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Abstract—Interconnected and autonomous vehicles are proven
to be helpful in reducing traffic congestion and dangerous
emissions while enhancing safety on our roads. In this context,
the present paper introduces a human-inspired Adaptive Cruise
Control dedicated to improving the passenger experience using
Model Predictive Control and traffic macroscopic information.
To better describe the characteristics of human drivers, first a
human-inspired microscopic hybrid automaton is considered, and
an optimization problem targeting consumption minimization
and collision avoidance is designed with a receding horizon
approach. Then, traffic macroscopic information is included in
the controller definition so that a mesoscopic Adaptive Cruise
Control model is obtained. Simulations showing the efficacy of
the proposed approaches for safety and eco-driving are provided.

Index Terms—Interconnected and Autonomous Vehicles, Adap-
tive Cruise Control (ACC), Hybrid Automaton, Mesoscopic
Model, Eco-Driving, Model Predictive Control (MPC)

I. INTRODUCTION

Interconnected and autonomous vehicles are expected to
have large diffusion in the next future. Indeed, they offer the
possibility of employing complex control strategies for traffic
flow efficiency improvement, thus reducing traffic jamming,
consumption and car accidents [1], [2], [3], [4]. To this
purpose, different vehicular communication systems have been
proposed in the current literature, based on the Dedicated Short
Range Communication technology (DSRC) and generally
grouped in the Vehicle-to-Everything family (V2X) [5], [6],
[7]. Recently, with the goal of improving passenger comfort
and vehicle responsiveness to the external environment, the
capability of self-driving cars to imitate human behavior has
gained importance in the controllers definition. This new goal
requires rethinking the controllers’ design process in a way
that considers human characteristics in the development of
novel autonomous driving strategies [8], [9]. The present
paper contributes to this research line by suggesting a human-
inspired Adaptive Cruise Control (ACC) for autonomous ve-
hicles, which ensures collision avoidance while maximizing
comfort and minimizing fuel consumption. To this goal, the
ACC is designed to mimic the human driver behavior when
different situations are encountered (e.g., free run and danger),
similarly to [10] and [11]. Differently, the ACC implements
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optimal control strategies via Model Predictive Control (MPC),
but also adapts its perceptions and predictions with respect
to the traffic flow seen from a macroscopic perspective. The
developed controller, which is capable of mixing microscopic
(leader-follower interactions) and macroscopic (traffic flow)
information, is therefore named mesoscopic. With respect to
classical microscopic controllers, based only on local leader-
follower information, the mesoscopic ones improve vehicles
responsiveness, especially in convoluted scenarios and during
transients. Philosophically, they are similar to a smart human
driver that adapts the driving style to current traffic state.
Moreover, they are capable to ensure String Stability without
using any information of the first vehicle of the platoon [12],
[13], [14].

Classically, the family of micro-macro or mesoscopic mod-
els are derived by introducing microscopic information in a
macroscopic framework, with the aim of studying the effect
of flow management strategies locally on each vehicle (e.g.,
on the consumption [15]). On the contrary, in the present
paper, macroscopic information is used in the local controller
in a bottom-up approach. The possibility to use macroscopic
information in a microscopic framework is not novel in the
literature. For example, other approaches based on the idea
of using macroscopic information for local control purposes
can be found in [12], [13], [14], [16], [17] and [18]. In [16],
the authors propose a control strategy that considers traffic
density data, and the classic conservation of mass equation
described by a Partial Differential Equation (PDE). Then, they
perform a theoretical stability analysis by means of lineariza-
tion techniques around some equilibrium point. The focus is
merely on traffic stability, while no consumption minimization
goals and formal safety guarantees are considered. In [17],
the management of a congested traffic situation is considered.
Due to the presence of a bottleneck ahead, the authors define a
variable to be computed by the platoon leader vehicle to catch
the existence of a shock-wave and its propagating velocity.
Then, this variable is exploited within an MPC framework to
appropriately adapt the speed of the cluster, thus anticipating
the slow-down maneuver. In [12] and [14], the authors focus
on the String Stability problem for a platoon where each
vehicle’s controller exploits macroscopic information in the
nominal case and in the case of vehicles subject to exter-
nal disturbances, respectively. Then, the possibility to ensure
String Stability for a class of mesoscopic models described
by Ordinary Differential Equations (ODEs) is proven, thus
ensuring that the perturbations arising in the platoon do not
amplify through it. However, no formal safety analysis is
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performed, and no optimal control problem for eco-driving is
defined. Similarly, String Stability by exploiting macroscopic
information related to the fundamental diagram is investigated
in [13]. In [18], the platoon is seen as an intelligent actuator
that can improve traffic efficiency. The interaction between
the bulk traffic flow and the platoon of connected vehicles
are described with a coupled PDE-ODE. Then, the speed
trajectories of the leading vehicle and of the last one are
optimized via a MPC algorithm. Differently from [18], in
the present paper we define a variance-based mechanism for
the control law of each vehicle to adapt to the current traffic
situation.

We consider a platoon of homogeneous self-driving cars
moving on a single lane highway (see Fig. 1). The modeling
suggested in the present paper is inspired by [10] and [11]
where a hybrid automaton is defined (see [19], [20]), and,
differently from here, only collision avoidance is guaranteed
and no implementation of optimal strategies or eco-driving
goal is targeted. Specifically, the discrete states of the hybrid
automaton are used to describe the psycho-physical perception
of the risk that is felt by humans while driving, on the basis
of the Wiedemann and Fritsche’s models of [21] and [22], re-
spectively. Consequently, each discrete state is associated with
a different car-following situation, and the controller behavior
is adapted while switching among them as a human being
would do. For example, a dangerous situation requires reactive
responses where passengers’ comfort is not considered. On the
contrary, a safe situation allows for smoother behavior that
focuses on a trade-off between performance and passengers’
pleasure.

A different control law is associated to each car-following
situation desribed by the discrete states of the human-inspired
hybrid automaton. In [10] and [11], stimulus-response control
laws ensure collision avoidance, i.e., safety. Differently, the
use of MPC allows to consider the optimal speed and ac-
celeration trajectories while ensuring collision avoidance and
consumption reduction, commonly named eco-driving [23],
[24], [25], [26], [27], [28]. Therefore, in the present paper, an
MPC-based optimization problem is defined, where a different
cost function is considered for each discrete state of the hybrid
automaton, according to the specific trade-off among the goals
of each discrete state. Preliminary results on the utilisation of
MPC strategies for the proposed hybrid automaton are sug-
gested in [29], where a computational demanding exponential
function for the fuel consumption computation is employed to
pursue the eco-driving goal. Here, we adopt the polynomial
function introduced in [18] and [30] for estimating the fuel
consumption, thereby obtaining a lower computational burden
with respect to the exponential function in [29]. Moreover,
a more detailed computation of the admissible regions of the
state space is provided here. Also, no macroscopic information
is considered in [29], thus providing only a microscopic
controller. On the contrary, the present paper suggests also a
variance-based mechanism exploiting macroscopic variables,
with the purpose of providing a mesoscopic controller and
improving its response. Therefore, we develop a human-
inspired MPC-based ACC for autonomous vehicles that targets
both consumption minimization and collision avoidance and,

Fig. 1: Single lane highway reference framework. The dash-
dot arrows represent the information flow propagation.

in order to improve the single vehicle controller response,
exploits the information contained in the macroscopic vari-
ables describing the traffic state. Simulations of platoons
implementing both the controller based only on local infor-
mation (microscopic controller) and the one exploiting also
macroscopic information (mesoscopic controller) have been
performed in order to compare the two control strategies.

Each vehicle is supposed to correctly measure the distance
and speed of its predecessor by means of appropriate sen-
sors. Moreover, vehicles are assumed to interconnect with
the surrounding agents, either via Vehicle-to-Vehicle (V2V)
or Vehicle-to-Infrastructure (V2I) technologies, or both. As
in [31] and [32], each vehicle is sending information about
the predicted trajectory evolution to its follower, yielding
a distributed receding horizon controller. The global traffic
state information is shared using only a few variables, thus
reducing the communication burden and avoiding the need for
more complex information flow topology, as for example the
“Predecessor Following Leader” or the “Bidirectional Leader”
(see [33] and [34]). The proposed control approaches are then
tested in two different information scenarios: i) the vehicles
in the platoon consider only the trajectory forecast of each
leading vehicle shared through a dedicated inter-vehicular
message. The microscopic MPC is implemented, resulting
in a microscopic closed-loop model; ii) the vehicles exploit
the trajectory forecast sent by the vehicle ahead and the
traffic macroscopic information. This leads to a mesoscopic
controller and a mesoscopic closed-loop model. The provided
simulations show that the string of vehicles is always able
to ensure collision avoidance. Moreover, they illustrate how
the introduction of the macroscopic information in the control
strategy is able to improve the overall platoon behaviour
with respect to perturbations deriving from unexpected speed
variations.

The rest of the paper is organized as follows: in Section II
we introduce the platoon modeling and discuss the problem
formulation; in Section III we define the microscopic optimal
control problem; in Section IV we introduce the use of macro-
scopic information, and how it modifies the before mentioned
modeling; Section V provides simulations results; Section VI
reports some conclusive remarks.

II. PLATOON MODELING AND PROBLEM FORMULATION

We consider a set of N + 1 equal autonomous vehicles
moving on a highway (see Fig. 1), N ∈ N, where i = 0 is the
first vehicle and IN = {1, ..., N} is the set of followers. The
overall set of vehicles is denoted by I0

N = {0} ∪ IN . Then,
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two major cases are modeled: a free running situation, with
no vehicles ahead, and a car-following situation. Vehicles are
assumed to be interconnected, and to send/receive data to/from
the surrounding environment, either via V2V or V2I technolo-
gies, or both. Regardless of the communication technology
adopted, we assume a unidirectional information flow as in
Fig. 1. We stress that we do not consider direct communication
between the platoon leading vehicle and the others in case
of platoons composed by more than two vehicles, or more
complex communication topologies, as generally granted in
cooperative platoons [33], [34].

A. Platoon model

We consider a dynamical model based on the elementary
equations describing the longitudinal motion of a vehicle (see
[35, Chapter 2]). Since our objective is to implement a MPC-
based controller, we consider a discrete time system. As in
[32], we assume the vehicles to move on a flat and dry road,
we neglect the tire slip in the longitudinal direction, and we do
not model the aerodynamic drag reduction phenomenon when
two, or more, vehicles follow each other. We define τ ∈ R+

as the sampling time and kτ , k ∈ N, as the k-th sampling
time. Given the i-th vehicle, i ∈ I0

N , its longitudinal position
and velocity are denoted by pi(k) ≥ 0 and 0 ≤ vi(k) ≤ vmax,
respectively, with dynamics

pi(k + 1) = pi(k) + vi(k)τ

vi(k + 1) = vi(k) +
τ
mv

(
FT,i(k)− Fres(vi(k))

)
, (1)

where mv is the vehicle mass; FT,i ∈ [FT,min, FT,max] is
the traction force assumed operating as the control input,
FT,min < 0 < FT,max; the resistance force acting on the
vehicle is Fres(vi(k)) = Fa(vi(k)) + Fr, with Fa(vi(k)) =
caerovi(k)

2 the aerodynamic drag force, caero > 0 the
coefficient of aerodynamic drag, Fr = crollgmv the rolling
resistance, croll > 0 the rolling friction coefficient; g is
the gravity acceleration. Since we assume vi(k) ∈ [0, vmax],
then 0 ≤ Fa(vi(k)) ≤ caerov

2
max. As a consequence, the

resistance force is bounded between Fres,min = crollgmv

and Fres,max = crollgmv + caerov
2
max. As in [32] and [36],

we assume that the box constraints on the traction force can
be reflected by desired values of maximum acceleration and
deceleration, i.e., amax > 0 and amin < 0 respectively. From
(1), we derive the dynamic model describing the interactions
in the i-th leader-follower pair (i − 1, i) with respect to the
follower point of view. Let us define the state vector xi as

xi =
[
∆pi ∆vi vi−1

]T
, (2)

where ∆pi = pi−1 − pi, ∆vi = vi−1 − vi, and vi−1 is the
speed of the preceding vehicle. Then, the dynamical model
associated to (2) is

xi(k + 1) = Axi(k) +Buui(k)

+Bdai−1(k) + Eares(xi(k)), (3)

where ui = FT,i/mv , ares(xi) = Fres(xi)/mv , and ai−1 ∈
[amin, amax] is the point-mass acceleration of the preceding
vehicle (here seen as a bounded disturbance), and

A =

 1 τ 0
0 1 0
0 0 1

 , Bu =

 0
−τ
0

 ,
Bd = [0 , τ , τ ]

T
, E = [0 , τ , 0]

T

(4)

As in [17], we assume the existence of a low level controller
that receives the control input ui computed by the controller
as reference value, and manages the powertrain unit and its
dynamics accordingly. Let a “collision” be defined as follows:

Definition 1. A collision is the event corresponding to a
bumper-to-bumper distance between two vehicles less than a
margin s > 0, s ∈ R.

Then, we assume the following

Assumption 1. All the vehicles share the goal of collision
avoidance when in a car-following situation.

For (3) to describe also the dynamics of the first vehicle
of the platoon, we assume the existence of a virtual leader
indexed by i = −1, with constant speed v−1 corresponding to
the desired speed vr ≥ 0 of i = 0. For the pair (−1, 0), we
set the fictitious distance ∆p0(t) = ∆p̄ >> s, ∀ t ≥ 0.

Together with physical and legal limits, Definition 1 and
the leader-follower state vector (2) lead to the following set
X ⊆ R3 of admissible states for xi(k):

X = {xi ∈ R3 : ∆pi ≥ s, −vmax + vi−1 ≤ ∆vi ≤ vi−1,

0 ≤ vi−1 ≤ vmax}. (5)

Our aim is to compute the optimal control, among all the
control laws that ensure safety, which minimizes a state-
dependent cost function that takes into account emissions (eco-
driving specifications) and errors with respect to the desired
distance between two consecutive vehicles and the desired
velocity. To this purpose, we assume that each vehicle knows
the position, velocity, and acceleration of its predecessor.

B. Human Psycho-Physical Thresholds

Inspired by the models in [21], [22]), and according to
the automaton in [29], to embed the human psycho-physical
perception and responsiveness in the controller we partition
the set X on the basis of the psycho-physical thresholds that
separate the different psychological situations the driver feels.
Then, each partition of X is associated with a discrete state
of the hybrid automaton defined in Section II-C. To this goal,
we define:
■ Emergency Distance ∆E : R3 → R
It is the minimum distance ensuring collision avoidance in

the worst case scenario, that is when the leader brakes with
maximum deceleration until the full stop:

∆E(xi) = s+

{
0 ∆vi > 0
∆v2

i

2|amin| −
∆vivi−1

|amin| ∆vi ≤ 0.
(6)

If at time k the distance is equal to ∆E(xi(k)) and the leader
starts braking with the maximum deceleration, provided that
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the follower also brakes at the same time with the maximum
deceleration, then collision is avoided. In addition, we define
functions TR : R3 → R and TS : R3 → R as

TR(xi) =
vi−1−∆vi

|amin| , TS(xi) = λTR(xi) (7)

and the constant time TD > 0, where:
• TR, or risky time, is the time needed to stop the vehicle

from speed vi = vi−1 −∆vi with deceleration amin.
• TS , or safety time, is the time needed to stop the

vehicle from speed vi = vi−1 −∆vi with a comfortable
deceleration amin/λ, λ > 1.

• TD, or interaction time, is the time headway beyond
which the vehicle ahead can be ignored [11].

On the basis of the time headways in (7), we define the
following additional thresholds for the distance ∆pi:
■ Risky Distance ∆R : R3 → R

∆R(xi) = ∆E(xi) + sr(xi) + crTR(xi)vi−1 (8)

This distance takes into account the human time response,
modeled by the term crTR(xi)xi−1 that represents the ad-
ditional space covered before the driver responds to the
leader’s actions, where cr > 0 is a constant multiplicative
factor. Depending on the environment information and human
perception, such value can increase (more cautious behavior),
or decrease (more aggressive behavior). Differently from [29],
in order to avoid that ∆R collapses to ∆E when the vehicles
are at a full stop, we add the term

sr(xi) =
τ2

2
(amax − amin) +

{
0, ∆vi > 0

−∆viτ, ∆vi ≤ 0
(9)

that corresponds to the difference between the distance trav-
eled by the leader braking with amin in a time step and the
distance traveled by the follower accelerating with amax in
the same time step. As a consequence, ∆R(xi) > ∆E(xi),
∀ xi ∈ R3.
■ Safety Distance ∆S : R3 → R

∆S(xi) = ∆E(xi) + ss + csTs(xi)vi−1 (10)

It represents the distance at which the human driver feels
safe and the vehicle can be stopped without braking with the
maximum effort, always guaranteeing collision avoidance. In
order to ensure ∆S(xi) > ∆R(xi), ∀ xi, we set the constant
multiplicative factor cs ≥ cr and the constant ss > 0. As for
the risky distance, the term ss avoids that ∆S(xi) collapses
to ∆E(xi) and ∆R(xi) at full stop.
■ Interaction Distance ∆D : R3 → R

∆D(xi) =

{
∆S(xi) ∆vi > 0

s+ sd + cdTD(xi)vi ∆vi ≤ 0
(11)

It represents a distance at which the driver takes into account
the presence of its predecessor. This distance is characterized
by the fixed time headway TD, and for ∆vi > 0 it corresponds
to the Safety Distance ∆S(xi). The coefficients are such that
cd > 0 and sd > 0.

The above introduced thresholds are used to define the
partitions Ωj , j = 1, 2, 3, 4, 5, of X defined below. For
simplicity, we denote ∆Ei = ∆E(xi), ∆Ri = ∆R(xi),
∆Si = ∆S(xi) and ∆Di = ∆D(xi). Then,

Ω1 =
{
xi ∈ X : (∆vi > ϵΩ) ∧ (∆pi > ∆Si) ∪
(∆vi ≤ 0) ∧ (∆pi > mi) ∪
(0 < ∆vi ≤ ϵΩ) ∧ (∆pi > m0,i)

}
,

(12)

where ϵΩ > 0, mi = max (∆Di,∆Si), and m0,i =
max (∆D0,i,∆S0,i). Here, ∆D0,i and ∆S0,i correspond to
the values of ∆Di and ∆Si, respectively, when ∆vi = 0.
Ω1 corresponds to the region where the i-th vehicle can run
freely since there is no ahead vehicle, or it is too far away. The
role of variables ϵΩ and m0,i is to avoid multiple oscillations
between Ω1 and other regions when xi is in a neighborhood
of the ∆vi = 0 axis.

For j = 2,

Ω2 =
{
xi ∈ X : (∆vi > ϵΩ) ∧ (∆Ri < ∆pi ≤ ∆Si) ∪
(∆vi < 0) ∧ (∆Si < ∆pi ≤ ∆Di) ∪
(0 < ∆vi ≤ ϵΩ) ∧ (∆Ri < ∆pi ≤ m0,i)

}
,

(13)
We remark that, although ∆Si > ∆Ri is always verified,
the same inequality does not always hold for ∆Di. As a
consequence, when ∆Si ≥ ∆Di, Ω2 disappears for ∆vi < 0.
For j = 3,

Ω3 =
{
xi ∈ X : (∆vi < 0) ∧ (∆Ri < ∆pi ≤ ∆Si

}
. (14)

The sets Ω2 and Ω3 correspond to the case where the follower
vehicle is closing to the vehicle ahead. In particular, in Ω3 the
distances are lower than in Ω2, representing the approaching of
an alert situation. We remark also that, in some circumstances,
Ω3 can be empty, meaning that there is no more a transition
region between Ω2 and the set

Ω4 =
{
xi ∈ X : ∆Ei ≤ ∆pi ≤ ∆Ri

}
. (15)

This last region represents a critical situation, where the
distances are too close to the emergency value ∆Ei. Finally,
we define

Ω =

4⋃
j=1

Ωj (16)

as the admissible set where the leader-follower state trajectory
can lie, and

Ω5 = X \ Ω (17)

as the critical region (unsafe region) where safety is not
ensured with respect to the worst case scenario of the leader
braking with maximum effort. We recall that adding the term
sr(xi) in the definition of ∆Ri in (8) ensures that Ω4 does
not disappear when vi−1 = 0. Moreover, it avoids a direct
transition of the continuous state xi from Ω1,Ω2,Ω3 to region
Ω5. We recall also that regions Ωj do not overlap each other,
i.e., Ωl ∩ Ωj = ∅, l ̸= j.

Fig. 2 shows Ω in the bi-dimensional space (∆vi,∆pi),
where partitions Ωj are obtained by setting a constant speed
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vi−1 = 18 m/s. Figures 3 and 4 offer a three-dimensional
view of regions Ωj for vi−1 = {0, 6, 12, 18, 24, 30, 36} m/s
(refer to Fig. 2 for the color meaning). Finally, Fig. 5 shows
a three-dimensional view of set Ω, where we observe its non-
convexity. However, it is controlled invariant by construction;
indeed, it is straightforward to verify that the control law ui =
amin makes Ω invariant.

C. Microscopic Hybrid Automaton

In this section, the microscopic hybrid automaton used to
model the human way of driving is introduced. It is defined
on the basis of regions Ωj , j = 1, 2, 3, 4, 5, and it is exploited
to vary the controller response with respect to the current car-
following situation, as a human-driver would do. We refer to
it as to be microscopic, since for now the model refers only
to the i-th leader-follower pair, without taking into account
macroscopic information describing the state of the platoon,
or of the whole traffic flow. The hybrid automaton associated
with the i-th car-following pair, i ∈ I0

N , is defined by the
following tuple (see [19]):

H =
(
Q,XH, U,D, F, Init,Dom, E

)
(18)

where:
• Q = {qj , j = 1, 2, 3, 4, 5} is the set of discrete states (or

modes), each one associated with a partition of X , and
representing the corresponding car-following situation;

• XH = R3 is the continuous state space;
• U = [umin, umax] is the input space, where umin =
FT,min, umax = FT,max;

• D = [amin, amax] is the disturbance space, here con-
sidered as the point-mass acceleration of the preceding
vehicle;

• F = {fq, q ∈ Q}, fq : XH×U×D → XH, is the set of
vector fields describing the evolution of the continuous
state with respect to the discrete state q. Since the car-
following dynamics does not change with the discrete
state, then F = {f} is a singleton:

x(k + 1) = f(x(k), u(k), d(k)), k ∈ N, (19)

with f defined in (3) and (4), x ∈ XH, u : N → U and
d : N → D;

• Init ⊆ Q × Ω ⊆ Q × XH is the set of initial discrete
and continuous states;

• Dom : Q→ {Ωj , j = 1, 2, 3, 4, 5} is the domain map;
• E = Q×Q is the set of edges. Since we can not predict

the discrete state future evolution, we have to assume that
it can switch in every q ∈ Q. Then, the set E is not a
subset of Q×Q, but coincide with it.

The hybrid automaton state associated with the i-th vehicles
pair is

ξi(k) = (xi(k), qi(k)) ∈ XH ×Q. (20)

Right below, we describe the meaning of the discrete states
q ∈ Q associated with the different car-following scenarios,
and the corresponding control action:

1) Free driving = q1, Dom(q1) = Ω1: there is no leader
vehicle, or it is too far away. Consequently, the i-th
vehicle can freely track its reference speed vr with

no safety concerns. The control action depends on the
desired speed and on the fuel consumption rate.

2) Following = q2, Dom(q2) = Ω2: the follower vehicle
can not ignore the presence of the vehicle ahead, but the
distance is such that there is no immediate danger. The
control action still depends on the fuel consumption, but
also on the relative speed ∆vi, other than ∆pi.

3) Closing in = q3, Dom(q3) = Ω3: the speed difference
is large and the distance is not, so the follower has to
decelerate to avoid collision. The control action mainly
depends on ∆vi and ∆pi, while the fuel optimization
objective has a lower weight.

4) Danger = q4, Dom(q4) = Ω4: the distance from the
previous vehicle is close to the unsafe one, then the
control action depends only on ∆vi and ∆pi.

5) Unsafe = q5, Dom(q5) = Ω5: collision cannot be
avoided.

In the definition of state q1, two consecutive vehicles are
considered to be in a leader-follower situation if their distance
does not exceed a predefined “contact distance” ∆max > 0.
As in [11], the Init set is defined as

Init =

4⋃
i=1

{qi} × {Dom(qi)}, (21)

where the unsafe domain is not included.
We recall that by definition of the space thresholds intro-

duced in this section, a direct transition of the continuous
state from Ω1,Ω2,Ω3 to the unsafe zone Ω5 is not possible.
Therefore, a direct transition from states q1, q2, q3 to q5 is
avoided.

III. CONTROL DESIGN

The objective of the controller design is to consider the
aforementioned human psycho-physical characteristics in the
control action. To this purpose, the controller development is
adapted to the different car-following situations seen in normal
traffic while taking into account consumption optimization
and safety constraints. In the sequel, the information related
to the different driving situations is translated in the MPC
framework by appropriately varying the weights given to the
control objectives, such fuel consumption or tracking of a
desired distance. As a result, different cost functions for the
discrete states are defined, each one focusing on a different
trade-off among the desired goals.

A. Fuel Consumption Model

In order to take into account the fuel consumption, we con-
sider the model proposed in [18], that is based on the results
introduced in [30]. It consists of a sixth order polynomial K(v)
averaged over the characteristics of different cars, then suitable
for a large range of vehicles:

K(v) = 5.7 · 10−12 · v6 − 3.6 · 10−9 · v5 + 7.6 · 10−7 · v4

− 6.1 · 10−5 · v3 + 1.9 · 10−3 · v2 + 1.6 · 10−2 · v + 0.99
(22)

where K(v) is expressed in [Liters/hr] and v in [km/hr].
Differently from the exponential function used in [29], the
one in (22) has a low computational burden. However, in order
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Fig. 2: Set Ω and partitions Ωj corresponding to the leader at
speed vi−1 = 18 m/s.

Fig. 3: 3D view of Ω and partitions Ωj computed for different
values of vi−1.

Fig. 4: 3D view of Ω and partitions Ωj computed for different
values of vi−1. Fig. 5: Set Ω.

to evaluate the performances of the controller with respect to
fuel consumption, in Section V-C we will use a more complex
index proposed in [37] (see equation (39) ).

B. Microscopic Optimization Problem

Let N be the optimization horizon with respect to which
the solution of the optimization problem is computed. Given a
signal x, we denote with x(h|k), h = 0, . . . ,N , the predicted
value at time k + h obtained by starting from the value at
time k. Moreover, given a vector x and a matrix Q ≥ 0,
∥x∥Q = (xTQx)1/2 denotes the weighted Euclidean norm.

At each time k, the optimal control sequence u∗i (h|k), h =
0, ...,N − 1, is computed according with the hybrid state
ξi(0|k) = ξi(k), then ui(k) = u∗i (0|k) is applied as control
input. Therefore, the same steps are repeated at time k + 1
when new measurements are available. We consider that each
vehicle uses only local information, namely the one of the
correspondent leader-follower pair. According to the meaning
of each discrete state q ∈ Q, a different cost function Jq is
defined so that the various objectives receive different weights,
as a human driver would do. Then, according to the discrete
state at time k, the cost function Jq is selected and is kept
constant over the optimization horizon. Although this method
leads to a sub-optimal solution, it is acceptable in a moving
horizon framework. Moreover, it allows for avoiding an NP-
hard problem, that would result if the state q, and consequently
function Jq , are left to vary when solving the optimization
problem.

To guarantee safety, the constraint

ui(0|k)− ares(0|k) ∈ [amin, ai−1(k)] (23)

is added to the optimization problem when condition

xi(k) ∈ Dom(q4) ∧ ∆vi(k) < 0 ∧ ai−1(k) < 0 (24)

is met. Then, to derive a formulation of (23) and (24) that is
suitable to be included in the MPC definition, we define the
parameter δ ∈ {0, 1} as

δ =

{
1 if (24) is true
0 otherwise,

(25)

and (23) is rewritten as

ui(0|k)− ares,i(0|k) ≤ amax − (amax + ai−1(k))δ. (26)

In defining constraint (23), we consider region Ω4 as a
guard zone for continuous states that can lead to critical or
emergency situations. Then, when (24) is true, the input that
is going to be applied is forced to correspond to a braking
action with an intensity that is greater or equal to the braking
action of the vehicle ahead. As a consequence, also in the
case of the worst case scenario where ∆pi = ∆Ei and
ai−1 = amin, feasibility and collision avoidance are ensured
by ui(0|k)− ares(0|k) = amin.

Under the assumption that the entire state xi is measurable,
we define the output vector

yi =

 ∆pi
∆vi

vi−1 −∆vi

 =

 ∆pi
∆vi
vi

 (27)

where the first two components are the inter-vehicular distance
and speed difference, as defined for the state vector (2), and
associated to the car-following situation.The third component
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is the speed of the i-th vehicle. Then, we define the corre-
sponding reference vector

yri = [ ∆pri ∆vri vri ]T , (28)

where (∆pri ,∆v
r
i ) = (∆S(xi), 0) is the reference trajectory to

be tracked in a car-following situation, namely q2, q3, q4. On
the contrary, vri > 0 is the reference speed for the Free driving
situation q1, which we assume to be a constant value. When
in a car-following situation, we set the reference distance
∆pri (h|k) = ∆S(xi(k)), ∀h ≥ 0, and we define ỹi = yi−yri .

Given the hybrid state ξi(k) at time k, the problem we want
to solve is

min
ui(h|k), h=0,...,N−1

Jq (29a)

s.t.
xi(h+ 1|k) = Axi(h|k) +Buui(h|k) +Bdai−1(h|k)

+ Eares,i(h|k), h = 0, ...,N − 1,
(29b)

xi(0|k) = xi(k), (29c)
xi(h|k) ∈ X, h = 0, ...,N (29d)
ai−1(h|k) ∈ [amin, amax], h = 0, ...,N − 1 (29e)
ui(h|k)− ares,i(h|k) ∈ [amin, amax], h = 0, ...,N − 1

(29f)
ui(0|k)− ares,i(0|k) ≤ amax − (amax + ai−1(k))δ

(29g)

where

Jq =∥ỹi(N|k)∥2Pq
+

N−1∑
h=0

(
∥ỹi(h|k)∥2Gq

+

+ ∥ui(h|k)∥2Rq
+MqcfKi(h|k)τ

)
(30)

where ares,i(h|k) = ares(xi(h|k)), Ki(h|k) = K(xi(h|k)),
cf is the factor to convert Ki(h|k) from [Liters/hr] to
[Liters/s], set X as defined in (5), and δ as in (25). Although
δ is an integer value, (29) is not a mixed-integer programming
problem. Indeed, the value of δ depends only on the hybrid
state ξi(k) and it remains constant over all the optimization
horizon, thus it is not a decision variable. Matrices Pq, Gq ∈
R3×3, Pq, Gq ≥ 0, weigh the different objectives in the cost
function, and Rq,Mq ∈ R, Rq,Mq ≥ 0 weigh the control
effort and the consumption, respectively. ai−1(h|k) is the
predicted acceleration of the leader vehicle, seen as a bounded
disturbance. The a priori knowledge of the acceleration profile
of the leader would allow a more accurate prediction and the
computation of a more performing control input sequence.
However, we remark that real scenarios are not fully pre-
dictable and the use of such information could still lead to non
optimal solutions. According with the data available at each
sampling time, we identify the following situations: 1) The
follower vehicle i knows (either by measurements/estimation
or V2V communication) only the current acceleration of its
leader. Then, the constant speed assumption is made; 2) As in
1), the follower vehicle i knows only the current acceleration
of its leader, but the constant acceleration assumption is made;

3) Each vehicle sends to the follower its own acceleration
prediction, obtained by solving the optimization problem in
(29) [38]. The possibility to send such information is given
by V2V interconnection, and it is regulated by standards
for dedicated short-range communication (DSRC) [39]. We
remark that strategy 3 may suffer from unexpected events
because in that case the receiving follower would compute
its own control input on the basis of a wrong prediction.

We assume that each vehicle sends to the follower its accel-
eration forecast (case 3) by means of a Basic Safety Message
(BSM, SAE J2735 [39]), thus resulting in a distributed MPC
when the vehicles are in platoon formation (see [31] and [32]).

In the sequel, we explain the heuristic for the choice of the
weights:

1) q1: the follower is free to track the desired speed vr with-
out incurring immediate dangers, and applying fuel con-
sumption optimization. We set Pq1(3, 3), Gq1(3, 3) > 0
(other elements of Pq1 and Gq1 are null) and Rq1 ,Mq1 >
0.

2) q2: the follower vehicle is closing in to its leader, but
distance and speed are such that there is no immediate
danger. The proposed cost function allows for an optimal
tracking of the desired distance ∆pr considering both
relative distance error and fuel consumption. We set
Pq2(1, 1), Pq2(2, 2), Gq2(1, 1), Gq2(2, 2) > 0 (other
elements of Pq2 and Gq2 are null) and Rq2 ,Mq2 > 0.

3) q3: the car-following pair is close to a risky situation.
The proposed cost function allows for an optimal track-
ing of the desired distance ∆pr considering both the
relative distance error and fuel consumption. Unlike
q2, a higher importance is given to the tracking of
∆pr with respect to the eco-driving objective. We set
Pq3(1, 1), Pq3(2, 2), Gq3(1, 1), Gq3(2, 2) > 0 (other
elements of Pq3 and Gq3 are null) and Rq3 ,Mq3 > 0.

4) q4: the distance from the previous vehicle is close
to the unsafe one. The proposed cost function al-
lows for an optimal tracking of the desired distance
∆pr considering only relative distance error, since
safety has priority over fuel optimization. We set
Pq4(1, 1), Pq4(2, 2), Gq4(1, 1), Gq4(2, 2) > 0 (other
elements of Pq4 and Gq4 are null) and Rq4 ,Mq4 to low
values, or to zero.

IV. MESOSCOPIC MODEL AND OPTIMIZATION PROBLEM

In this section, we discuss the introduction of traffic macro-
scopic data in the controller design. The purpose is to obtain
a mesoscopic model for improving the overall platoon re-
sponse. The possibility of exploiting macroscopic information
is analysed in [12] and [14], where the authors prove that a
proper definition of macroscopic variables can ensure String
Stability for the platoon (see [40] for details on this topic).
However, this kind of stability does not guarantee collision
avoidance. Our objective is to improve the microscopic MPC-
based controller defined in Section III-B, which allows ad-
dressing safety and eco-driving specifications, with the use of
macroscopic variables that contain information about all the
vehicles ahead. This leads to the possibility for the vehicles to
anticipate any changes in the platoon state, with a consequent
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harmonization of the trajectories. For control purposes, we
consider the mean and variance of the microscopic quantities
because of their connection with traffic macroscopic variables,
as also proven by several traffic flow diagrams (see [41,
ch. 4]). As a consequence, there is no need to share some
microscopic information among the whole platoon, e.g., the
leading vehicle acceleration or its desired speed. Then, no
direct communication between the first vehicle and the others
is required, except for its immediate follower [14].

A. Macroscopic Information

Given the generic vehicle i ∈ I0
N , let µv,i and σ2

v,i be,
respectively, the speed mean and variance computed from
vehicle 0 to vehicle i:

µv,i =
1

i+ 1

i∑
j=0

vj , σ2
v,i =

1

i+ 1

i∑
j=0

(vj − µv,i)
2. (31)

In (31) µv,i and σ2
v,i are computed starting from the first

vehicle of the platoon, but clearly, these variables could also
be computed over a finite number of vehicles preceding the
i-th one as in [11]. Moreover, the variables in (31) may be
computed either in a distributed way by the vehicles, or by
the road infrastructure that interfaces with the traffic, then can
be shared either via V2V or via V2I [12]. Since we assume
that the set of vehicles is homogeneous with vmin ≤ vi ≤ vmax

∀i ∈ I0
N , the maximum variance value follows from the below

expression:

σ2
v,max =

(vmax − vmin)
2

4
=
v2max

4
, (32)

recalling that vmin = 0. Then, we define the speed macro-
scopic function ψv : R× R× R → R,

ψv(vi, µv,i, σ
2
v,i) = ξisign(vi − µv,i), (33)

where ξi = 2
√
σ2
v,i/vmax ∈ [0, 1], with ξi = 0 denoting the

platoon being in steady-state, while ξi ∈ (0, 1] meaning that
the string is in a transient phase. The purpose of function
ψv in (33) is to relate the microscopic state of the i-th vehicle
with that of the macroscopic traffic. Instead of considering the
whole set of leader-follower vehicles pairs ahead of the i-th
one, it allows for a complexity reduction of the interconnection
framework without reducing the level of available information.
By definition, we get ψv(vi, µv,i, σ

2
v,i) ∈ [−1, 1], where:

• ψv(vi, µv,i, σ
2
v,i) ∈ [−1, 0) identifies the case where vi <

µv,i, meaning that the platoon is accelerating;
• ψv(vi, µv,i, σ

2
v,i) ∈ (0, 1] identifies the case where vi >

µv,i, meaning that the platoon is decelerating;
• ψv(vi, µv,i, σ

2
v,i) = 0 corresponds to all vehicles having

the same speed.
In order to avoid discontinuity problems due to function
sign(·), we consider the following stable discrete-time linear
system: {

ρi(k + 1) = λρρi(k) + γψi−1
v (k)

ρi(0) = 0
(34)

where |λρ| < 1, γ > 0 are tuning parameters that alter the filter
response. The trajectory of (34) is such that ρi → 0 as ψv → 0.

Then, it is possible to vary the filter response with respect
to variations of the macroscopic variables by appropriately
choosing λρ and γ. The superscript i− 1 denotes that the i-th
vehicle makes use of the macroscopic information computed
over the state of the vehicles ahead, up to its predecessor. For
vehicle i = 0, we set ψ−1

v = 0.
B. Mesoscopic Optimization Problem

As in [11], we define α = sat(1 + ρi) ∈ [αmin, αmax] as a
parameter that vary the time headways (7) defining the hybrid
automaton domains:

T ′
D(α, TD) = αTD, T

′
S(α, TS) = αTS ,

T ′
R(α, TR) = αTR, (35)

while TE is not modified because of the collision avoid-
ance requirement. Analogously to the definitions in (35), we
denote with ∆D′, ∆S′, and ∆R′ the variance-based space
thresholds corresponding to the definitions given in Section
II-B. According to [11], the boundaries of α are chosen such
that αmin ∈ (0, 1) and αmax ∈ (1, 2.5). The effect is to
enlarge, or to shrink, the regions Ωj depending on the current
traffic situation: when α ∈ [αmin, 1) the vehicles ahead of
the i-th one are accelerating. Then, during the transient the
car-following related regions shrink (Ωj , j = 2, 3, 4) and
the Free driving one enlarges (Ω1), such that the followers
can be more reactive. When α ∈ (1, αmax], the vehicles
ahead are decelerating, then the car-following regions enlarges,
and consequently the reference distance increases letting the
followers to assume a more cautious behavior. Finally, α = 1
denotes a steady-state phase.

In addition to the new definitions of the time headways in
(35), we define also a variance-based mechanism to modify
the cost function weights introduced in Section III-B. The
purpose is to vary the trade-off between the tracked objectives
depending on the current macroscopic situation. Then, we
define

P ′
q(α,Gq) = αPq, G

′
q(α,Gq) = αGq, (36a)

R′
q(α,Rq) = Rq/α, M

′
q(α,Mq) =Mq/α, (36b)

and proper boundaries P ′
q ∈ [Pmin, Pmax], G′

q ∈
[Gmin, Gmax], R′

q ∈ [Rmin, Rmax], and M ′
q ∈ [Mmin,Mmax].

We refer to component-wise inequalities for the matrices.
Then, when the leading vehicles are accelerating, hence α < 1,
we allow for a less strict tracking of the reference distance and
of the preceding vehicles speed (P ′

q < Pq , G′
q < Gq), while

we increase the input effort weighting (R′
q > Rq , M ′

q > Mq).
On the contrary, when the platoon is decelerating, α > 1, we
apply the opposite strategy.

We now define the optimization problem to be solved at
each time step for the computation of the optimal control
input u∗i (h|k). As in Section III-B, we consider the opti-
mization horizon N and the reference vector yri in (28), with
∆pri (h|k) = ∆S′(xi(k)), ∀ h. Given the hybrid state (20) of
the generic vehicle at time k and ỹi = yi − yri , the problem
to be solved is

min
ui(h|k), h=0,...,N−1

J ′
q (37a)

s.t. (29b)-(29g)
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where

J ′
q = ∥ỹi(N|k)∥2P ′

q
+

N−1∑
h=0

(
∥ỹi(h|k)∥2G′

q
+

+ ∥ui(h|k)∥2R′
q
+M ′

qcfKi(h|k)τ

)
. (38)

As before, when in a car-following situation, we consider the i-
th vehicle to receive the predicted acceleration trajectory from
its predecessor. Being the mesoscopic optimization problem
subject to the same constraints set as in the microscopic case,
the same arguments apply for the recursive feasibility of the
MPC.

TABLE I: Vehicles parameters

τ [s] 0.25 amin [m/s2] −6
mv [Kg] 1392.2 amax [m/s2] 6
vmin [m/s] 0 caero [-] 1.06
vmax [m/s] 36 croll [-] 0.0093

V. SIMULATIONS

In this section, we report numerical simulation obtained
by the implementation of both microscopic and mesoscopic
controllers that have been proposed in the previous sections,
respectively (29) and (37). The simulations are performed in
MATLAB&Simulink with the use of Yalmip toolbox (see [42])
for the set up and the solution of the optimization problem.

We consider a platoon of N+1 = 11 identical vehicles, the
parameters and the desired acceleration/deceleration limits of
which are reported in Table I. The horizon length is N = 10,
and the nominal weights in (30) and (38) are the following:

• Pq1(3, 3) = 35 and Pq(1, 1) = 20, Pq(2, 2) = 35 for
q = q2, q3, q4;

• Gq1(3, 3) = 20 and Gq(1, 1) = 6, Gq(2, 2) = 20 for
q = q2, q3, q4;

• Mq1 = 8, Mq2 = 4, Mq3 = 2, Mq4 = 1;
• Rq1 = 14, Rq2 = 14, Rq3 = 6, Rq4 = 1.

When the variance-based mechanism introduced in Sec-
tion IV is applied, we set the following boundaries:
P ′
q ∈ [0.75Pq, 1.25Pq], G′

q ∈ [0.75Gq, 1.25Gq], R′
q ∈

[0.5Rq, 1.5Rq], M ′
q ∈ [0.5Mq, 1.5Mq]. Moreover, we set

λρ = 0.8 and γ = 0.5.
To validate the control strategy introduced in Section III and

assess the advantages of using the macroscopic information,
we test two different scenarios:

1) each vehicle in a car-following situation exploits only the
trajectory forecast sent by the preceding one via BSM,
then implements the microscopic controller (29) (Fig.
6);

2) the traffic macroscopic information is used along with
the trajectory forecast sent via of BSM by the preceding
vehicle, and the mesoscopic controller (37) is imple-
mented (Fig. 7);

The color legend adopted is the same for all figures. Each line
represents the trajectory of the variable to which the figure
refers: the blue line, if present, is associated to i = 0, while the
color scale from the light yellow to the red one is associated
to the vehicles from the head to the tail of the platoon.

The simulation time is 120 seconds and is the same for all
the cases considered. All vehicles have as reference speed the
maximum value allowed by physical and legal limits, except
the head one that tracks a piecewise reference speed as in
[43]. This type of signal is used for introducing a certain
level of uncertainty at the discontinuity points. Therefore, a
perturbation is introduced in the system with the target to
evaluate the controller robustness. We split the numerical test
into three main phases:

1) 0 ≤ t < 40: at t = 0 the head vehicle has speed v0(0) =
vr = 20 m/s, while the rest of the platoon starts with
random initial conditions generated in a neighborhood
of ∆pi = 40 m and vr.

2) 40 ≤ t < 80: at t = 40 s the reference speed of the first
vehicle changes to 10 m/s, simulating the presence of a
slow speed bottleneck.

3) 80 ≤ t ≤ 120 s: vehicle i = 0 has to reach the
speed of 25 m/s, representing the return to normal traffic
conditions.

A. Microscopic simulation with trajectory forecast sharing

Figures 6a, 6b and 6c show, respectively, the distance and
speed trajectories, and the evolution of the discrete state. In
Fig. 6b, we observe that in the first phase the vehicles are
able to converge to the desired speed of vr = 20 m/s after a
transient characterized by the presence of limited overshoots.
In the same time, they converge at a safe distance around
35 m (see Fig. 6a). In Fig. 6c, we observe that the initial
perturbations affect also the evolution of the discrete states, but
after few seconds of oscillations they settle to Following mode
(q2), that refers to a car-following situation with no immediate
risk.

In the second phase, the step variation of the reference speed
causes the first vehicle to make a sudden marked deceleration
(see see time 40 s in Fig. 6b). Since the followers base their
actions upon the trajectory forecast sent with the BSM, the
unexpected deceleration behaves as a disturbance that propa-
gates through the string. In this case the information shared
are not exact, causing the solution of the optimization problem
computed by each vehicle to be less reliable. However, since
they follow each other at a distance ∆Si, they do not react
by closely copying the behaviour of i = 0. As a consequence,
the vehicles do not decelerate with the same intensity, with the
result that the tail ones have a slower convergence to the new
speed. In Fig. 6a, we observe that vehicles are able to maintain
a safe distance between them; however, they get closer due to
the reduction of the speed. In Fig. 6c, we observe that vehicles
remain in q2.

In the third phase, due to the new change in the reference
speed, the leader is subject to a marked acceleration. In Fig.
6b, we observe that this causes the followers to initially react
in an identical way; however, after few seconds the vehicles
along the string reduce the intensity of their action, leading
to a delayed convergence to the new reference speed. In
Fig. 6c, we observe that the perturbation introduced in the
system affects the discrete state evolution of i = 1. It reaches
the Danger mode, meaning that it assumes a more reactive
behavior in order to avoid a possible upcoming dangerous
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Fig. 6: First scenario: the controller exploits only the trajectory
forecast contained in the BSM.

situation. Nevertheless, the platoon is able to safely manage
the transient perturbations and to maintain safe inter-vehicular
distances, that we see to increase as the speed increases.

B. Mesoscopic simulation with trajectory forecast sharing

In Figures 7a, 7b, 7c and 7d the numerical results obtained
when the MPC based controller exploits macroscopic informa-
tion, in addition to the BSM, are reported. In Fig. 7b, we note
that the vehicles are able to converge at the reference speed
of 20 m/s in the first phase. As in the microscopic case, this
phase is characterized by perturbed initial conditions that cause
oscillations during the first seconds of simulation. In Fig. 7d
the macroscopic variable α is able to capture the presence
of these perturbations. Then, this information is translated
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Fig. 7: Second scenario: the controller exploits the trajectory
forecast in the BSM and the macroscopic information.
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into the reference distance definition (∆S′
i), causing the inter-

vehicular distances to show a slower convergence rate than the
microscopic case. Similarly to the first scenario, the discrete
states settle to the Following mode, or q2 (Fig. 7a).

In the second phase, the step variation of the reference
speed introduces a perturbation that propagates through the
string. In Fig. 7b, we observe that the use of macroscopic
information, in the form of speed mean and variance, helps
the vehicles to dampen the perturbation faster than in the
microscopic scenario. Thanks to the macroscopic variable,
information about the marked deceleration fast propagates
towards the tail vehicles. The effects of the macroscopic
variable α on the platoon can be mainly observed on the speed
trajectories evolution: the tail vehicles are able to anticipate
their deceleration, remaining at a greater distance with respect
to the microscopic case (see Fig. 7a). The same fast response
is seen in the third phase. In this case, vehicles anticipate their
action by appropriately scaling the velocity along the platoon.
In Fig. 7c, the discrete states show the same behaviour as
in the microscopic scenario. However, since the macroscopic
information is used to vary the reference distance ∆S′

i, we
observe the inter-vehicular distance trajectories to have a
slower convergence rate than the microscopic case.

Fig. 7d reports the evolution of the macroscopic variable
α. We observe that it captures the state of the platoon, in
particular when the high step variation of the reference speed
is commanded. Its increasing magnitude lets the tail vehicles
to notice that the ahead ones are in a transient phase; while
its value being lower than 1, or vice versa, gives information
about what type of transient phase is occurring, i.e., the
acceleration or the deceleration respectively. We remark here
that at each sampling time the current value of the macroscopic
variable is held constant when mesoscopic optimization prob-
lem (37) is solved. In this regard, our future work will focus
on the possibility to predict the evolution of α with respect to
the traffic state.

C. Comments on simulations

As shown by the numerical results in Figures 6 and 7, the
proposed MPC-based algorithms determine proper control ac-
tions that ensure safety of the entire platoon. The use of BSM
for sharing trajectories forecast allows reducing the inaccuracy
about the future evolution of the preceding vehicle, except
when an unexpected situation occurs (e.g., a non predicted
speed variation). When something unpredictable happens, the
BSM propagates inaccurate information, so that a perturbation
is propagated. In such cases, the problem of String Instability
may arise (see [40]), because the platoon could amplify the
magnitude of the perturbations as they flow towards the tail
vehicles. In both scenarios presented here, the controllers are
able to handle this situation so that this phenomenon does not
occur. However, enriching the control action with macroscopic
information helps to improve the platoon response. Indeed, the
tail vehicles show anticipatory behaviour when the reference
speed value varies.

In order to better appreciate the performances of the pro-
posed control algorithms, we compare the results of the
mesoscopic approach with respect to a microscopic setting

where the consumption term is neglected, i.e., Mq = 0 for each
q ∈ {1, 2, 3, 4}, simulated under the same conditions described
at the beginning of Section V. We provide a comparison in
terms of energy consumption per unit mass by computing for
each vehicle the quantity

Wi =

∫ tf

0

vi(t̃)(ui(t̃) + ares(t̃))dt̃, (39)

where tf = 120 s, ui = FT,i/mv , and ares = Fres/mv

(see [37]). We compare the consumption of the leader vehicle
(which is not affected by the macroscopic behaviour of the
platoon, and for this reason not taken into account for the
energy computation since it always has the same information
scenario), with the rest of the platoon. Then, we obtain for
the set of follower vehicles the following results: i) micro-
scopic case with no fuel consumption optimization: the set
of follower vehicles saves 14.7042%; ii) microscopic case
with fuel consumption: the set of follower vehicles saves
15.2981%; iii) mesoscopic case with fuel consumption: the
set of follower vehicles saves 15.0652%. As it is possible to
see, both the mesoscopic and the microscopic controllers with
fuel consumption optimisation perform better than the micro-
scopic controller without fuel consumption optimisation. More
specifically, there is a gain of 4% and 2%, respectively. The
mesoscopic case is shown to lose performance with respect
to the microscopic one; this again confirms the anticipative
behaviour due to the utilisation of macroscopic information,
which also takes place during the acceleration phase. Con-
sequently, faster accelerations lead to higher consumption,
which is the price to pay for having more fluid platoons
in acceleration mode. However, we expect this behaviour to
be compensated in a mixed situation of several braking and
acceleration phases. For the sake of clarity, the simulations
consider only a short time evolution to give the reader a clear
understanding and comparison of controllers’ performance
in the considered cases. In fact, the presented simulations
allow the appreciation of both the human-based MPC strategy
performance and the improvements due to the utilisation of
macroscopic information, but the examined time and space
are too small for providing validation. On the basis of the
obtained results showing the efficacy of the proposed control
approaches, the analysis of more complex scenarios will be
part of future work.

VI. CONCLUSIONS

A human-inspired ACC based on MPC and capable to
exploit macroscopic information is presented. In order to
include human characteristics in the control development,
first a human-inspired microscopic hybrid automaton is con-
sidered. Then, a microscopic optimization problem targeting
collision avoidance (safety) and consumption minimization
(eco-driving) is defined, where a different cost function for
each discrete state of the hybrid automaton is suggested. The
vehicles are supposed to be equipped with V2X communica-
tion technology, enabling each leader to share his near future
predicted trajectory with the follower. Then, we extended
the microscopic framework by considering macroscopic in-
formation of the traffic flow, thus deriving a mesoscopic
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controller. To test the robustness of the proposed approach,
two different scenarios were simulated: the first scenario refers
to the microscopic case, where each follower use only the
trajectory prediction sent by its leader; in the second scenario,
each vehicle implements the mesoscopic controller. The results
show that the proposed controllers are always able to ensure
the safety of the vehicles and that the use of macroscopic
variables allows each vehicle to anticipate the needed control
actions.

Future work will focus on the robustness analysis against
external disturbances as well as the presence of communica-
tion and actuation delays. Also, more complex traffic scenarios
will be analysed as well as methodologies for traffic evolution
prediction. Furthermore, quantifying the optimal macroscopic
information will be worth future investigation.
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