen et al., 2019) 0.79 - 0.63
linf -distance Net (Zhang et al., 2021b) 0.61 0.54 0.54

Ours 0.83 0.60 0.61

8/255

IBP*(Gowal et al., 2018) 0.51 0.31 0.29
CROWN-IBP(Zhang et al., 2019) 0.48 0.38 0.35

COLT (Balunović & Vechev, 2020) 0.52 - 0.27
Randomized Smoothing (Cohen et al., 2019) 0.53 - 0.24

linf -distance Net (Zhang et al., 2021b) 0.57 0.37 0.33

Ours 0.59 0.38 0.36

16/255
IBP (Shi et al., 2021) 0.37 - 0.24

linf -distance Net(Zhang et al., 2021b) 0.48 0.33 0.29

Ours 0.54 0.37 0.34

Table 1. Comparison of clean, PGD and certified accuracy under ℓ∞ perturbation for 4C3F trained on CIFAR-10.

σ Method ϵ

0.00 0.25 0.50 1.0 1.5

0.25

Randomized Smoothing (Cohen et al., 2019) 0.75 0.60 0.43 0.0 0.0
SmoothAdv(Salman et al., 2019) 0.74 0.67 0.57 0.0 0.0

MACER (Zhai et al., 2020) 0.81 0.71 0.58 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.72 0.65 0.57 0.0 0.0

Ours 0.83 0.69 0.59 0.02 0.0

0.50

Randomized Smoothing (Cohen et al., 2019) 0.65 0.54 0.41 0.23 0.09
SmoothAdv(Salman et al., 2019) 0.50 0.46 0.44 0.38 0.29

MACER (Zhai et al., 2020) 0.66 0.60 0.53 0.38 0.19
Consistency(Jeong & Shin, 2020) 0.52 0.48 0.45 0.38 0.30

Ours 0.69 0.61 0.54 0.40 0.32

1.00

Randomized Smoothing (Cohen et al., 2019) 0.47 0.39 0.34 0.21 0.14
SmoothAdv(Salman et al., 2019) 0.45 0.41 0.38 0.32 0.25

MACER (Zhai et al., 2020) 0.45 0.41 0.38 0.32 0.25
Consistency (Jeong & Shin, 2020) 0.42 0.39 0.36 0.31 0.25

Ours 0.49 0.43 0.39 0.33 0.27

Table 2. Comparison of Certified test accuracy of ResNet-110 trained on CIFAR-10 with state-of-the art methods. Every model is certified
with σ used for its training. We set our result bold-faced whenever the value improves the baseline. Each column is an ℓ2 radius.

2019) implementation, which returns a safe lower bound of
certified radius over random n samples with probability at
least 1 − η or abstains the certification. The approximate
certified test accuracy is defined as the fraction of the test
dataset which classifies correctly with a radius larger than
r without abstaining. In our experiments, we use n = 1e6,
n0 = 100, and α = 1e− 3 as in the previous works.

Evaluation metrics ℓ∞: For each method in the table, we
report the clean test accuracy without perturbation (denoted
as Clean), the robust test accuracy under PGD attack (de-
noted as PGD), and the certified robust test accuracy (de-
noted as Certified). The number of iterations of the PGD
attack is set to a large number of 100. We then calculate the
certified robust accuracy based on the output margin.
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σ Method ϵ

0.00 0.50 1.0 1.5 2.0 2.5 3.0

0.25

Randomized Smoothing (Cohen et al., 2019) 0.67 0.49 0.0 0.0 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 0.65 0.56 0.0 0.0 0.0 0.0 0.0

MACER (Zhai et al., 2020) 0.68 0.57 0.0 0.0 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.68 0.58 0.0 0.0 0.0 0.0 0.0

Ours 0.70 0.61 0.0 0.0 0.0 0.0 0.0

0.50

Randomized Smoothing (Cohen et al., 2019) 0.57 0.46 0.37 0.29 0.0 0.0 0.0
SmoothAdv (Salman et al., 2019) 0.54 0.49 0.43 0.37 0.0 0.0 0.0

MACER (Zhai et al., 2020) 0.64 0.53 0.43 0.31 0.0 0.0 0.0
Consistency (Jeong & Shin, 2020) 0.55 0.40 0.44 0.34 0.0 0.0 0.0

Ours 0.66 0.55 0.45 0.38 0.0 0.0 0.0

1.00

Randomized Smoothing (Cohen et al., 2019) 0.44 0.38 0.33 0.26 0.19 0.15 0.12
SmoothAdv (Salman et al., 2019) 0.40 0.37 0.34 0.30 0.27 0.25 0.20

MACER (Zhai et al., 2020) 0.48 0.43 0.36 0.27 0.25 0.18 0.14
Consistency (Jeong & Shin, 2020) 0.41 0.37 0.32 0.28 0.24 0.21 0.17

Ours 0.50 0.44 0.38 0.31 0.28 0.26 0.21

Table 3. Comparison of Certified test accuracy of ResNet-50 trained on ImageNet with state-of-the-art methods. Every model is certified
with σ used for its training. We set our result bold-faced whenever the value improves the baseline. Each column is an ℓ2 radius.

4.1. Observations

Effect of α: Finding the right shrinking parameters α is very
important and it is the key to getting an optimally certified
network. Choosing a very small value for α can make it
harder for the model even to achieve good clean accuracy.
In the left sub-figure of figure 1, we can observe that small
values of α between 0.05 to 0.15 lead to high Lipschitz
and low clean accuracy. Specifically in case of α <= 0.05
network is not able to train. The high Lipschitz value is due
to the instability in training caused by the shrinking step
trying to be very restrictive and the training step trying to
over-compensate the small parameter values. A large α can
lead to good clean accuracy but lower certified accuracy, as
seen for α >= 90. This is due to Lipschitz of all the layers
being closer to 1. The best way to obtain the optimal value
for α is to do a binary search by alternatively trying low and
high values of α.

The right sub-figure of figure 1 shows the variation of Lip-
schitz bounds with the number of epochs. For the 4C3F
model trained on CIFAR-10, we attain 0.20 as an optimal
value of α. We observe at this value that the model has lower
Lipschitz bounds. In this experiment, SaC finds a good bal-
ance at epoch 91 when clean accuracy is high enough and
Lipschitz of all layers is low enough to provide a good
certified network.

For robustness under ℓ2 perturbations, from the table 2 and 3,
we see that our training strategy was successful in attaining
better certified test accuracy than the state-of-the-art meth-
ods for different ϵ radius. From table 2, we also see that with

σ = 0.25, we achieved approximate certified accuracy of
20% at ℓ2 radius of 1 where all the state-of-the-art methods
fail. However, for higher values of ℓ2 radius, our methods
also fail to certify the model.

For robustness under ℓ∞ perturbations, from table 1, we
observe better PGD and certified accuracy with our method.
We also note an increase in the clean accuracy of the model.
This supports the claim that the optimization algorithm
trains to achieve better trade-offs with clean accuracy.

5. Conclusion
In this work, we make the first connection between building
certifiably robust models and bi-level optimization. Bi-level
optimization has gained a lot of attention in recent literature.
Recent works suggest the concrete importance of BLO in ad-
versarial training strategies. We formulate our algorithm to
regularize the weight matrix norms by alternating between
learning a shrinking matrix (upper-level) and retraining with
shrunk matrix to recover accuracy (lower-level). Our algo-
rithm is easily solvable using gradient descent methods and
is computationally inexpensive. We show that the shrunk
weight matrix obtained has lower Lipschitz bounds with
maintained clean accuracy. We show that models obtained
with our strategy have better certified and PGD accuracy
than state-of-the-art methods. Our strategy was able to
certify against both ℓ2 and ℓ∞ perturbations better than
state-of-the-art methods.
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