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Scalable Stability of Nonlinear Interconnected Systems
in case of amplifying Perturbations

Marco Mirabilio, Member, IEEE, Alessio Iovine, Member, IEEE

Abstract— This paper investigates the stability of large-scale
systems (LSSs) in the presence of subsystems that amplify
the perturbations propagated by their neighborhood, possibly
leading to undesired behaviors of the overall interconnected
system. Then, sufficient conditions ensuring the system trajec-
tories boundedness and the subsequent LSS asymptotic stability
in the sense of scalable Mesh Stability are proven to exist. The
theoretical results show that there exists a dependence between
the stability and the topology of the interconnected system. The
obtained framework is then exploited for the stability analysis
of a network of electrical microgrids, showing the effectiveness
of the theoretical results.

Index Terms - scalable Mesh Stability, large-scale systems,
nonlinear interconnected systems stability, Input-to-State Sta-
bility

I. INTRODUCTION

The purpose of this work is to investigate the stability of
large-scale systems (LSSs) with general network topology
(or interconnection graph), where the subsystems (or agents)
are affected by external disturbances. The family of LSSs
has received considerable attention through the years since
their relevance in several fields [1]. Indeed, technological
improvements are leading to an ever increasing complexity of
systems, often composed of many interconnected subsystems
[1], [2]. Unfortunately, the size and the complexity of LSSs
make their stability investigation a difficult task. For this
reason, decompositional approaches based on breaking the
LSS into subsystems with lower complexity are preferred
[3], [4], [5]. However, the problem of assessing the overall
LSS stability on the basis of local properties arises. In this
regard, the notion of Input-to-State Stability (ISS, see [6])
has been proven to provide suitable tools for investigating
the stability of interconnected systems [7]. The present work
lies within the family of ISS-based approaches for LSS
stability investigation. The objective is to provide stability
guarantees in presence of perturbations that are amplified
inside the network. We target a result that is scalable, i.e.,
the LSS stability can be verified by local conditions on
clusters of agents independently on their growth in number.
In particular, it is based on the framework introduced in
[8], and extends it to the case of interconnected systems
with agents amplifying the perturbations propagated by their
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neighbors. Then, the implications about the scalability of
the result and the need for the knowledge of the LSS
interconnection graph are discussed.

In [8], the authors consider a LSS affected by external
disturbances, without any constraint on the interconnection
topology. With the purpose of extending the notion of String
Stability for vehicular platoons (see [9], [10]) to general
LSSs, in [8] the notion of scalable Mesh Stability (sMS)
is introduced to describe a system that is able to dampen the
perturbations propagating through it. To this purpose, and
by exploiting a “trajectoy-based” approach (namely K∞,KL
functions), sufficient conditions to be met on the intercon-
nection function of each subsystem are proven to exist, thus
ensuring the LSS to be sMS. Differently from here, in [8]
all the subsystems are supposed to have ideal interconnection
links, thus to be able to dampen the perturbations propagated
by their neighbors. The definition of sMS follows from the
notion of scalable ISS introduced in [4], where the authors
consider a LSS composed by agents with same dynamics,
affected by external disturbances, and with neighborhood
set having the same cardinality, leading to a symmetric
interconnection topology. With the objective of providing a
scalable notion of network performance, sufficient conditions
leading to an ISS test to be performed on the agents of the
LSS are proven to exist by means of a “Lyapunov-based”
approach. In this regard, the uniformity of the LSS plays
a central role in proving its ISS property by means of a
max-separable Lyapunov function. Differently, in this paper,
we consider a more general framework than the ones in [8],
[4] and [11]: the subsystems may have different dynamics
and no pre-defined neighborhood set. This approach has
similar foundations to the one in [12], where time-delays are
considered but the strong requirement of asymptotic stability
for each agent is necessary, contrarily from what considered
here. Other examples of ISS-based approaches are shown
in [7] and [13], where compositions of ISS subsystems are
considered. In these works, the interconnection between the
agents is supposed to be described by nonlinear gains. Then,
grouping the interconnection functions in a gain matrix and
exploiting the asymptotic gain property, the existence of
a small-gain condition that ensures the ISS of the overall
interconnected system is proven. However, no scalability
properties are provided, hence the existence of trajectory
bounds that do not depend on the number of subsystems.

In this work, we consider a LSS with agents causing
local amplification of the perturbations propagating through
it. Inspired by the classical Lyapunov stability classification
(see [14]), and similarly to [13], we first introduce the



definition of scalable Marginal Mesh Stability (sMMS). As
sMS, sMMS requires the existence of trajectory bounds that
do not depend on the number of subsystems. However, it
ensures only that the system trajectories are bounded, instead
of their asymptotic convergence to the equilibrium. Subse-
quently, we investigate the existence of sufficient conditions
for the sMMS of the LSS. Then, for the same framework,
we show how considering stronger assumptions on the local
stability of each agent leads to deriving sMS, thus obtaining
information about the asymptotic behavior of the system.

The proven sufficient conditions, both sMMS or sMS,
ensure stability for the whole LSS, if verified by each
subsystem. Therefore, they represent a local test that implies
global results. The consequence for the LSS being either
sMMS or sMS, or both, is that the effects of the amplified
perturbations remain local, avoiding the rising of undesired
behaviors inside the system. The results show that for the
analysis of agents amplifying the propagating perturbations
we need to investigate the capability of their neighbors to
counterbalance the amplified perturbations. This leads to the
necessity of further information about the local sections of
the LSS in which these agents are located. In addition,
the results show how the stability region enlarges as the
number of subsystems needed to counteract the effects of the
unstable ones increases. However, this dependence remains
bounded within the borders of such a stable neighborhood,
ensuring the existence of trajectory bounds that do not
depend on the total number of agents in the LSS, thus their
scalability with respect to the interconnected system size.
The obtained results are general and include the special case
shown in [8] with stronger constraints on the interconnection
links. Finally, the theoretical analysis is exploited to inves-
tigate numerically the stability of an interconnected system
representing an aggregate of microgrids composed by two
different kinds of nodes.

The rest of the paper is organized as follows. Section
II contains graph-related notation and definitions, and in-
troduces the considered framework. Section III contains the
main result about stability of LSS. Section IV describes a
numerical example. Section V provides conclusive remarks.

Notation - R≥0 is the set of non-negative real numbers.
For a vector x ∈ Rn, |x| =

√
xTx is its Euclidean norm,

|x|∞ = maxi=1...n |xi| is its infinity norm and |x(·)|[t0,t]∞ =
supt0≤τ≤t |x(τ)| is the L∞ signal norm. Symbol ⌈·⌉ denotes
the ceiling function, and || · || denotes the cardinality of the
set in argument. We refer to [14] and [15] for the definition
of Lyapunov functions and of class K, K∞,KL functions.

II. PRELIMINARIES

A. Graph notation

In this section, we recall graph related notation and
definitions from [16] and [17]. Let V = {v1, v2, . . . , vNV

}
be a set of cardinality NV . We denote with [V ]2 the set of
2-elements subsets of V .

Definition 1: A directed graph (or digraph) is a pair
D = (V,E), where V is the set of vertices, and E ⊆

{(x, y)|(x, y) ∈ [V ]2} is the set of edges made by ordered
pairs of vertices, thus having an orientation.
For further use, V (D) and E(D) refer to vertices and edges
of D, respectively. If an edge exists between two vertices
x, y ∈ V , with direction x → y, we denote it with eyx =
(x, y).

Definition 2: The transpose of a digraph D is denoted
with DT , where V (DT ) = V (D), but with all of the edges
reversed compared to the orientation of the corresponding
edges in D.

Definition 3: Let D be a digraph. A directed trail is a
finite or infinite sequence e10, e

2
1, . . . , e

k
k−1 of distinct edges in

E(D) joining a sequence of vertices v0, v1, . . . , vk in V (D).
The length of the trail is equal to the number of edges in the
sequence.
For future use, we define function L : E(D)×· · ·×E(D) →
R≥0 ∪ {+∞} that given a trail T returns its length L(T ).

Definition 4: Let T1 = e10, e
2
1, . . . , e

k
k−1 and T2 =

ē10, ē
2
1, . . . , ē

l
l−1 be two trails in D, with k ≤ l. If T2 is such

that T2 = ē10, ē
2
1, . . . , e

1
0, e

2
1, . . . , e

k
k−1, . . . , ē

l
l−1, then T1 is

said to be contained in T2. In this case, we also refer to T1

as a subtrail of T2. If a trail is non contained in a longer
one, it is said maximal.

B. Large-Scale System framework

Fig. 1: Example of interconnected system described by a
digraph D = {IN , E}.

As in [8], we consider a LSS composed of N ∈ N
interconnected subsystems, with dynamics

ẋi = fi

(
xi, {xj}j∈Ni

, di

)
, i ∈ IN , (1)

where IN = {1, ..., N}, xi ∈ Rni , ni ∈ N, is the state
vector, di ∈ Rmi , mi ∈ N, is the disturbance, Ni ⊆
IN denotes the neighbors set, and fi : Rni × Rni,1 · · ·
×Rni,||Ni|| × Rmi → Rni is the vector field associated to
the i-th subsystem (also called agent). Symbol ni,j denotes
the state dimension of the j-th neighbor of i. We assume that
fi(0, 0, ..., 0, 0) = 0, ∀ i ∈ IN , and that the interconnected
system (1) is forward complete, meaning that its solution
exists for all initial states, and all disturbances di. Moreover,
we assume that the interconnections in (1) are described
by a directed graph D = (IN , E) (for example, see Fig.
1). Then, neighborhood of agent i ∈ IN is defined as
Ni = {j ∈ IN | ∃ eij ∈ E}. For the problem not to be
trivial, graph D is assumed to be weakly connected.

We introduce here the following definition:
Definition 5: The system (1) is said to be scalable

Marginally Mesh Stable (sMMS) if there exist σx
i , σ

d
i , γi ∈



K∞ such that the stability property

|xi(t)| ≤ σx
i (|xi(t0)|) + γi

(
max
j∈Ni

|xj(·)|[t0,t]∞

)
+ σd

i

(
|di(·)|[t0,t]∞

)
, t ≥ t0 ≥ 0, (2)

of each i ∈ IN , ∀ N ∈ N, implies the existence of some
functions σx, σd ∈ K∞ such that, for each t ≥ t0,

max
i∈IN

|xi(t)| ≤ σx

(
max
i∈IN

|xi(t0)|
)
+σd

(
max
i∈IN

|di(·)|[t0,t]∞

)
,

(3)
for any initial condition xi(t0) ∈ Rn and any disturbance
function di(·).

For sake of completeness, and to better remark the differ-
ences with respect to the concept of sMMS, we recall here
the definition of scalable Mesh Stability introduced in [8]:

Definition 6: The system (1) is said to be scalable Mesh
Stable (sMS) if there exist βx

i ∈ KL and γi, σ
d
i ∈ K∞ such

that the ISS property

|xi(t)| ≤ βx
i (|xi(t0)|, t− t0) + γi

(
max
j∈Ni

|xj(·)|[t0,t]∞

)
+ σd

i

(
|di(·)|[t0,t]∞

)
, t ≥ t0 ≥ 0 (4)

of each i ∈ IN , ∀ N ∈ N, implies the existence of some
functions βx ∈ KL and σd ∈ K∞ such that, for each t ≥ t0,

max
i∈IN

|xi(t)| ≤ βx

(
max
i∈IN

|xi(t0)|, t
)
+σd

(
max
i∈IN

|di(·)|[t0,t]∞

)
,

(5)
for any initial condition xi(t0) ∈ Rn and any disturbance
function di(·).

III. MAIN RESULTS

For sake of simplicity, here we refer to the transpose
digraph DT describing the interconnection topology of (1).
In this case, set Ni corresponds to all the vertices in IN for
which it exists eji ∈ E(DT ). Moreover, let {Th

i }
T̄i

h=1 be the
set of maximal trails in DT with starting vertex i ∈ IN (see
Definition 4), where T̄i is the cardinality of the set, since
for each node, several maximal trails could exist. Then, the
following assumptions are made:

Assumption 1: For each i ∈ IN for which either (2) or
(4) hold, there exists γ̃i > 0 such that γi(s) ≤ γ̃is, ∀ s ≥ 0.

Assumption 2: For each i ∈ IN , for each maximal trail in
{Th

i }
T̄i

h=1, there exists a trail T̃h
i contained in Th

i , with initial
vertex i and a finite length L(T̃h

i ) ≤ L(Th
i ), such that the

vertices i, i1, . . . , iL(T̃h
i ) corresponding to the sequence of

edges ei1i , ei2i1 , . . . , e
iL(T̃h

i )

iL(T̃h
i )−1

in T̃h
i verify

∏L(T̃h
i )

v=0 γ̃iv < 1,
where i0 = i, thus γ̃i0 = γ̃i.

For future use, we introduce σ̂p = maxi∈IN
σp
i (s), p ∈

{x, d}, and β̂(r, s) = maxi∈IN
βx
i (r, s), r, s ≥ 0. It is easily

seen that σ̂x, σ̂d ∈ K∞ and β̂ ∈ KL. Moreover, let t1, t2, t̄
be fixed time instants in [t0, t]; then we define |x(t̄)|∞ =

maxi∈IN
|xi(t̄)| and d

[t1,t2]
∞ = maxi∈IN

|di(·)|[t1,t2]∞ .
We now introduce the main results of the paper:

Theorem 1: Consider the LSS (1). Assume that (2) holds
for any i ∈ IN . If Assumptions 1 and 2 hold for all the
subsystems, then the interconnected system (1) is sMMS.

Proof: Theorem 1 can be proven by following similar
arguments as in [8, Theorem 1]. By iteratively running
through all possible trails starting from each node i and
by Assumption 2, every trail has a sub-trail such that∏L(T̃h

i )
v=0 γ̃iv < 1 is verified. Then, since also the worst-

case equivalent interconnection parameter is lower than 1,
the sMMS of the entire interconnected system is proven.

Theorem 1 extends the results in [8] by ensuring the
boundedness of the overall system trajectories in the case of
relaxed conditions. Indeed, differently from [8, Theorem 1],
weaker conditions on the local stability of the subsystems are
required, that is the existence of class K∞ functions instead
of class KL ones, as well as the relaxation of the condition
γ̃i ∈ (0, 1) for all i, now γ̃i > 0. However, we stress that
the case γ̃i ∈ (0, 1) turns out to be a special case of the
general one considered in Theorem 1. In order to prove that
the above result is general and that can lead to the sMS
of the interconnected system, we introduce the following
theorem requiring stronger conditions on the stability of each
subsystem:

Theorem 2: Consider the LSS (1). Assume that (4) holds
for any i ∈ IN . If Assumptions 1 and 2 hold for all the
subsystems, then the interconnected system (1) is sMS.

Proof: Let be τ ∈ [t0, t]. For each i ∈ IN , by (4) with
t0 = τ , we get:

|xi(t)| ≤ β̂(|xi(τ)|, t− τ) + γ̃i max
j∈Ni

|xj(·)|[τ,t]∞

+ σ̂d
(
|di(·)|[τ,t]∞

)
. (6)

Given ω̄ ∈ (0, 1), for any t > t0 > 0 define M =
M̂ ⌈t− t0⌉, M̂ > 0 arbitrarily large, and τk = t0 +
ω̄M−k+1(t − t0). By construction, sequence {τk}Mk=0 is
increasing and τk ∈ (t0, t). Then, setting τ = τM in (6)
we get:

|xi(t)| ≤ β̂ (|xi (τM )| , t− τM ) + γ̃i max
j∈Ni

|xj(·)|[τM ,t]
∞

+ σ̂d
(
d[t0,t]∞

)
, (7)

where t− τM = (1− ω̄)(t− t0). At this point, a bound for
maxj∈Ni

|xj(·)|[τM ,t]
∞ needs to be derived. For this purpose,

let us consider the trajectories at time instant τM with initial
condition in τ = τM−1. Let i1 = argmax

j∈Ni

|xj(·)|[τM ,t].

Then, from (6) we get:

|xi1 (·)|
[τM ,t]
∞ ≤ β̂ (|xi1 (τM−1)| , τM − τM−1)

+ γ̃i1 max
j∈Ni1

|xj(·)|[τM−1,τM ]
∞ + σ̂d

(
d[t0,t]∞

)
, (8)

where τM − τM−1 = (1 − ω̄)ω̄(t − t0). Since by [15,
Lemma 7] there exist λi ∈ R>0 and α1,i, α2,i ∈ K∞ such
that βx

i (r, s) ≤ α−1
1,i

(
α2,i(r)e

−λis
)
, then, by setting s = 0

and defining σx
i (r) = α−1

1,i (α2,i(r)) ∈ K∞, the sMMS of
(1) follows from Theorem 1. Then, |xi(t)| ≤ A, for each



i ∈ IN , where A = σx (|x(t0)|∞) + σd
(
d
[t0,t]
∞

)
. Therefore,

by exploiting the sMMS property and (8) in (7), we get

|xi(t)| ≤
0∑

k=−1

k∏
v=−1

γ̃iv β̂
(
A, (1− ω̄)ω̄k+1(t− t0)

)
+

0∑
k=−1

k∏
v=−1

γ̃iv σ̂
d
(
d[t0,t]∞

)
+

1∏
v=0

γ̃iv max
j∈Ni1

|xj(·)|[τM−1,τM ]
∞

where γ̃i−1 = 1 and γ̃i0 = γ̃i. Since Assumption 2 holds, for
each sequence of vertices jv = arg max

j∈Njv−1

|xj(·)|[t0,t]∞ there

exists a finite number l such that
∏l

v=0 γ̃iv < 1, γ̃i0 = γ̃i.
Then, by repeating the previous steps for the entire sequence
of length l, we get

|xi(t)| ≤
l−1∑

k=−1

k∏
v=−1

γ̃iv β̂
(
A, (1− ω̄)ω̄k+1(t− t0)

)
+ ĉl,di σ̂d

(
d[t0,t]∞

)
+ γ̂l

i max
j∈Niv

|xj(·)|[τM−l,τM ]
∞ (9)

where c̄l,di =
∑l−1

k=−1

∏k
v=−1 γ̃iv and γ̂l

i =
∏l

v=0 γ̃iv < 1.
As in [18], a KL function ϕ is defined as

ϕ(r, s) = sup
ω∈(0,1]

ωqβ̂(r, ωs), (10)

for some q > 0. Then, multiplying and dividing β̂ in (9) for(
(1− ω̄)ω̄k

)q
, we get

|xi(t)| ≤ c̄l,xi (ω̄)ϕ (A, t− t0) + c̄l,di σ̂d
(
d[t0,t]∞

)
+ γ̂l

i max
j∈IN

|xj(·)|[τM−l,τM ]
∞

where c̄l,xi (ω̄) = 1
(1−ω̄)q

∑l−1
k=−1 ω̄

−kq
(∏k

v=−1 γ̃iv

)
. By

Assumption 2, the same arguments apply for all the trails
in {Th

i }
T̃i

h=1. Then, let

T̃ x
i = argmax

T̃h
i

h=1,...,T̄i

c̄
L(T̃h

i ),x
i (ω̄), T̃ d

i = argmax
T̃h
i

h=1,...,T̄i

c̄
L(T̃h

i ),d
i ,

T̃ γ
i = argmax

T̃h
i

h=1,...,T̄i

γ̃
L(T̃h

i )
i ,

we define ĉxi (ω̄) = c
L(T̃x

i ),x
i (ω̄), ĉdi = c

L(T̃d
i ),d

i , γ̂i = γ̂
L(T̃γ

i )
i ,

and L̄i = max(L(T̃ x
i ), L(T̃

d
i ), L(T̃

γ
i )). For each i ∈ IN , we

get

|xi(t)| ≤ ĉxi (ω̄)ϕ(A, t− t0) + ĉdi σ̂
d
(
d[t0,t]∞

)
+ γ̂i max

j∈IN

|xj(·)|
[τM−L̂i

,t]
∞ . (11)

By defining ĉx(ω̄) = maxi∈IN
ĉxi (ω̄), ĉd = maxi∈IN

ĉdi ,
γ̂ = maxi∈IN

γ̂i, and L̂ = maxi∈IN
L̂i, we get

|xi(t)| ≤ ĉx(ω̄)ϕ(A, t− t0) + ĉdσ̂d
(
d[t0,t]∞

)
+ γ̂ max

j∈IN

|xj(·)|
[τM−L̂,t]
∞ . (12)

At this point, we can repeat the same steps for j̃ =

argmaxj∈IN
|xj(·)|

[τM−L̂,t]
∞ . Then, there exists a sequence

of edges with length l such that the associated vertices lead
to

|xj̃(·)|
[τM−L̂,t]
∞ ≤

l−1∑
k=−1

k∏
v=−1

γ̃iv β̂
(
A, (1− ω̄)ω̄k+L̂+1(t− t0)

)
+ ĉl,di σ̂d

(
d[t0,t]∞

)
+ γ̂l

i max
j∈Niv

|xj(·)|
[τM−l−L̂,t]
∞ . (13)

By the straightforward calculations seen before,

|xj̃(·)|
[τM−L̂,t]
∞ ≤ ĉx(ω̄)ω̄−L̂qϕ(A, t− t0) + ĉdσ̂d

(
d[t0,t]∞

)
+ γ̂ max

j∈IN

|xj(·)|
[τM−2L̂,t]
∞ . (14)

Using (14) in (12), we get

|xi(t)| ≤
1∑

ξ=0

(
γ̂ω̄−L̂q

)ξ
c̄x(ω̄)ϕ(A, t− t0)

+

1∑
ξ=0

γ̂ξ c̄dσ̂d
(
d[t0,t]∞

)
+ γ̂A. (15)

By choosing M̂ = L̂, defining Ξ = M
L̂

− 1 = ⌈t− t0⌉ − 1,
and by repeating the steps leading to inequality (15), we get

|xi(t)| ≤
Ξ∑

ξ=0

(
γ̂ω̄−L̂q

)ξ
c̄x(ω̄)ϕ(A, t− t0)

+

Ξ∑
ξ=0

γ̂ξ c̄dσ̂d
(
d[t0,t]∞

)
+ γ̂Ξ+1A. (16)

If γ̂ω̄−L̂q < 1,

|xi(t)| ≤
ĉx(ω̄)

1− γ̂ω̄−L̂q
ϕ(A, t− t0)

+ γ̂ξ+1A+
ĉd

1− γ̂
σ̂d
(
d[t0,t]∞

)
. (17)

By defining β̄(r, s) = ĉx(ω̄)

1−γ̂ω̄−L̂q
ϕ(r, s) ∈ KL and σ̄(s) =

ĉd

1−γ̂ σ̂
d(s), we get

|xi(t)| ≤ β̄ (A, t− t0) + σ̄
(
d[t0,t]∞

)
. (18)

By recalling that A = σx (|x(t0)|∞)+ σd
(
d
[t0,t]
∞

)
, we have

to deal with the presence of σd(s) in the first term of β̄. As
in [8], we introduce the function

k(r, σd(s), t−t0) = min
{
β̄(σx(r) + σd(s), t− t0), σ

x(r)
}
.

(19)
For any α ∈ K∞, the following inequality applies (see
equations (98)-(100) in [19]):

k(r, σd(s), t−t0) ≤ β̄(σx(r)+α−1(r), t−t0)+σx◦α(σd(s)).
(20)

Then, functions β(r, s) = β̄(σx(r) + α−1(r), s) ∈ KL and
σ(r) = σ̄(r) + σx ◦ α(σd(r)) ∈ K∞ can be defined, thus
obtaining for each i ∈ IN and for each t ≥ t0

|xi(t)| ≤ β (|x(t0)|∞, t− t0) + σ
(
d[t0,t]∞

)
. (21)



Then, the sMS of (1) is proven.
Theorem 2 provides a stronger stability result with respect

to Theorem 1, which is due to the stronger conditions on the
stability of the subsystems. Moreover, it provides a similar
results as [8, Theorem 1], extending it to the case where
interconnection parameters γ̃i > 1 are present.

Theorem 1 and Theorem 2 ensure the existence of trajec-
tory bounds for (1) that do not depend on the number of
subsystems in the network. The obtained results highlight
the importance of the knowledge of the local section of
the interconnection graph surrounding an agent with non-
ideal interconnection links. Indeed, for the LSS to be either
sMMS or sMS, we need to investigate the capability of the
subsystems to counterbalance the perturbations amplified by
the non-ideal interconnections. As a consequence, depen-
dence between the LSS stability and the trails describing how
perturbations propagate through it exists. Also, this depen-
dence results to affect the stability region of the LSS, which
enlarges as the number of subsystems needed to dampen
the non-ideal interconnection effects increases. Finally, we
remark that this result is general, and it includes also the
special case shown in [8] where γ̃i < 1 for each i ∈ IN .

IV. NUMERICAL EXAMPLE

Fig. 2: The interconnection system considered as case study
in Section IV

In order to validate the theoretical results shown in Section
III, a numerical example is presented. We consider a modi-
fied version of the power network shown in [8, Section V],
where an aggregate of microgrids composed by two different
kinds of nodes is modeled. Fig. 2 illustrates the topology
of the considered interconnection system, where first-level
nodes (in blue, solid lines) represent agents interconnecting
in a local area, while the second-level ones (in red, dashed
lines) represent supervisors interacting with their own local
area and with other supervisors. Differently from [8], here
we consider the more constrained situation where not all
the agents have a bidirectional interconnection. Let r ∈ N
be the total number of local areas in the network, and let
i ∈ {1, 2, . . . , r}. The first-level nodes are denoted with
ij , j ∈ {1, 2, . . . , ni, where ni ∈ N is the number of

agents in the i-th local area. The second-level nodes are
denoted with ρi. The neighborhood of first and second-level
nodes are denoted by Nij ⊆ {ik|k = 1, 2, . . . , ni} ∪ {ρi}
and Nρi

⊆ {ij |j = 1, 2, . . . , ni} ∪ {ρk|k = 1, 2, . . . , N},
respectively. Symbols xij , xρi

∈ R represent the state of the
first and second-level nodes, respectively. In the same way,
dij , dρi ∈ [d, d̄] ⊂ R represent the disturbances acting on
the first and second-level nodes, respectively. The associated
dynamics are

ẋij = −3xij + dij +
∑
k∈K

a
ij
k xk + aijρi

xρi
(22a)

ẋρi
=−3xρi

+dρi
+

(∏
l∈L

bρi

l |xl|

) 1
||L||

+

(∏
h∈H

cρi

h |xh|

) 1
||H||

(22b)

where K = Nij/{ρi}, L = Nρi
∩
{
ij | j = 1, 2, ..., ni

}
, and

H = Nρi
∩
{
ρp |p = 1, 2, ..., r

}
. We consider the coefficients

a
ij
k , a

ij
ρi ∈ R, bρi

l , cρi

h ∈ R+, ∀ ij , ρi.
As shown in [8] (see equations (25)-(27)), by considering

the quadratic Lyapunov functions Vij = x2
ij
/2 and Vρi =

x2
ρi
/2 for (22a) and (22b), respectively, we can prove the

existence of functions βij , βρi
∈ KL, σij , σρi

∈ K∞, and
γ̃ij , γ̃ρi ∈ R≥0 such that

|xv(t)| ≤ βv(|xv(t0)|, t) + σv

(
|dv(·)|[t0,t]∞

)
+ γ̃v max

k∈Nv

|xk(·)|[t0,t]∞ , (23)

for each v ∈ {ij |i = 1, . . . , N, j = 1, . . . , ni} ∪ {ρi|i =
1, . . . , N}. In particular, we get

γ̃ij =

√
1

5

∑
k∈Nij

|aijk |, γ̃ρi =

√
1

5
(Ψb +Ψc) , (24)

where Ψb =
(∏

l∈L bρi

l |xl|
) 1

||L|| , Ψc =(∏
h∈H cρi

h |xh|
) 1

||H|| . Since for system (22) the ISS
inequality (23) holds, the sMS of the interconnected power
system can be proven. On the basis of Theorem 2, we need to
analyse the interconnection parameters (24). In the example
under analysis, the values of the interconnection parameters
are shown within each node in Fig. 2. In particular, the
subset Γ = {13, 22, 25, 33, 42, 51, 56, ρ2, ρ5} have the
corresponding interconnection parameter between 1.127 and
2.605. Then, by investigating the local interconnection graph
of each node in Γ, we derive the existence of a neighborhood
able to counterbalance the effects of such agents, thus
satisfying the condition in Assumption 2. Therefore, we
can state the sMS of the considered interconnected system.
Fig. 3b shows the numerical results obtained with respect
to the interconnected system depicted in Fig. 2 in the form
of maximum state perturbations. The simulation time is 30s
and it is split into two phases: for 0 ≤ t < 15, the system
starts with perturbed initial conditions, and no disturbances
affecting the agents are present; for 15 ≤ t ≤ 30,
nodes 13, 24, 32, 42, 55, 58, ρ1, ρ2, ρ3, ρ4, ρ5 are affected by
sinusoidal disturbances dj(t) = Aj sin(ωjt + ϕj), where
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(a) Overall system trajectories.
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(b) Maximum state perturbation: max
i∈IN

|xi(t)|, ∀ t ∈ [0, 30].

Fig. 3: Numerical simulations corresponding to the example
in Fig. 2.

Aj ∈ [1, 4], ωj ∈ [1, 4], and ϕj ∈ [0, π]. In Fig. 3b, we
observe that the overall system is able to attenuate the
perturbations due to both the non-ideal initial conditions and
the sinusoidal disturbances. Therefore, the numerical results
validate the theoretical ones, proving that the network is
able to counterbalance the effects of the agents that locally
amplify the perturbations.

V. CONCLUSIONS

In this paper, we investigated the stability of a LSS with
non-ideal interconnection links leading to the amplification
of the perturbations propagating through it. We introduce
the notion of scalable Marginal Mesh Stability (sMMS)
requiring weaker conditions than the scalable Mesh Stability
(sMS), and we provide sufficient conditions to be met by
each subsystem to ensure the sMMS of the entire system.
Moreover, we prove that if stronger conditions on the sta-
bility of each agent are verified, then the sMS of the same
framework can be derived. The theoretical results show that
there exists a dependence between the LSS stability and
the trails describing how perturbations propagate through it.
The theoretical framework derived here is used to analyze a
network of microgrids with two kinds of nodes.

Future work will focus on the analysis of LSS where the
number of agents varies over time (namely with plug-and-
play subsystems), causing the rising of perturbations due to
multiple transient phases in the presence of multiple agents

connecting/disconnecting.
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