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Second-Order Beurling Approximations and
Super-Resolution from Bandlimited Functions

Maxime Ferreira Da Costa, Member, IEEE

Abstract—The Beurling–Selberg extremal approximation prob-
lems are classics in functional analysis and have found applications
in numerous areas of mathematics. Of particular interest, optimal
solutions to those problems can be exploited to provide sharp
bounds on the condition number of Vandermonde matrices with
nodes on the unit circle, which is of great interest to many
inverse problems, including super-resolution. However, those
solutions have non-derivable Fourier transforms, which impedes
their use in a stability analysis of the super-resolution problem.
We propose novel second-order extensions to Beurling–Selberg
problems, where the approximation residual to functions of
bounded variation (BV) is constrained to faster decay rates in the
asymptotic, ensuring the smoothness of their Fourier transforms.
We harness the properties of those second-order approximants
by establishing a link between the norms of the residuals and
the minimal eigenvalue of the Fisher information matrix (FIM)
of the super-resolution problem. This enables the derivation of
a simple and computable minimal resolvable distance for the
super-resolution problem, depending only on the properties of the
point-spread function, above which stability can be guaranteed.

I. INTRODUCTION

In the late 1930s, Beurling considered the problem of finding
a function F (t) that majorizes the signum function sgn(t)1

and with a Fourier transform having compact support in the
interval [−1, 1], while minimizing the integral of the residual
F (t)− sgn(t) ≥ 0. He successfully showed that the function

B0(t) = (1 + 2t) sinc2(πt) +

∞∑
k=−∞

sgn(k) sinc2 (π(t− k)) ,

(1)
also called the Beurling majorant, is extremal in the sense that
any bandlimited majorant F of the signum function verifies∫ ∞

−∞
(F (t)− sgn(t))dt ≥

∫ ∞

−∞
(B0(t)− sgn(t))dt = 1. (2)

Furthermore, equality in the above inequation happens if and
only if F (t) = B0(t). Although Beurling’s study was originally
motivated by proving uniform bounds on the derivatives of
almost-periodic functions, the Beurling majorant is a versatile
functional analysis tool that found usage in numerous areas
of mathematics, including probability, dynamical systems,
combinatorics, and sphere packing, and sampling theory (see [1]
and references therein).

More relevant to the context of this paper, Selberg used
Beurling’s extremal function to construct extremal lower and
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1Herein, we adopt the convention sgn(0) = 0.

upper bandlimited approximations of the rectangle function [2],
[3]. This was later extended to arbitrary functions of bounded
variation (BV) [4], at the cost of a possible loss of extremality.
Those results pave the way for tight derivations of the large
sieve inequalities [5], [6], which, in short, frame the total
energy of a periodic function with the energy of its non-
uniform samples. Among other applications, the large sieve
inequalities provide sharp bounds on the extremal singular
values of Vandermonde matrices with nodes on the unit circle.
The conditioning of such matrices plays a critical role in
the sampling, observability, and identification of shift-invariant
systems and in the super-resolution of complex exponentials [7],
also known as the line spectral estimation problem [8], [9].

However, the lack of derivability of the Fourier transform of
the solutions to the Beurling–Selberg problems prevents their
application to a perturbation analysis of super-resolution when
dealing with noisy observations, as infinitesimal variations
have to be considered. In this paper, we palliate this issue by
introducing higher-order extensions to the Beurling–Selberg
problems. We explore their properties and leverage them to
study the stability of super-resolution under Gaussian noise,
which we quantify in terms of the minimal eigenvalue of its
associated Fisher information matrix (FIM) [10].

A. Contributions and Organization of the Paper

In Section II, novel extensions to the classical Beurling–
Selberg extremal approximations problems are defined, which
we call of higher-order, and where the approximation residuals
are required to have faster decay rates, ensuring the smoothness
of their Fourier transform. We specifically focus on the second-
order case. Theorem 1 proposes an approximant of the signum
function with a twice differentiable Fourier transform. Building
on this first result, Theorem 3 proposes a construction of
bandlimited minorants and majorants of arbitrary BV functions.
Additionally, the approximation error of the solutions is
controlled by a quantity that depends on the total variation
of the approximated BV function and of the approximation
bandwidth. Section III recalls the formulation of the super-
resolution problem from a bandlimited point-spread function
(PSF). Considering the case where the minimal separation
between the sources is inversely proportional to the number of
acquired moments, we investigate the stability of the problem
in the lense of the degeneracy of its FIM [10], when the
minimal eigenvalue of the FIM is not asymptotically vanishing.
We leverage the properties of the higher-order approximants
constructed in Section II to provide a lower bound on the
minimal eigenvalue of the FIM and show it remains bounded
away from 0 as long as the separation parameter is greater



than a quantity that depends only on the autocorrelation of
the PSF. This result provides a novel, simple, and insightful
relationship between the BV norms of the Fourier transform
of the autocorrelation and the associated stable resolution
limit. Numerical experiments are presented to highlight our
theoretical findings. Conclusions and future works are drawn
in Section IV.

B. Notation and Definitions

Vectors of CN and matrices of CN×r are denoted by
boldface letters a and capital boldface letters A, respectively.
The minimal (resp. maximal) eigenvalues of a Hermitian matrix
A are denoted λmin(A) and λmax(A), respectively. For any
function F ∈ L2(R), we denote by F̂ its continuous time
Fourier transform, defined almost everywhere as

F̂ (u) =

∫
R
F (t)e−i2πutdt, ∀u ∈ R. (3)

A function F ∈ L2(R) is said to be β-bandlimited if for all u
such that |u| > β, we have F̂ (u) = 0. For any β > 0, we write
Fβ(t) = βF (βt). We highlight that if F is 1-bandlimited, then
Fβ is β-bandlimited. F ∈ BV means that F is of bounded
variation. In that case, we denote by dF its derivative in the
weak sense, and write by VF =

∫∞
−∞ |dF | its total variation

over R.
We let T = R/Z be the unidimensional torus. When N =

2n+ 1 is an odd number, we write by v0(τ),v1(τ) ∈ CN the
vectors given by

v0(τ) =
1√
N

[
e−i2π(−n)τ , . . . , e−i2πnτ

]⊤
(4a)

v1(τ) =
1√
N

[
−i2π(−n)e−i2π(−n)τ , . . . ,−i2πne−i2πnτ

]⊤
,

(4b)

for any τ ∈ T. For any vector τ ∈ Tr, we define by
V0(τ ),V1(τ ) ∈ CN×r, the generalized Vandermonde matrices

V0(τ ) = [v0(τ1), . . . ,v0(τr)] , (5a)
V1(τ ) = [v1(τ1), . . . ,v1(τr)] , (5b)

and write W (τ ) = [V0(τ ),V1(τ )] ∈ CN×2r their concatena-
tion. Finally, the wrap-around distance ∆(τ ) is defined by the
minimal distance between two pairs of points in τ over the
torus, i.e. ∆(τ ) ≜ minℓ ̸=ℓ′ infj∈Z |τℓ − τℓ′ + j|.

II. HIGHER-ORDER BEURLING–SELBERG APPROXIMATION

A. Higher-Order Beurling Majorant

Although the function B0 realizes the best possible 1-
bandlimited majorization of the signum function in the L1-
sense, the residual R0(t) = B0(t)−sgn(t) decays quite slowly
as O(|t|−1

) in the limit |t| → ∞. One consequence is that the
Fourier transform R̂0 and B̂0 will not be differentiable.

In this work, we define the mth-order Beurling approx-
imation problem as the problem of majorizing the signum
function with a 1-bandlimited function Bm for which the
Fourier transform of the residual Rm(t) = Bm(t)− sgn(t) has
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Figure 1. (a) The graphs of the functions B0(t) (in blue) and B2(t) (in red).
(b): The graphs of the residuals functions B0(t) − sgn(t) (in blue) and
B2(t)− sgn(t) (in red).

an at least m-times differentiable Fourier transform R̂m. The
sequel focuses on the case of m = 2, and we define the 2nd
order Beurling majorant set as follows.

Definition 1 (2nd order Beurling majorant set).
We let B2 the set of functions F : t 7→ F (t) satisfying the
following properties:

1) F is 1-bandlimited;
2) F majorizes sgn, i.e. F (t) ≥ sgn(t) for all t ∈ R;
3)
∫∞
−∞ 4π2t2 (F (t)− sgn(t)) dt < ∞.

The set B2 differs from Beurling’s original formulation only
in the third assumption, which implies the residual is at least
twice differentiable. Additionally, it is easy to verify B0 /∈ B2

from (1). The central question is to find functions F that belong
to B2 and realize a “sufficiently good” approximation of the
signum function. The following result expresses one function
B2 ∈ B2.

Theorem 1 (2nd order Beurling majorant). Define the two
auxiliary functions K(t) and L(t) as

K(t) = sinc4
(
πt

2

)
(6a)

L(t) =

(
π2 + 3

9
t+

π2

6
t3
)
K(t)

+

∞∑
k=−∞

sgn(2k)

(
1 +

π2

6
(t− 2k)

2

)
K(t− 2k),

(6b)



and let B2(t) = K(t) + L(t). Then, B2 ∈ B2 and∫ ∞

−∞
(B2(t)− sgn(t)) dt =

4

3
(7a)∫ ∞

−∞
4π2t2 (B2(t)− sgn(t)) dt = 16. (7b)

The proof of the theorem is skipped for conciseness.
Nonetheless, we highlight that the crux in the construction
of the function B2 leverages higher-order Whitaker–Shannon
interpolation formulas for bandlimited functions involving their
uniform samples of their p first derivatives [11], [12]. The
following Lemma specifies this formula when p = 3.

Lemma 2 (Higher-order interpolation formula [12]). If F is a
continuous 1-bandlimited then for any t ∈ R we have that

F (t) =
∑
k∈Z

(
F (2k) + F ′(2k)(t− 2k)

+

(
F ′′(2k) +

π2

3
F (2k)

)
(t− 2k)

2

2

+

(
F ′′′(2k) +

π2

3
F ′(2k)

)
(t− 2k)

3

6

)
sinc4

(π
2
(t− 2k)

)
.

(8)

Identifying the terms in (8) with the expression of B2

proposed in Theorem 1 yields B(0) = 0 and

B(2k) = sgn(2k), B(ℓ)(2k) = 0. (9)

for ℓ = 1, 2, 3 and k ∈ Z\{0}. The previous relations suggest
that B2(t) interpolates the signum function with vanishing
derivatives up to the third order at every non-zero even integer.
This foresees the quality of the unisided approximation of
the signum function realized by B2(t). The graphs of the
function B2(t) and of its residual with the signum function
R2(t) are plotted in Figure 1. As shown, the decay rate of
the residual R2(t) has a faster rate than the one of R0(t).
However, this benefit comes at a price of slightly greater L1-
norm, as confirmed by comparing the error metrics (2) and (7).
Investigations on the extremality of B2(t) within the set B2

are left for future work.

B. Unisided Approximations of Functions of Bounded Variation

Selberg used the Beurling majorant to construct extremal
bandlimited majorization and minorization of the rectangular
function [2], [3]. This result was further generalized to arbitrary
BV functions [4]. Likewise, this subsection is dedicated to
higher-order bandlimited unisided approximations of arbitrary
BV functions by exploiting the function B2 constructed in
Theorem 1. We start by defining the approximation sets of
interest in the following.

Definition 2 (2nd-order minorant and majorant set).
Given a function G ∈ BV and β > 0, we let
E−
β (G) and E+

β (G) the second-order minorant and ma-
jorant sets, respectively, which we define as follows.
Minorant set: F ∈ E−

β (G) if and only if
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Figure 2. Graphs of the bandlimited majorants and minorants proposed by
Theorem 3 for different BV functions: (a) the rectangle function; (b) the
semi-circle function t 7→

√
1− 4t2 over [− 1

2
, 1
2

]; (c) the triangle function
t 7→ max{0, 1 − 2|t|}; (d) the Gaussian function t 7→ exp(−t2/2), for
different values of the bandlimit β. In blue: β = 1; In red: β = 4; In yellow:
β = 16. Majorants are in plain lines, minorants are in dot-dashed lines, and
the target function is in a dashed black line.

1) F is β-bandlimited;
2) F minorizes G, i.e. F (t) ≤ G(t) for all t;
3)
∫∞
−∞ 4π2t2 (G(t)− F (t)) dt < ∞.

Majorant set: F ∈ E+
β (G) if and only if

1) F is β-bandlimited;
2) F majorizes G, i.e. F (t) ≥ G(t) for all t;
3)
∫∞
−∞ 4π2t2 (F (t)−G(t)) dt < ∞.

Similarly to Definition 1 for the set B2, the third assumption
implies that the residual functions of elements in E−

β (G)

and E+
β (G) have a Fourier transform that is at least twice

differentiable. In the sequel, we denote J(t) = 1
2L

′(t) where,
L is the auxiliary function defined in (6b). The next theorem
proposes a generic construction of a pair of functions in
those two sets by harnessing the properties of the function B2

constructed in Theorem 1.

Theorem 3 (Bandlimited approximation of BV functions).
Let G ∈ BV. For any β > 0 the two functions

G−
β (t) = G ∗ Jβ(t)− (2β)−1 (dVG) ∗Kβ(t) (10a)

G+
β (t) = G ∗ Jβ(t) + (2β)−1 (dVG) ∗Kβ(t), (10b)

are well-defined, β-bandlimited, and G−
β (g) ∈ E−

β (G) and
G+

β ∈ E+
β (G). Moreover, the two integral identities,∫ ∞

−∞

(
G+

β (t)−G(t)
)
dt

=

∫ ∞

−∞

(
G(t)−G−

β (t)
)
dt =

(
3

2
β

)−1

VG, (11a)



∫ ∞

−∞
4π2t2

(
G+

β (t)−G(t)
)
dt

=

∫ ∞

−∞
4π2t2

(
G(t)−G−

β (t)
)
dt =

(
1

8
β

)−1

Vt 7→4π2t2G(t).

(11b)

hold for any β > 0.

The proof of the above is skipped due to space constraints
and is inspired by [4, Theorem 11]. Of particular importance
in the previous is that both functions G−

β and G+
β converge to

G when we allow the bandwidth β of the approximants to tend
to infinity. Figure 2 shows the graphs of the approximants
proposed by Theorem 3 for four different BV functions
G and for different approximation bandwidth β. It shows
that increasing approximation bandwidth β results in tighter
approximation which corroborates with the results.

III. APPLICATION TO THE STABILITY OF
SUPER-RESOLUTION

Super-resolution is a fundamental signal processing problem
consisting in recovering a stream of point-sources from their
convolution with a known point-spread function, assumed to
be 1

2 -bandlimited, up to a rescaling. A classical approach [8],
[9], [13], [14] supposes measurements to be taken in the
Fourier domain, either because of the physical nature of the
measurements [15]–[17], or through transforms posterior to
acquisition [8], [18]. We assume an odd number N = 2n+ 1
of spectral measurements and a ground truth composed of
r many sources with r ≤ n to ensure the uniqueness of the
solution with r components in the absence of noise [19]. Super-
resolution boils down to recovering the amplitudes c ∈ Cr

and the locations τ ∈ Tr of the point-sources from the noisy
observation y ∈ CN of the form

y = diag(h)

r∑
ℓ=1

cℓv0(τℓ) +w = diag(h)V0(τ )c+w,

(12)

where hk = H
(

k
N

)
corresponds to the trigonometric moments

of the PSF. The noise w ∼ N
(
0, σ2IN

)
is assumed to be

white Gaussian noise with variance σ2. Additionally, up to
scaling, it is assumed that 1 ≤ |cℓ| ≤ κ of any ℓ = 1, . . . , r,
where κ is the dynamic range of the problem.

We write G = |H|2 and let gk = G( k
N ). As the vectors c

and τ are of different units, and since the statistical error of an
estimator of τ is expected to be inversely proportional to the
number of measurement N , we denote by τ̃ = τ/Ĝ(0) the
normalized location of the points. We seek to recover, without
loss of generality, the set of parameters θ = {c, τ̃}.

A. Stability of Super-Resolution

An important statistical problem for super-resolution is to
guarantee its stability. There are various definitions in the
literature to characterize the stability of the super-resolution
problem. Some stability criteria are algorithm-specific. In par-
ticular several super-resolution algorithms such as MUSIC [20],
[21], ESPRIT [22], matrix-pencil [3], [23], or total-variation

minimization methods [24]–[27] comes with provable stability
guarantees. On the other hand, stability can be defined under
various statistical and algorithm-independent metrics [28]–[30].
Nonetheless, all are related to the separation parameter N∆(τ )
between the sources, as empirically established by Rayleigh
(see e.g. [10], [31]). Here, we relate stability with the property
of the Fisher information matrix (FIM) J(θ) that its smallest
eigenvalue is strictly bounded away from 0, by extending the
FIM stability definition introduced in [10] to the case of an
arbitrary PSF.

Definition 3 (Stability of the Fisher Information Matrix). The
super-resolution problem is said to be stable for a separation
parameter β and a dynamic range κ if and only if there exists
a constant CG(β, κ) > 0 independent of N such that for any
set of parameters θ with N∆(τ ) ≥ β and 1 ≤ min{c} ≤
max{c} ≤ κ

λmin (J(θ)) ≥ σ−2CG(β, κ), (13)

where the FIM J(θ) under observations (12) reads [32], [33],

J(θ) = σ−2 diag(1, c)HW (τ )H diag(g)W (τ ) diag(1, c).
(14)

The Beurling extremal function, and in particular Selberg
approximation of the rectangle, can be used to bound, in a fairly
elegant manner, the singular values of Vandermonde matrices
of the kind V0(τ ) for any τ as a sole function of the separation
parameter N∆(τ ) [3], [7]. In our setting, the FIM (14)
reads as the Gramian of a weighted generalized Vandermonde
matrix W (τ ), which cannot directly be tackled with classical
Beurling–Selberg approximants. The next theorem concludes
on the stability of super-resolution by building a relationship
between the bandlimited approximations proposed in Theorem 1
and smallest eigenvalue of the FIM (14).

Theorem 4 (Conditioning of the FIM via Bandlimited Func-
tions). Suppose that G ∈ BV. If the separation parameter
N∆(τ ) verifies

N∆(τ ) > max

{
2VG

3
∫∞
−∞ G(t)dt

,
8Vt 7→4π2t2G(t)∫∞
−∞ 4π2t2G(t)dt

}
(15)

then super-resolution is stable in the sense of Definition 3.

Theorem 4 provides a generic and simple to evaluate criterion
to check the stability of the FIM of the super-resolution
problem (12). Additionally, this result enables the derivation
of lower bounds on the quantity λmin (J(θ)) as a function
of the Fourier transform of autocorrelation function G of the
PSF, of the dynamic range κ, and of the separation parameter
β = N∆(τ ). Figure 3 plots this quantity and the associated
stability bounds when the PSF is an ideal-low pass filter, a
circular low-pass filter, and a triangular low-pass filter.

IV. CONCLUSION AND FUTURE WORK

In the present work, we introduce an extension of the
Beurling–Selberg bandlimited approximation problem by build-
ing unisided approximants of BV functions that have smooth
Fourier transforms. We propose an application of our theoretical
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Figure 3. Theoretical lower bounds on the quantity λmin(JG(θ)) for three
different PSF: In blue: ideal-low pass; In red: circular low-pass; In yellow:
triangular low-pass. The lower bounds become non-negative when β = N∆(τ )
is greater than 3.4, 3.9, and 4.7, respectively, up to a 10−1 imprecision. Herein,
we set the dynamic range κ = 1.

findings to the stability of the Fisher information matrix of the
super-resolution problem from an arbitrary PSF whose Fourier
transform is of bounded variation. In the regime where the
separation between the sources is inversely proportional to the
number of measurements, the results reveal the existence of
the separation parameter, depending on the mass and second-
order moments of the variations of the PSF, above which
super-resolution is stable in a Fisher sense. We leave for an
extended version of this work a complete demonstration of our
results, a study of the extremality of the function B2, and an
exploration of the applicability of our higher-order bandlimited
approximation theory to system identification. Additionally,
extensions of the presented Beurling approximation problems
with an arbitrary order m will be investigated.
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