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George Boole’s method
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George Boole
Boole’s algebra of logic, in which algebraic techniques are applied to symbols representing classes, was 
successively systematized into the concept of a Boolean algebra.

As quoted from [c]

“If we look carefully at what Boole actually did in [a] [b] we find him carrying out operations of a different kind. 
Even though his starting algebraic equations were interpreted in logic, the allowed transformations often lead to 
equations without meaning in logic. Boole considered this acceptable so long as the end result could be given a 
meaning.

What Boole did use was, if clarified, a commutative ring with unit and having idempotents which stood for classes. 
He used the ring operations and, in particular, its addition, which is not closed with respect to idempotency. Boole 
also freely used division to solve equations, introducing then a special method for extracting the logical content of 
the resulting quotient.”

He extended the logical method in the continuous interval [0,1] to give one of the first mathematical 
formalizations of probabilities in [b].
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[b] Boole, G. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, (1854)

[a] Boole, G. The Mathematical Analysis of Logic. Being an Essay To a Calculus of Deductive Reasoning, (1847)

[c] Hailperin, T. Boole’s Algebra isn’t Boolean algebra. A description using modern algebra, of what Boole really did create.
Math. Mag. 54(4): 172–184 (1981).



George Boole :  the  “ 0 ” and the “ 1 ” 

George Boole in 1847 [a] gave a mathematical symbolism for logical propositions.

The conjunction (AND) of 2 logical propositions X and Y is the product: 𝑥𝑦 = 𝑦𝑥
𝑥 (“elective” symbol) acts as a selection operator on 𝑦 (also 𝑦 on 𝑥)

applied on itself the proposition does not change resulting in: 𝑥2 = 𝑥

this equation  was considered by George Boole the “fundamental law of thought”! [b]

the only solutions of this equation are the numbres 0 and 1 representing  “False" and “True“ respectively.

Same equation written as: 𝑥 1 − 𝑥 = 0 the logical law of non contradiction

showing that 𝑥 is an idempotent symbol (projector) orthogonal to 1 − 𝑥 (its complement)

one also has 𝑥 + 1 − 𝑥 = 1 the logical law of the excluded middle

5[b] Boole, G. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, (1854)

[a] Boole, G. The Mathematical Analysis of Logic. Being an Essay To a Calculus of Deductive Reasoning, (1847)



using Boole’s method for generating logical functions [*]
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Boole’s idempotent logical functions 𝑓 ∈ {0,1} are expressed in an arithmetical form (not modulo 2)

a logical function of two arguments is expressed by a bilinear form of the symbols 𝑥 and 𝑦 and the interpolation 
values 𝑓(𝑎, 𝑏) (truth values)

𝑓 𝑥, 𝑦 = 𝑓 0,0 1 − 𝑥 1 − 𝑦 + 𝑓 0,1 1 − 𝑥 𝑦 + 𝑓 1,0 𝑥 1 − 𝑦 + 𝑓 1,1 𝑥𝑦

Negation is the complementation by subtracting 𝑓 from the number 1:  𝑓 = 1 − 𝑓
generalizes to any number of arguments (arity)

[*] Toffano, Z. Eigenlogic in the Spirit of 
George Boole. Logica Universalis, Birkhäuser-
Springer, 14, 175–207 (2020). 



George Boole :  general logical inference method
From the proposition men are rational animals we want to find explicitly a definition of rational beings in terms of 
men and animals.

if 𝑥 represent men, 𝑦 rational beings and 𝑧 animals, the proposition: men are rational animals will be represented by 
the equation: 𝑥 = 𝑦𝑧
and 𝑦 rational beings can be expressed by inversion : 𝑦 =

𝑥

𝑧

Considering the interpolation method with 𝑦 = 𝑓(𝑥, 𝑧) Boole interprets the result using 𝑓 𝑎, 𝑏 =
𝑎

𝑏
:

𝑦 = 𝑓(𝑥, 𝑧) =
1

1
𝑧𝑥 +

0

1
𝑧 1 − 𝑥 +

1

0
1 − 𝑧 𝑥 +

0

0
1 − 𝑧 1 − 𝑥 = 𝐴 + 0 𝐵 +

0

0
𝐶 +

1

0
𝐷

where the propositions are interpreted as:
𝐴 means    all animals that are men
0 𝐵 means no animals that are not men
0

0
𝐶 means some none or all of beings that are neither animals nor men

1

0
𝐷 means men that are not animals do not exist (imposing the condition 𝐷 = 1 − 𝑧 𝑥 = 0)

so in addition to the values 1 for “true” and 0 for “false” 

Boole uses the peculiar 
1

0
to signify an “impossible” proposition and 

0

0
to signify an “indefinite” proposition.
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logical forms and diagrams

Elementary propositions:   A , B

SOP (Sum Of Products) canonical form
disjunction (∨, OR) of conjunctions (∧, AND) 
Conjunction, AND : A ∧ B
in arithmetical form: 𝑎𝑏

Disjunction, OR : A ∨ B = ( A ∧ B) ∨ (A ∧  B) ∨ (A ∧ B)
in arithmetical form: 1 − 𝑎 𝑏 + 𝑎 1 − 𝑏 + 𝑎𝑏 = 𝑎 + 𝑏 − 𝑎𝑏

Exclusive disjunction, XOR : A ⨁B =  A ∧ B ∨ A ∧  B
in arithmetical form: 1 − 𝑎 𝑏 + 𝑎 1 − 𝑏 = 𝑎 + 𝑏 − 2𝑎𝑏

Reed-Muller canonical form
exclusive disjunction (⨁, XOR) of conjunctions (∧, AND)
e.g. Disjunction, OR : A ∨ B = A ⨁B ∨ A ∧ B = A ⨁B⨁ A ∧ B

De Morgan logical duality
 A ∧  B = A ∨ B

in arithmetical form: 1 − 𝑎 1 − 𝑏 = 1 − 𝑎 + 𝑏 − 𝑎𝑏 = 1 − 𝑎 − 𝑏 + 𝑎𝑏

A

B
A ∧ B

 A ∧ B

A ∧  B

 A ∧  B

A ∨ B

A⨁B

BA

A ∧ B
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Venn Diagrams

John Venn following exactly Boole’s arithmetical 
approach illustrated all logical connectives in his 
Venn diagrams (1881) [*]

The diagrams have a direct correspondence with set 
theory by the operations of Intersection ∩ and Union 
∪ of sets (here surfaces).

Are widely used in probability theory and 
information theory for the illustrations of different 
representations (independent, relative, conditional…)

FFFF TFFF FTFF TTFF

FFTF TFTF FTTF TTTF

FFFT TFFT FTFT TTFT

FFTT TFTT FTTT TTTT

FF TF FT TT

False  ¬A A True T

False 

XOR    A⊕B

¬A

¬B

NOR    ¬(A∨B)

NAND    ¬(A∧B)

OR     A∨B

EQ     A≡BAND     A∧B

True T

B

A

A ⇒ B

B ⇒ A

B ⇏ A

A ⇏ B
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[*] Venn, J. Symbolic Logic. 
Macmillan and Company, London UK (1881)



George Boole :  extension to probabilities

As can be inferred from the complete title of [*], Boole was also interested in the theory of probability and, in 
particular, the application of his logical system to the calculus of events.

It was the acknowledgement of the dual nature of the theory of probability, numerical and logical, that made [*]
different from all previous treatises. He then introduced a new way of tackling it, which consists in:
“… substituting for events the propositions which assert that those events have occurred, or will occur; and 

viewing the element of numerical probability as having reference to the truth of those propositions…”

The general logic inference method is at the basis of his probabilistic reasoning for obtaining the “conditions of 
possible experience” through algebraic inequalities.

As an additional possibility in [*] Boole uses his peculiar expansions with 1/0 to present an original approach to 
conditional probability.

10[*] Boole, G. An Investigation of the Laws of Thought on Which are Founded the Mathematical Theories of Logic and Probabilities, (1854)



Boole’s probability inequalities
The same method used in logic was extended by G. Boole in the continuous interval [0,1].

The well known property : 𝑃 A ∨ B = 𝑃 A + 𝑃 B − 𝑃 A ∧ B

transforms as in propositional logic for disjunction ∨ (OR), and conjunction ∧ (AND).

If  𝑃 A = 𝑝 and  𝑃 B = 𝑞 with 𝑝, 𝑞 ∈ 0,1 one has : 

𝑃 A ∨ B = 𝑝 + 𝑞 − 𝑝𝑞 ≤ 𝑝 + 𝑞 = 𝑃 A + 𝑃 B
also
𝑃 A ∨ B ∨ 𝐶 = 𝑝 + 𝑞 + 𝑟 − 𝑝𝑞 − 𝑝𝑟 − 𝑞𝑟 + 𝑝𝑞𝑟 ≤ 𝑝 + 𝑞 + 𝑟 = 𝑃 A + 𝑃 B + 𝑃 C

increasing the number of propositions with ∨ (OR) one gets the  inclusion-exclusion principle outlined by 
Henri Poincaré [*].

From the above considerations one can thus express the Boole inequality:

𝑃  𝑖=1
𝑁 A𝑖 ≤  𝑖=1

𝑁 𝑃 A𝑖

By similar reasoning one obtains also the Bonferroni’s inequality:

𝑃  𝑖=1
𝑁 A𝑖 ≥  𝑖=1

𝑁 𝑃 A𝑖 −  𝑖<𝑗
𝑁 𝑃 A𝑖 ∧ A𝑗

11[*] Poincaré, H. Calcul des Probabilités; Gauthier-Villars: Paris, France, 1912



Eigenlogic
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operators in Logic

In 1847 G. Boole uses symbols (elective) that act as idempotent operators
less known: in 1848 in [a], he gave a logical interpretation of unitary quaternions.

C. S. Pierce used matrices and quaternion algebra to build his logical formalism at the end 
of the XIXth century.

In 1921 L. Wittgenstein states in the Tractatus [b] that all propositions can be derived by 
repeated application of the operator 𝑵 to the elementary propositions.

In 1924, M. Schönfinkel [c] introduced an operator based method in logic.
H. Curry named it successively  Combinatory Logic and improved the method in [d] which 
lead successively to lambda calculus introduced A. Church.

In 1943 E.L. Post [e] created a string-manipulation system (Post production system) and 
proved the remarkable Normal-form Theorem 𝑔$ → $ℎ

13

[a] Boole, G. Notes on quaternions. Philos. Mag, 33, 278–280, (1848)

[c] Schönfinkel, M. Über die Bausteine der mathematischen Logik. Math. Ann, 92, 305–316. (1924)
[b] Wittgenstein, L. Tractatus Logico-Philosophicus, prop. 6.001, Routledge (1921)

[d] Curry, H.B.; Feys, R. Combinatory Logic; North-Holland Co: Amsterdam, The Netherlands, (1958)
[e] Post, E. Formal Reductions of the General Combinatorial Decision Problem, American Journal of Mathematics 65 (2), 197-215. (1943)



quantum logic : projections as propositions
M. H. Stone gave the conditions for operations on projectors and commutativity [a]
and established that each binary logical proposition corresponds by duality to the set 
of all its true valuations (Stone Duality).

J. von Neumann considered measurement projection operators as propositions in 
1932 [b]
and also stated that a quantum state  |𝜓 can be represented by a density matrix
(rank-1  projection operator) :

𝝆 =  |𝜓  𝜓|

Quantum Logic proposed by G. Birkhoff and J. von Neumann in 1936 [c] suggested 
the replacement of Boolean algebras with the lattice of closed subspaces of a (finite) 
Hilbert space.

based on projection measurements it is a non-Boolean logic and fails to meet 
distributive properties as expected by quantum mechanics.
problem: no satisfying way to formulate logical implication

14

[a] Marshall Harvey Stone: Linear Transformations in Hilbert Space and Their Applications to Analysis, p.70: “Projections”, (1932) 

[b] John von Neumann. Mathematical Foundations of Quantum Mechanics, Eng. Transl. (1955), p.249: “Projectors as Propositions”, (1932)

[c] Garret Birkhoff, John von Neumann, The Logic of Quantum Mechanics. The Annals of Mathematics, 2nd Ser., 37 (4), 823-843 (1936)

G. Birkhoff J. Von Neumann

M.H. Stone



Eigenlogic

Eigenlogic: a logical method using operators in linear algebra [a,b,c]

logical operators    ⟺ logical connectives

eigenvalues of logical operators    ⟺ truth values

eigenvectors of logical operators     ⟺ interpretations (propositional cases)

Eigenlogic uses the Kronecker product to scale-up to more logical arguments (arity).

A single seed operator generates the entire logic.
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[b] Toffano, Z., Eigenlogic in the Spirit of George Boole, Logica Universalis, Birkhäuser-Springer, 14, 175–207. (2020) 

[a] Dubois, F., Toffano, Z., Eigenlogic: A Quantum View for Multiple-Valued and Fuzzy Systems,
in: de Barros J., Coecke B., Pothos E. (eds) Quantum Interaction. QI 2016. Lecture Notes in Computer Science, vol 10106. Springer. (2017)

[c] Toffano Z, Dubois F., Adapting Logic to Physics: The Quantum-Like Eigenlogic Program, Entropy. ; 22(2):139. (2020)



Cayley-Hamilton theorem and matrix interpolation

The Eigenlogic seed operator 𝜦 can be any operator with 𝑚 non-degenerate eigenvalues 𝜆𝑖 ,

using Lagrange matrix interpolation the projector of each eigenstate is given by:

𝜆𝑖 >< 𝜆𝑖 = 𝜫𝜆𝑖
𝜦 =  

𝑗=1,𝑗≠𝑖

𝑚
𝜦 − 𝜆𝑗𝕀

𝜆𝑖 − 𝜆𝑗

is a polynomial in 𝜦 up to the power 𝑚 – 1 and is represented by a 𝑚 × 𝑚 square matrix.

The Cayley–Hamilton theorem says that any finite matrix is the solution of its own characteristic equation
showing that the above development is unique.

A logical operator for arity-1 is then given by the spectral decomposition with truth-values 𝑓 𝜆𝑗 ∈ {…𝜆𝑖 …}:

𝑭
𝐿
=  𝑗=1

𝑚 𝑓 𝜆𝑗 𝜫𝜆𝑗
𝜦

Scaling to higher arity is obtained by extending by the Kronecker product the seed operator 𝜦 with the identity.
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Eigenlogic: one-qubit Boolean logical operators 

The qubits   |1 and  |0 define the computational basis (the “𝑧” base):    |0 =
1
0

,   |1 =
0
1

eigenvectors of the Pauli matrix 𝝈𝑧 =
+1 0
0 −1

= diag +1,−1

Choice of the logical seed projector 𝜫 =  |1  1| (density matrix of qubit  |1 )

Logical operators as a linear development (equivalent to Boole’s method) gives the spectral decomposition :

𝑭 = 𝑓 0 (𝕀 − 𝜫) + 𝑓 1 𝜫 =
𝑓(0) 0
0 𝑓(1)

= diag(𝑓 0 , 𝑓 1 )

the cofactors 𝑓 0 and 𝑓 1 are the eigenvalues i.e. the truth values of the logical connective.

Negation is obtained by complementation (substracting from the identity operator) :   𝑭 = 𝕀 − 𝑭

other choices of logical bases are possible: e.g. the “𝑥” base with the seed  𝜫− =  | −  −| ,   | − =
1

2
 |0 −  |1
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Eigenlogic: two-qubit Boolean logical operators

Making use of the Kronecker product ⨂ to scale up to more arguments (as done in quantum computing)

Scaling to 2-qubit logical operators with the 4 basis projection operators (pure quantum-state density matrices):

𝝆11 =  |11  11| = 𝜫⨂𝜫 ; 𝝆10 =  |10  10| = 𝜫⨂(𝕀 − 𝜫) ;
𝝆01 =  |01  01| = (𝕀 − 𝜫)⨂𝜫 ; 𝝆00 =  |00  00| = (𝕀 − 𝜫)⨂(𝕀 − 𝜫)

All 16 logical arity-2 operators are directly obtained by the bilinear development (G. Boole’s method)

Giving the spectral decomposition of the operator :

𝑭 = 𝑓 0,0  |00  00| + 𝑓 0,1  |01  01| + 𝑓 1,0  |10  10| + 𝑓 1,1  |11  11| =

= 𝑓 0,0 (𝕀 − 𝜫)⨂(𝕀 − 𝜫) + 𝑓 0,1 (𝕀 − 𝜫)⨂𝜫 + 𝑓 1,0 𝜫⨂(𝕀 − 𝜫) + 𝑓 1,1 𝜫⨂𝜫

= diag(𝑓 0,0 , 𝑓 0,1 , 𝑓 1,0 , 𝑓 1,1 )

the truth values are 𝑓 𝑥, 𝑦 ∈ {0,1}
18



Eigenlogic elementary propositions and logical connectives
In propositional logic one defines the atomic propositions A and B in a well-formed-formula.
From the elementary propositions A and B all other compound propositions can be derived.

𝑨 = 𝜫⨂𝕀 = diag(0,0,1,1) ,         𝑩 = 𝕀⨂𝜫 = diag 0,1,0,1

atomic propositions In Eigenlogic correspond to the extensions of the seed operator 𝜫 with the identity 
operator 𝕀, a major difference with “traditional quantum logic” where atomic propositions correspond to 
quantum states  |𝜓 (the corresponding density matrices  |𝜓  𝜓| are rank-1 projectors).

directly from 𝑨 and 𝑩 all other compound logical operators are derived:

Conjunction (AND, ∧) 𝑭AND = 𝑭A∧B = 𝑨 ∙ 𝑩 = 𝜫⨂𝜫 = diag 0,0,0,1

Disjunction (OR, ∨) 𝑭OR = 𝑭A∨B = 𝑨 + 𝑩 − 𝑨 ∙ 𝑩 = diag 0,1,1,1

Negation is simply obtained by subtracting from the identity operator 𝕀 :

𝑭NAND = 𝕀 − 𝑭AND = diag 1,1,1,0 ;  Equivalence    𝑭⟺ = 𝕀 − 𝑭XOR = diag 1,0,0,1

Similar approach used for QECC (Quantum Error Correcting Codes) in [*]

19

[*] Aggarwal, V., Calderbank, R. Boolean Functions, Projection Operators, and Quantum Error Correcting Codes. In: IEEE Proceedings ISIT 
2007 (International Symposium Information Theory), Nice, France, pp. 2091–2095 (2007)
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Eigenlogic and the Born rule
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In Eigenlogic, the mean value of a logical operator will provide the truth value of the associated logical proposition.
For the logic projection operator 𝑭 measured on a quantum state  |𝜓 , the mean value leads directly to a 
probability measure by the Born rule:

𝑃  |𝜓 =  𝜓|𝑭  |𝜓 = 𝑇𝑟(𝝆 ∙ 𝑭) with   𝝆 = |𝜓  𝜓| the density matrix.

e.g. general quantum state is expressed by a linear combination over the 2-qubit computational basis:

 |𝜓 = 𝑐00  |00 + 𝑐01  |01 +𝑐10  |10 + 𝑐11  |11

when more than one coefficient is non-zero one is in a superposition of logical inputs.

The interpretable case, corresponding to sharp truth values, is obtained for input states belonging to the logical 
eigenspace of the Eigenlogic operators.

For example for the eigenstate   |𝜓 =  |01 :  01|𝑭AND  |01 = 0 ,   01|𝑭OR  |01 = 1 ,   01|𝑭XOR  |01 = 1

but for   |𝜑 =
1

3
 |01 −  |10 +  |11 :  𝜑|𝑭AND  |𝜑 =

1

3
,    𝜑|𝑭OR  |𝜑 = 1 ,    01|𝑭XOR  |01 =

2

3

when the logical input is not an eigenstate



conjunction, disjunction and material implication
A generic qubit state on the Bloch sphere:  |𝜙 = sin𝜃

2
 |0 + 𝑒𝑖𝜑cos𝜃

2
 |1 , 

The quantum average (Born rule) of the logical projector is:  𝑝(A) =  𝜙|𝜫  |𝜙 = cos2𝜃

2

The Born rule for 𝑨 and 𝑩 by performing the quantum average on the compound state :
*

 |𝜓 =  |𝜙𝑝 ⨂  |𝜙𝑞 with    𝑝 = cos
𝜃𝑝

2

2
and     𝑞 = cos

𝜃𝑞

2

2

we get 𝑃 A =  𝜓|𝑨  |𝜓 = 𝑝(1 − 𝑞) + 𝑝 ⋅ 𝑞 = 𝑝 ;      𝑃(B) =  𝜓|𝑩  |𝜓 = 𝑞

Conjunction (AND)  𝑃(A ∧ B) =  𝜓|𝑨 ⋅ 𝑩  |𝜓 =  𝜓|𝜫⨂𝜫  |𝜓 = 𝑝 ⋅ 𝑞 = 𝑃(A) ⋅ 𝑃(B)

Disjunction (OR) 𝑃 A ∨ B = 𝑝 + 𝑞 − 𝑝 ⋅ 𝑞 = 𝑃 A + 𝑃 B − 𝑃 A ⋅ 𝑃 B

Material Implication 𝑃 A ⇒ B = 1 − 𝑝 + 𝑝 ⋅ 𝑞 = 1 − 𝑃 P + 𝑃(P) ⋅ 𝑃(Q)

The disjunction 𝑃 A ∨ B corresponds to the inclusion-exclusion expression for probabilities

In the language of fuzzy logic these are Product t-norms (triangular norm as a product for the fuzzy conjunction)

22

 | − 𝑖

 |0

 |1

 | + 𝑖

 | +

 | −

 |𝜙

𝜑

𝜃

Bloch sphere in Hilbert space
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Different contexts: syntax and semantics



changing the paradigm: using values {+1,−1} instead of {0, 1}

The polar alphabet +1,−1 has the following correspondence with the Booleans 0, 1 : 

+1 (spin up)   ↔ 0 :  “False”   ; −1 (spin down)  ↔ 1 :  “True”

this binary reversible logic alphabet is often used (implicitly) in Ising spin models and neural networks.

considering 𝑥 ∈ 0,1 one has     𝑢 ∈ +1, −1 if and only if 𝑢 = 1 − 2𝑥 = (−1)𝑥= 𝑒𝑖𝜋𝑥

for operators the equivalent form is given by an isomprphism the Householder Transform : 

𝑮 = 𝕀 − 2𝑭 = − 1 𝑭 = 𝑒𝑖𝜋𝑭 = 𝑒𝑖
𝜋

2𝑒−𝑖
𝜋

2
𝑮

projection operators 𝑭 (eigenvalues 0,1 )  ⇌ reversible involution operators 𝑮 (eigenvalues +1,−1 )

𝑮 and 𝑭 have the same eigenvectors

Comparable approach using the notion of Fourier analysis of Boolean functions in [*]

24
[*] Montanaro, A., Osborne, T.J., Quantum Boolean Functions, Chicago Journal of Theoretical Computer Science, 1,  pp. 1–45 (2010)



binary operator 
truth tables

25

logical connective 

for P, Q

truth table {F, T}:  

{0, 1} or { + 1,  − 1}

{0, 1}  projection

logical  operator

{ + 1,  − 1}  involution

logical  operator

False F F F F F 0  + I

NOR F F F T I − P − Q + PQ (1/2) (+I – U – V − UV)

P ⇍ Q F F T F Q − PQ (1/2) (+I − U + V+UV)

¬P F F T T I − P  − U

P ⇏ Q F T F F P − PQ (1/2) ( + I + U − V + UV)

¬Q F T F T I − Q  − V

XOR ; P⊕Q F T T F P + Q − 2 PQ UV = Z⊗Z

NAND ; P↑Q F T T T I − PQ (1/2) ( − I − U − V + UV)

AND ; P∧Q T F F F PQ = Π⊗Π (1/2) ( + I + U + V − UV)

P  Q T F F T I − P − Q + 2 PQ  − UV

Q T F T F Q = I⊗Π V = I⊗Z

P ⇒ Q T F T T I − P + PQ (1/2) (  − I − U + V − UV)

P T T F F P = Π⊗I U = Z⊗I

P ⇐ Q T T F T I − Q + PQ (1/2) (  − I + U − V − UV)

OR ; P∨Q T T T F P + Q − PQ (1/2) (  − I + U + V + UV)

True T T T T T I  − I

truth tables show
valuations: ⊨ in semantics

logical connectives are used for
deductions: ⊢ in syntax

consistency (if ⊢ A then ⊨ A)
and
completeness (if ⊨ A then ⊢ A)
are equivalent for the 
propositional calculus : 
completeness theorem

Is not valid for 1st order logic as 
shown by Gödel’s 
incompleteness theorem



Boole’s logical interpretation of unitary quaternions
In a short note [*], just one year after his introduction of mathematical logic Boole states:

“Signs employed as instruments of reasoning may be considered as the representatives of operations…upon 
examination it will be found that these systems of interpretation are founded upon a principle of naming, as the 
one which I have proposed is founded upon a principle of operation. 
… the symbolical forms of common language as exhibited in the calculus of logic may indifferently be referred to 
the one or the other of these modes of conception.”

So he discusses implicitly the duality between naming with a sign which represents logical semantics and 
operation which represents logical syntax.

George Boole illustrates this logical interpretation using a unitary quaternion defined by:

𝒒 = 𝑤 + 𝒊𝑥 + 𝒋𝑦 + 𝒌𝑧 with   𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1

𝒊, 𝒋, 𝒌 is the quaternion basis verifying:    𝒊2 = 𝒋2 = 𝒌2 = 𝒊 ∙ 𝒋 ∙ 𝒌 = −1 ,  𝒊 ∙ 𝒋 = 𝒌 , 𝒊 ∙ 𝒋 = −𝒋 ∙ 𝒊

Which shows the non commutativity of the quaternion basis and the role of the sign − .

remark: the quaternion basis is isomorphic to the quantum Pauli matrices. 𝒊 = −𝑖  𝜎𝑥 , 𝒋 = −𝑖  𝜎𝑦 , 𝒌 = −𝑖  𝜎𝑧

26[*] Boole, G. Notes on quaternions. Philos. Mag., 33, 278–280 (1848)



Eigenlogic syntax-semantic duality and non-commutativity
Considering the 2 eigenstates  | ± 𝑧 of the Pauli operator 𝝈𝑧 with  eigenvalues ±1

and using he anti-commutativity of the Pauli operators: 𝝈𝑥 ∙ 𝝈𝑧 = −𝝈𝑧 ∙ 𝝈𝑥

𝝈𝑥 ⋅ 𝝈𝑧  | ± 𝑧 = ±1 𝝈𝑥  | ± 𝑧 = −𝝈𝑧 ⋅ 𝝈𝑥  | ± 𝑧 gives         𝝈𝑧 𝝈𝑥  | ± 𝑧 = ∓1 𝝈𝑥  | ± 𝑧

so (𝝈𝑥| ± 𝑧 >) are eigenstates of 𝝈𝑧 with eigenvalues ∓1 and correspond to the eigenstates  | ∓ 𝑧 )

Identifying  | + 𝑧 with qubit  |0 and  | − 𝑧 with qubit  |1 gives : 𝝈𝑥  |0 =  |1 and         𝝈𝑥  |1 =  |0

this operation corresponds to logical binary negation.

So for these operators the basic logical operation of binary negation is a consequence of anti-commutativity

In this very simple example using the Pauli matrices 𝝈𝑥 and 𝝈𝑧 as Eigenlogic operators, one has simultaneously:

• a semantic representation by the eigenstructure (eigenvalues ±1 and eigenvectors | ± 𝑧 >) of Pauli matrix 𝝈𝑧

• a syntactic representation by a permutation operation represented by the action of Pauli matrix 𝝈𝑥 on | ± 𝑧 >.

the Pauli matrices 𝝈𝑥 and 𝝈𝑧 represent MUB (mutually unbiased) basis contexts. The transformation from one to the 
other is the quantum Fourier transform (here in 2 dimensions the Hadamard gate). 
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syntax and semantics for many-valued operators (qudits)

The logical complementation can be generalized for a 𝑑-dimensional multi-level system (qudit)

using the generalized Pauli operators given by the Weyl-Heisenberg pairs 𝑿𝑑 and 𝒁𝑑

𝒁𝑑  |𝑗 = 𝜔𝑑
𝑗  |𝑗 with 𝜔𝑑 = 𝑒𝑖

2𝜋

𝑑 ;          𝑿𝑑  |𝑗 =  |𝑗 + 1 with     𝒁𝑑
𝑑 = 𝑿𝑑

𝑑 = 𝕀𝑑

𝑿𝑑 and 𝒁𝑑 possess the same eigenvalues and verify : 𝒁𝑑 ⋅ 𝑿𝑑 = 𝜔𝑑 𝑿𝑑 ⋅ 𝒁𝑑

the action of the shift operator 𝑿𝑑 on the state  |𝑗 , which is an eigenstate of 𝒁𝑑, gives the state  |𝑗 + 1
so by applying successively this operator one can generate all the other states of the basis.

The semantics is here represented by the eigenstructue of 𝒁𝑑, the eigenvalues 𝜔𝑑 are the 𝑑th roots of unity

The syntax is represented by 𝑿𝑑 corresponding to a many-valued negation as used by E.L. Post in 1921.

Passing from 𝒁𝑑 to 𝑿𝑑 is the Discrete Fourier Transform operator 𝑸𝑭𝑻𝑑 (Quantum Fourier Transform)

𝑸𝑭𝑻𝑑 𝑖𝑗 =
1

𝑑
𝜔𝑑

𝑖𝑗 ; 𝑸𝑭𝑻𝑑
4 = 𝕀𝑑 ; 𝑸𝑭𝑻𝑑

−1 ⋅ 𝒁𝑑 ⋅ 𝑸𝑭𝑻𝑑 = 𝑿𝑑

The Quantum Fourier Transform can be seen as a mediator between logical syntax and logical semantics.
28
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correlations of 2 quantum particles: CHSH Bell-inequality [*]

Local properties (𝑎 = ±1, 𝑎’ = ±1, 𝑏 = ±1, 𝑏’ = ±1)

in all 16 cases (deterministic) the expression: 𝑎𝑏 + 𝑎𝑏’ + 𝑎’𝑏 − 𝑎’𝑏’ = 𝑎(𝑏 + 𝑏’) + 𝑎’(𝑏 − 𝑏’) = ±2

CHSH-Bell inequality requires 16 measurements giving (average on a great number of measurements):
𝑆 = | < 𝑎𝑏 + 𝑎𝑏’ + 𝑎’𝑏 − 𝑎’𝑏’ > | ≤ 2

But Quantum Mechanics allows:   2 < 𝑆 ≤ 2√2 = 2.83

so violates the CHSH Inequality > 2 !

A CHSH “Bell experiment”

Source
Alice’s set {A, A’} Bob’s set {B, B’}

𝑎 = ±1

𝑎’ = ±1

𝑏 = ±1

𝑏’ = ±1

[*] J.F. Clauser; M.A. Horne; A. Shimony; R.A. Holt, 
Proposed experiment to test local hidden-variable 
theories, Phys. Rev. Lett., 23 (15): 880–4, (1969)
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𝐶(𝛼, 𝛽): coincidence photon counting rate function of the polarization angles 𝛼 and 𝛽

Then the 2-photon correlation is defined: 𝐸 𝛼, 𝛽 =
𝐶 𝛼,𝛽 +𝐶 𝛼⊥,𝛽⊥ −𝐶 𝛼⊥,𝛽 −𝐶 𝛼,𝛽⊥

𝐶 𝛼,𝛽 +𝐶 𝛼⊥,𝛽⊥ +𝐶 𝛼⊥,𝛽 +𝐶 𝛼,𝛽⊥

The Bell CHSH inequality is a function of the correlations 𝐸 for 4 experimental settings {𝛼𝑖 , 𝛽𝑗} , 𝑖, 𝑗 ∈ 1,2 :

the Bell parameter: 𝑆 = 𝐸 𝛼1, 𝛽1 + 𝐸 𝛼1, 𝛽2 + 𝐸 𝛼2, 𝛽1 − 𝐸 𝛼2, 𝛽2

Classically the Bell inequality verifies:  −2 ≤ 𝑆 ≤ +2

for the polarization angles : 𝛽1 − 𝛼1 =
𝜋

8
, 𝛼2 − 𝛽1 =

𝜋

8
, 𝛽2 − 𝛼2 =

𝜋

8

we have a violation of the Bell CHSH inequality 𝑆 ≥ 2

with the maximal value 𝑆 𝑚𝑎𝑥 = 2 2
obtained with an entangled state (Bell state)

[*] A. Aspect; P. Grangier; G. Roger, Experimental 
Realization of Einstein-Podolsky-Rosen-Bohm 
Gedankenexperiment: A New Violation of Bell's 
Inequalities. Phys. Rev. Lett. 49 (2): 91–4, (1982)

photon 1

2 photon source Ca40

singlet state

photon 2PBS1 (𝛼) PBS2  (𝛽)

 |𝐴∥ 𝛼

 |𝐴⊥ 𝛼

 |𝐵∥ 𝛽

 |𝐵⊥ 𝛽

 |𝐻 𝐴

 |𝑉 𝐴𝛼

𝛼⊥ = 𝛼 +
𝜋

2

𝛽

𝛽⊥ = 𝛽 +
𝜋

2

 |𝑉 𝐵

 |𝐻 𝐵

 |Ψ−
𝑠 =

1

2
 |𝐻 1  |𝑉 2 −  |𝑉 1  |𝐻 2
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The maximal CHSH 
quantum inequality 
violation

Let's consider the case of the following measuring observables function of the Pauli matrices 𝝈𝑥 and 𝝈𝑧 :  

𝒂1 = 𝝈𝑧 ;   𝒂2 = 𝝈𝑥 ; 𝒃1 =
1

2
𝝈𝑧 + 𝝈𝑥 ; 𝒃2 =

1

2
𝝈𝑧 − 𝝈𝑥

the set of 2 observables on both sides are MUB (maximally unbiased) systems corresponding to maximally 
incompatible contexts.

The Bell parameter S as the average of the observable 𝑺 by grouping the 4 terms gives :

𝑺 = 𝒂1⨂𝒃1 + 𝒂1⨂𝒃2 + 𝒂2⨂𝒃1 − 𝒂2⨂𝒃2 = 2 𝝈𝑧⨂𝝈𝑧 + 𝝈𝑥⨂𝝈𝑥 = 2

+1
0
0
+1

0
−1
+1
0

0
+1
−1
0

+1
0
0
+1

The eigenvalues of 𝑺 are +2 2, 0,0, −2 2 so for 2 eigenvectors we have : 𝑆 = Ψ 𝑺 Ψ = 2 2

violates the CHSH inequality. These eigenvectors are the two Bell states which are maximally entangled :

 |Ψ− =
1

2
 | + − −  | − + and     |Φ+ =

1

2
 | + + +  | − −
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Logical Bell inequalities
Suppose we have 𝑁 logic propositional formulas A1, ⋯ , A𝑁. We suppose further that we can assign a probability 𝑃𝑖

to each proposition, the probabilities 𝑃𝑖 = 𝑃(𝐴𝑖) are obtained from the statistics of the experiments.

Let  𝑃 𝒜 be the probability of the joint global event 𝒜 =  𝑖=1
𝑁 A𝑖. 

Then using the rule of negation/complementation, De Morgan laws and Boole’s inequality:

1 − 𝑃 𝒜 = 𝑃 ¬𝒜 = 𝑃 ¬ 𝑖=1
𝑁 A𝑖 = 𝑃  𝑖=1

𝑁 ¬A𝑖 ≤  𝑖=1
𝑁 𝑃 ¬A𝑖 =  𝑖=1

𝑁 1 − 𝑃𝑖 = 𝑁 −  𝑖=1
𝑁 𝑃𝑖

giving:  𝑖=1
𝑁 𝑃𝑖 ≤ 𝑁 + 𝑃 𝒜 − 1

If we suppose that the propositional formulas A𝑖 are  jointly contradictory we have  𝑃 𝒜 = 0

Leading to the logical Bell inequality [*]  𝑖=1
𝑁 𝑃𝑖 ≤ 𝑁 − 1

For the CHSH scenario with 𝑁 = 4 experiments :  𝑖=1
4 𝑃𝑖 ≤ 4 − 1 = 3

the expectation values  −1 ≤ 𝐸𝑖 ≤ +1 for the outcomes are given by: 𝐸𝑖 = +1 𝑃𝑖 + −1 1 − 𝑃𝑖 = 2𝑃𝑖 − 1

leads to  𝑖=1
4 𝐸𝑖 =  𝑖=1

4 2𝑃𝑖 − 1 = 2 𝑖=1
4 𝑃𝑖 − 4 ≤ 2 4 − 1 − 4 = 2

giving   𝑖=1
4 𝐸𝑖 ≤ 2 which is the CHSH inequality

33[*] S. Abramsky and L. Hardy, Logical Bell inequalities, Phys. Rev. A 85, 062114 (2012)



CHSH inequalities situations: 𝜃 = 60°

34

The probabilities in red correspond to the four logical propositions which are conjointly contradictory:
𝑎∧𝑏 ∨ ¬𝑎 ∧ ¬𝑏 = 𝑎 ⟷ 𝑏
𝑎∧𝑏′ ∨ ¬𝑎 ∧ ¬𝑏′ = 𝑎 ⟷ 𝑏′
𝑎′∧𝑏 ∨ ¬𝑎′ ∧ ¬𝑏 = 𝑎′ ⟷ 𝑏
¬𝑎′∧𝑏′ ∨ 𝑎′ ∧ ¬𝑏′ = 𝑎′ ⊕ 𝑏′ = ¬ 𝑎′ ⟷ 𝑏′

The logical Bell inequality    𝑖=1
4 𝑃𝑖 = 2 ×

1

2
+ 3 ×

3

4
= 3.25 > 3 is violated.

For the outcomes we have 𝐸 𝑎, 𝑏 = 2𝑃1 − 1 = 1 = 𝐸1 , 𝐸 𝑎, 𝑏′ = 2𝑃2 − 1 =
3

2
− 1 =

1

2
= 𝐸2 = 𝐸3 = 𝐸 𝑎′, 𝑏

but for   𝐸 𝑎′, 𝑏′ = 1 − 2𝑃4 = −
1

2
= −𝐸4 (this is where the minus sign in the CHSH inequality comes from !)

the CHSH inequality  𝐸 𝑎, 𝑏 + 𝐸 𝑎, 𝑏′ + 𝐸 𝑎′, 𝑏 − 𝐸 𝑎′, 𝑏′ =  𝑖=1
4 𝐸𝑖 = 1 + 3 ×

1

2
= 2.5 is violated

setting (T,T) (T,F) (F,T) (F,F)

𝑎𝑏 𝟏/𝟐 0 0 𝟏/𝟐

𝑎𝑏′ 𝟑/𝟖 1/8 1/8 𝟑/𝟖

𝑎′𝑏 𝟑/𝟖 1/8 1/8 𝟑/𝟖

𝑎′𝑏′ 1/8 𝟑/𝟖 𝟑/𝟖 1/8

The two quantum settings  𝑎 and  𝑎′ on the left and 𝑏 and 𝑏′ on the right are at  𝜃 = 60° degrees apart respectively.

The respective quantum probabilities are:           𝑃 𝑇, 𝑇 = 𝑃 𝐹, 𝐹 =
1

2
cos2

𝜃

2
, 𝑃 𝑇, 𝐹 = 𝑃 𝐹, 𝑇 =

1

2
sin2 𝜃

2

𝟔𝟎°

𝟔𝟎°



CHSH inequalities situations: 𝜃 = 45°

35

The probabilities in red correspond to the four logical propositions which are conjointly contradictory:
𝑎∧𝑏 ∨ ¬𝑎 ∧ ¬𝑏 = 𝑎 ⟷ 𝑏
𝑎∧𝑏′ ∨ ¬𝑎 ∧ ¬𝑏′ = 𝑎 ⟷ 𝑏′
𝑎′∧𝑏 ∨ ¬𝑎′ ∧ ¬𝑏 = 𝑎′ ⟷ 𝑏
¬𝑎′∧𝑏′ ∨ 𝑎′ ∧ ¬𝑏′ = 𝑎′ ⊕ 𝑏′ = ¬ 𝑎′ ⟷ 𝑏′

The logical Bell inequality    𝑖=1
4 𝑃𝑖 = 2 + 2 = 3.414 > 3 is violated

For the outcomes we have 𝐸 𝑎, 𝑏 = 2𝑃1 − 1 = 𝐸1 =
1

2
2 + 2 − 1 =

2

2
= 𝐸 𝑎, 𝑏′ = 𝐸2 = 𝐸 𝑎′, 𝑏 = 𝐸3

on the other hand for 𝐸 𝑎′, 𝑏′ = 1 − 2𝑃4 = −𝐸4 = −
2

2

the CHSH inequality :

𝐸 𝑎, 𝑏 + 𝐸 𝑎, 𝑏′ + 𝐸 𝑎′, 𝑏 − 𝐸 𝑎′, 𝑏′ =  𝑖=1
4 𝐸𝑖 = 4 ×

2

2
= 2 2 = 2.8284 maximal quantum violation

setting (T,T) (T,F) (F,T) (F,F)

𝑎𝑏 𝟏/𝟖 𝟐 + 𝟐 1/8 2 − 2 1/8 2 − 2 𝟏/𝟖 𝟐 + 𝟐

𝑎𝑏′ 𝟏/𝟖 𝟐 + 𝟐 1/8 2 − 2 1/8 2 − 2 𝟏/𝟖 𝟐 + 𝟐

𝑎′𝑏 𝟏/𝟖 𝟐 + 𝟐 1/8 2 − 2 1/8 2 − 2 𝟏/𝟖 𝟐 + 𝟐

𝑎′𝑏′ 1/8 2 − 2 𝟏/𝟖 𝟐 + 𝟐 𝟏/𝟖 𝟐 + 𝟐 1/8 2 − 2

Two quantum settings  𝑎 and  𝑎′ and 𝑏 and 𝑏′ at right angles and right setting rotated by 𝜃 = 45° degrees from left.

The respective quantum probabilities are:           𝑃 𝑇, 𝑇 = 𝑃 𝐹, 𝐹 =
1

2
cos2

𝜃

2
, 𝑃 𝑇, 𝐹 = 𝑃 𝐹, 𝑇 =

1

2
sin2 𝜃

2



The CHSH Bell inequality and Eigenlogic
The CHSH Bell inequality is expressed with the Pauli spin operators 𝝈𝑖 along the 4 measurement directions 

The CHSH measurement operator is then : 𝑺 = 𝝈A⨂𝝈B + 𝝈A⨂𝝈B′ + 𝝈A′⨂𝝈B − 𝝈A′⨂𝝈B′

Considering the projection operators, each term transforms as: 𝝈A⨂𝝈B = 𝕀 − 2𝜫𝐀 ⨂ 𝕀 − 2𝜫𝐁

replacing and simplifying :
𝑺 = 2𝕀 − 4𝜫A⨂𝕀 − 4𝕀⨂𝜫B + 4𝜫A⨂𝜫B + 4𝜫A⨂𝜫B′ + 4𝜫A′⨂𝜫B − 4𝜫A′⨂𝜫B′

in this expression one recognizes the Eigenlogic projection and conjunction operators

To evaluate the Bell inequality parameter 𝑆 one averages this operator: 𝑆 =  𝜓|𝑺  |𝜓

By averaging the operator  𝓕 =
1

4
𝑺 −

𝕀

2
one obtains the Fine inequality for probabilities:

ℱ =  𝜓|𝓕  |𝜓 = 𝑃 A ∧ B + 𝑃 A ∧ B′ + 𝑃 A′ ∧ B − 𝑃 A′ ∧ B′ − 𝑃 A − 𝑃 A =
1

4
𝑆 − 2

classically −1 ≤ ℱ ≤ 0 equivalent to −2 ≤ 𝑆 ≤ +2 for entangled states one has violation of these inequalities.

George Boole already discussed these probability inequalities in 1854 as stated by Itamar Pitowsky in [*]

36

[*] Pitowsky I. From George Boole To John Bell — The Origins of Bell’s Inequality. In: Kafatos M. (eds) Bell’s Theorem, Quantum Theory
and Conceptions of the Universe. Fundamental Theories of Physics, vol 37. Springer (1989)
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Logical Boxes



the Bell CHSH inequality cases

Classical, local, separable
The Bell parameter 𝑆𝐵𝑒𝑙𝑙 lies between 0 and 2.
Measurements are local: 𝐸 𝑋, 𝑌 = 𝐸 𝑋 𝐸 𝑌 .

Quantum

The case 2 ≤ 𝑆𝐵𝑒𝑙𝑙 ≤ 2 2 achieved with bipartite

quantum entangled states. 𝑆𝐵𝑒𝑙𝑙 = 2 2 is called the
Tsirelson’s bound and is a limit for quantum systems.

Post-quantum

The case between 2 2 and 4 comprises the so-called
“no-signalling” region. The maximum value 𝑆𝐵𝑒𝑙𝑙 = 4
can be attained with logical probabilistic constructions
often named non-local boxes.
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V1 V2
Vref

the strange propositions of Diederik Aerts [*]

D. Aerts in 1982 proposed a macroscopic  experiment that violates the 
CHSH Bell Inequality maximally.

Two vessels V1 and V2 with a capacity of 8 liters each, linked through a 
tube with a capacity of 16 liters (at most the system holds 32 liters).
The vessel Vref used to siphon water from the V1 and V2 basins. 

4 experiments :
Experiment α: answer to: is Vref > 10 L ?
Experiment β: answer to: are V1 or V2 > 6L ?
Experiment γ: answer to: is the water drinkable ?
Experiment δ: answer to: is the water transparent ?

outcomes:  +1 if the answer is YES and  −1 if the answer is NO

Results of correlated experiments:
𝑋𝛼,𝛽 = −1 , 𝑋𝛼,𝛾 = +1 , 𝑋𝛿,𝛽 = +1 and  𝑋𝛿,𝛾 = +1.

Taking the sum for the CHSH Bell parameter:

𝑆 = 𝑋𝛼,𝛽 − 𝑋𝛼,𝛾 + 𝑋𝛿,𝛽 + 𝑋𝛿,𝛾 = 4
Bell's inequality is therefore maximally violated! 39

In 2012 we undertook the experiment at Supélec
using 2 flower pots and a 32 m water tube.

students: Vincent DUMOULIN & Yves SOURRILLE

[*] D. Aerts, Example of a macroscopical situation that
violates Bell inequalities, Lett. Nuovo Cimento 34, 107
(1982)



the logic of a PR Box
The well known nonlocal PR box [*] correlates outputs 
(𝑎, 𝑏) to inputs (𝑥, 𝑦) in a two-party correlation by means of a 
logical constraint equation:

𝑎 ⊕ 𝑏 ⟷ 𝑥 ∧ 𝑦

This box violates the CHSH Bell Inequality (BI) maximally
The measurement outcomes (𝐴, 𝐵) , Alice and Bob, give the 
values ±1.
We define the joint mean value for the possible outcomes of 
the box as a function of the marginal probabilities :

𝐶𝑥,𝑦 =  𝑎,𝑏 𝑃(𝑎, 𝑏|𝑎 ⊕ 𝑏 ⟷ 𝑥 ∧ 𝑦 ) ⋅ 𝐴(𝑎) ⋅ 𝐵(𝑏)

where  𝐴 𝑎 = 1 − 2𝑎 = (−1)𝑎 ;  𝐵 𝑏 = 1 − 2𝑏 = (−1)𝑏

The Bell parameter considering the four input possibilities is:

𝑆 =  𝑎,𝑏,𝑥,𝑦 −1 𝑎+𝑏+𝑥𝑦 𝑃 𝑎, 𝑏 𝑥, 𝑦 =

= 𝐶00 + 𝐶01 + 𝐶10 − 𝐶11 = 4

40

a ⊕ b ↔ x ∧ y

Y

B(b)A(a)

X

𝐶𝑥𝑦 = 𝑃(0,0|𝑥, 𝑦)
.
(+1)

.
(+1) + 𝑃(0,1|𝑥, 𝑦)

.
(+1)

.
(−1) +

𝑃 1,0 𝑥, 𝑦
.
−1

.
+1 + 𝑃 1,1 𝑥, 𝑦

.
−1

.
−1

𝐶00 = 𝐶01 = 𝐶10 =
1

2
+ 0 + 0 +

1

2
= +1

𝐶11 = 0 −
1

2
−

1

2
+ 0 = −1

[*] Popescu S., Rohrlich D. Quantum nonlocality as an axiom. Found Phys 24, 379–385 (1994)



CHSH inequalities situations: PR box
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The probabilities in red correspond to the four logical propositions which are conjointly contradictory:

𝑎∧𝑏 ∨ ¬𝑎 ∧ ¬𝑏 = 𝑎 ⟷ 𝑏
𝑎∧𝑏′ ∨ ¬𝑎 ∧ ¬𝑏′ = 𝑎 ⟷ 𝑏′
𝑎′∧𝑏 ∨ ¬𝑎′ ∧ ¬𝑏 = 𝑎′ ⟷ 𝑏
¬𝑎′∧𝑏′ ∨ 𝑎′ ∧ ¬𝑏′ = 𝑎′ ⊕ 𝑏′ = ¬ 𝑎′ ⟷ 𝑏′

The logical Bell inequality    𝑖=1
4 𝑃𝑖 = 4 > 3 is violated.

For the outcomes we have 𝐸 𝑎, 𝑏 = 2𝑃1 − 1 = 1 = 𝐸1 = 𝐸 𝑎′, 𝑏 = 𝐸2 = 𝐸 𝑎′, 𝑏 = 𝐸3

and for 𝐸 𝑎′, 𝑏′ = 1 − 2𝑃4 = −1 = −𝐸4

The CHSH inequality    𝐸 𝑎, 𝑏 + 𝐸 𝑎, 𝑏′ + 𝐸 𝑎′, 𝑏 − 𝐸 𝑎′, 𝑏′ =  𝑖=1
4 𝐸𝑖 = 4 maximal CHSH violation

setting (T,T) (T,F) (F,T) (F,F)

𝑎𝑏 𝟏/𝟐 0 0 𝟏/𝟐

𝑎𝑏′ 𝟏/𝟐 0 0 𝟏/𝟐

𝑎′𝑏 𝟏/𝟐 0 0 𝟏/𝟐

𝑎′𝑏′ 0 𝟏/𝟐 𝟏/𝟐 0

Settings :  𝑎 ,  𝑎′ , 𝑏 ,  𝑏′

the respective probabilities are:



analysing the PR Box Bell inequality by Eigenlogic
One uses the logical expression directly in an operator form using  the following logical identity on the equivalence 
connective ↔ leading to the Reed-Muller form:

𝑎 ⊕ 𝑏 ⟷ 𝑥 ∧ 𝑦 = 𝑎 ⊕ 𝑏 ⊕ 𝑥 ∧ 𝑦

Using the involution properties: −1 𝑎⊕𝑏⊕𝑥∧𝑦 = − −1 𝑎⊕𝑏⊕𝑥∧𝑦 = − −1 𝑎 −1 𝑏 −1 𝑥∧𝑦

One can then express the involution 𝑮PR operator’s eigenvalues (truth values) by:
− −1 𝑎 −1 𝑏 −1 𝑥𝑦 = − −1 +𝑎+𝑏+𝑥𝑦

The corresponding Eigenlogic projective operator is: 𝑭PR = 𝑭𝑎⊕𝑏↔𝑥∧𝑦 =
1

2
𝕀 − 𝑮PR

The Bell parameter 𝑆 is obtained by averaging the operator 𝑮PR
for all the cases verifying the logical constraint 𝑎 ⊕ 𝑏 ↔ 𝑥 ∧ 𝑦
that is to the 8 cases out of 16 where the truth value of 𝑭PR is 1 .
The truth value 0 corresponding to the other 8 cases where  𝑎 ⊕ 𝑏 ↔ 𝑥 ∧ 𝑦 is not satisfied.

Using: 𝑮PR = 𝕀 − 2𝑭PR and the idempotence :   𝑭PR
2 = 𝑭PR

𝑆 =
8

16
Tr 𝑭PR ∙ 𝑮PR =

1

2
Tr 𝑭PR 𝕀 − 2𝑭PR =

1

2
Tr 𝑭PR =

8

2
= 4
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Generalizing the PR Box BI for all logical bipartite constraints
All combinations produce 16 × 16 = 256 logical constraint boxes.

The PR box corresponds to : 𝑎 ⊕ 𝑏 ⟷ 𝑥 ∧ 𝑦 (𝑓6(𝑎, 𝑏) ⟷ 𝑓8(𝑥, 𝑦))
BI violation 𝑆 = 𝟒 for 16 no-signaling nonlocal boxes (orange boxes)

Other 32 boxes (green boxes) are signaling and violate BI with 𝑆 = 10

3
≈ 𝟑. 𝟑𝟑

is the case for: 𝑎  𝑏 ⟷ 𝑥 ∧ 𝑦 (𝑓14(𝑎, 𝑏) ↔ 𝑓8(𝑥, 𝑦))
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𝑓𝑛
𝑜𝑢𝑡 𝑎, 𝑏 ↔ 𝑓𝑚

𝑖𝑛(𝑥, 𝑦)

𝑌

𝐵(𝑏)𝐴(𝑎)

𝑋

43
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The Eigenlogic program

 Multivalued Eigenlogic

 Fuzzy Eigenlogic

 Quantum computing in Eigenlogic

 Towards first-order Eigenlogic

 Quantum-like combinatory logic

 …



trying to classify Eigenlogic 

Following the classification of the algebraic hierarchy of logics proposed Andreas de Vries [*].

Eigenlogic encompassing Boolean, many-valued, fuzzy, quantum logic and first order logic could fit into this diagram

[*] A. de Vries, Algebraic hierarchy of logics unifying fuzzy logic and quantum logic, arXiv:0707.2161 (2007) 
and in Quantum Computation, chap 13 Quantum Logic Ed. Books on Demand (2012) 



Multivalued Eigenlogic of 
quantum angular momentum

balanced ternary logic 
for Orbital Angular Momentum (OAM) with  ℓ = 1.
The 𝑧 component of the orbital angular momentum operator :

𝑳𝑧 = ℏ𝜦 = ℏ
1 0 0
0 0 0
0 0 −1

= ℏ diag(+1,0, −1)

the three rank-1 projectors obtained by interpolation : 
𝜫+1 = 1

2
𝜦(𝜦 + 𝕀) ,    𝜫0 = 𝕀 − 𝜦𝟐 ,    𝜫−1 = 1

2
𝜦(𝜦 − 𝕀)

For arity-2 𝑼 and 𝑽 are then defined as usual in Eigenlogic :

𝑼 = 𝜦 ⊗ 𝕀 ,   𝑽 = 𝕀 ⊗ 𝜦
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Min U \\ V F N T 

False  ≡  +1 +1 +1 +1 

Neutral  ≡  0 +1 0 0 

True  ≡   − 1 +1 0  − 1 

Max U \\ V F N T 

False  ≡  +1 +1 0  − 1 

Neutral  ≡  0 0 0  − 1 

True  ≡   − 1  −  1  − 1  − 1 

Spin Family (Bosons ℓ and Fermions 𝒔) 
(© Julian Voss-Andreae. Photo: Dan Kvitka.)

ℓ = 𝟏
𝒔 = 𝟏/𝟐

ℓ = 𝟐
𝒔 = 𝟑/𝟐

𝒔 = 𝟓/𝟐

In many-valued logic the Min and Max are the equivalent of AND and OR :

𝑴𝒊𝒏(𝑼, 𝑽) =
𝟏

𝟐
(𝑼 + 𝑽 + 𝑼

2

+ 𝑽
2

− 𝑼 ⋅ 𝑽 − 𝑼
2

⋅ 𝑽
2

) = 𝑑𝑖𝑎𝑔(1,1,1,1,0,0, 1,0, −1)

𝑴𝒂𝒙 𝑼, 𝑽 =
𝟏

𝟐
𝑼 + 𝑽 − 𝑼

2

− 𝑽
2

+ 𝑼 ⋅ 𝑽 + 𝑼
2

⋅ 𝑽
2

= 𝑑𝑖𝑎𝑔 1,0,−1,0,0, −1,−1, −1, −1



expressing a quantum computing oracle circuit in Eigenlogic

47

A Boolean logical function 𝑓 is represented by a quantum oracle 𝑼𝑓:

Particular cases are:
the 2-qubit CNOT gate 𝑪 (𝑓 is the NOT function)
the 3-qubit Toffoli gate 𝑻𝑶 (𝑓 is the AND function)

 |𝒙  |𝒙

 |𝑏  |𝑏 ⊕ 𝑓(𝒙)

𝑼𝑓

control bit
The logical function 𝑓 is represented by the projective Eignelogic operator 𝑭

The control bit corresponds to the seed projection operator in the  |𝑥 basis: 𝜫− =  | −  −| =
1

2
(𝕀 − 𝑿)

The oracle is then simply expressed in Eigenlogic as :  𝑼𝑓 = −1 𝑭⨂𝜫− = 𝑒𝑖𝜋𝑭⨂𝜫− = 𝕀 − 2𝑭⨂𝜫−
(similar approach by S. Hadfield in [*])

In the case of a one bit Boolean function 𝑓(𝑥) : 𝑼𝑓 = 𝜫0⨂𝑿𝑓 0 + 𝜫1⨂𝑿𝑓 1

the Deutsch algorithm result is obtained by applying the oracle on :  | +  | − =
1

2
(  |0 +  |1 )

1

2
 (|0 −  |1 )

𝑼𝑓  | +  | − =
1

2
 |0 −1 𝑓(0)  | − +

1

2
 |1 −1 𝑓(1)  | −

for constant 𝑓 0 = 𝑓(1) 𝑼𝑓  | +  | − = ±  | +  | − and for  balanced    𝑓 0 ≠ 𝑓(1) 𝑼𝑓  | +  | − = ±  | −  | −

[*] S. Hadfield, On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing. 
ACM Transactions on Quantum Computing, Volume 2 Issue 4, Article No.18, pp 1–21 (2021)



towards first-order Eigenlogic

Using two maximally incompatible logical families with logical eigensystems associated to the 𝑿 and 𝒁
gates (resp. the 𝝈𝑥 and 𝝈𝑧 Pauli operators) one gets an interesting outlook:

the quantum Grover amplification gate used in the Grover algorithm, corresponds to the multi-qubit 
involution Eigenlogic negated disjunction operator NOR in the X system.

This operator can be interpreted in the 𝒁 system as a predicative logical existential connective ∃.

In the language of first order logic with a 3-qubit phase oracle the Grover circuit operates the following 
logical proposition:

∃𝑎 𝑃 𝑎 ≡ ¬ 𝑃𝑋 ∨ 𝑄𝑋∨ 𝑅𝑋 [𝑃𝑍 ∧ 𝑄𝑍 ∧ 𝑅𝑍]

A justification can be found in Herbrand’s fundamental theorem [*] that provides a constructive 
characterization of derivability in first-order predicate logic by means of propositional (sentential) logic.
.

[*] J. Herbrand, Recherches sur la théorie de la démonstration,  Thèses présentées à la faculté des sciences de Paris, Paris, (1930).



Grover algorithm and first-order-logic
The Grover search algorithm looks for an element 𝑎 (here  |𝑎2𝑎1𝑎0 =  |111 ) satisfying the property 𝑃 (oracle)
and  becomes the predicate proposition in first-order-logic using the existential logical quantifier ∃ :

∃𝑎 𝑃 𝑎

The Grover amplification gate corresponds to an Eigenlogic negated disjunction operator NOR in the X system.

The phase oracle is a double control Z gate (Eigenlogic 3-input AND: −1 𝜫⨂𝜫⨂𝜫).

¬ 𝑃𝑋 ∨ 𝑄𝑋∨ 𝑅𝑋𝑃𝑍 ∧ 𝑄𝑍 ∧ 𝑅𝑍

Z

H

H

H

H

H

H

X

X

X

X

X

XZ

H

H

H

|  0

|  0

|  0

init Grover amplification gateoracle phase gate

Eigenlogic NORX double CZ

marking |  111
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∃𝑎 𝑃 𝑎 decomposes, using Skolemization
methods into a succession of “disjunction ∨“ 
connectives.

∃𝑎 ⟺ 𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑁

∀𝑎 ⟺ 𝑎1 ∧ 𝑎2 ∧ ⋯∧ 𝑎𝑁

A justification can be found in Herbrand’s theorem
that provides a constructive characterization of 
derivability in first-order predicate logic by means 
of propositional (sentential) logic.



quantum-like Combinatory Logic
Moses Schönfinkel [a] introduced a method in logic named Combinatory Logic, this was part of the Hilbert program 
aimed to formulate all the fields of mathematics in a consistent logic system.

Haskell Curry successively improved and completed the research [b]. This led to the development of functional 
programming languages such as Haskell, and Erlang.

Combinatory logic uses abstract operators (combinators) to compose and to transform operators and arguments.

It permits to translate first order logic into expressions without variables using only combinators without the need of 
the universal quantifier ∀ and the existential quantifier ∃.

Alessandra di Pierro, in [c] considers that “…reversible combinatory logic can in principle be used for a … translation of 
classical into quantum computation.”

A tentative approach could consist in identifying the different operations of substitution, elimination, permutation, 
etc., with equivalent operations obtained using quantum gates.

tricks in q. computation could be used: 𝑪𝑍 ⋅ 𝑿 ⊗ 𝒁 ⋅ 𝑪𝑍 = 𝑿 ⊗ 𝕀2 or     𝑼swap ⋅ 𝑷 ⊗ 𝑸 ⋅ 𝑼swap = 𝑸 ⊗ 𝑷

[c] A. Di Pierro, On Reversible Combinatory Logic, Electron. Notes Theor. Comput. Sci. 135, 25–35 (2006)

[a] Schönfinkel, M. Über die Bausteine der mathematischen Logik. Math. Ann, 92, 305–316. (1924)

[b] H.B. Curry, Combinatory Logic, North-Holland Co: Amsterdam, (1958)
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Qubits and quantum circuits



Eigenlogic and 2-qubit quantum gates
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Eigenlogic makes a correspondence between quantum control logic (David Deutsch’s quantum logical gate paradigm)
and ordinary propositional logic.
It is known that the 2-quibit control-phase gate 𝑪𝒁 in association with 1-quibit gates is a universal gate set.

In Eigenlogic the 𝑪𝒁 gate corresponds to the AND involution gate 𝑮∧: 𝑪𝒁 = 𝑮∧ = 𝑑𝑖𝑎𝑔 1,1,1, −1

The well-known control-not CNOT gate 𝑪 can be expressed using the Pauli matrices 𝝈𝑧 = 𝒁 and 𝝈𝑥 = 𝑿

using the Eigenlogic involution conjunction operator (in the alphabet {+1, −1}) one has directly:

𝑪 = −1 𝜫⊗𝜫− = 𝑒𝑖𝜋𝜫⊗𝜫− = 𝕀 − 2 𝜫 ⊗ 𝜫− =
1

2
𝕀 + 𝒁 ⊗ 𝕀 + 𝕀 ⊗ 𝑿 − 𝒁 ⊗ 𝑿 =

1 0
0 1

0 0
0 0

0 0
0 0

0 1
1 0

Z

Z

U V

𝑮⊕ = 𝑼.𝑽

Z

𝑪𝒁 = 𝑮∧ = ½(𝑰 + 𝑼 + 𝑽 − 𝑼.𝑽)

Eigenlogic 
quantum 

gates

 |𝑥  |𝑥

 |𝑥 ⊕ 𝑦 |𝑦

𝐂𝐍𝐎𝐓 = 𝑪 = ½(𝑰 + 𝑼 + 𝑽𝑥 − 𝑼.𝑽𝑥)

target bit

control bit



building the 3-qubit Toffoli universal quantum gate
The 3-qubit Toffoli (double-CNOT) gate 𝑻𝑶 is a universal reversible logic quantum gate, directly in Eigenlogic form :

𝑻𝑶 = −1 𝜫⊗𝜫⊗𝜫− = 𝕀 − 2 𝜫 ⊗ 𝜫 ⊗ 𝜫−

=
1

4
(3 𝕀 + 𝒁2 + 𝒁1 + 𝑿0 − 𝒁2 ⋅ 𝒁1 − 𝒁2 ⋅ 𝑿0 − 𝒁1 ⋅ 𝑿0 + 𝒁2 ⋅ 𝒁1 ⋅ 𝑿0)

Can be put in exponential form using the Householder transform

𝑻𝑶 = 𝑒+𝑖
𝜋

8𝑒−𝑖
𝜋

8
𝒁1𝑒−𝑖

𝜋

8
𝒁2𝑒−𝑖

𝜋

8
𝑿0𝑒𝑖

𝜋

8
𝒁2⋅𝒁1𝑒𝑖

𝜋

8
𝒁2⋅𝑿0𝑒𝑖

𝜋

8
⋅𝒁1⋅𝑿0𝑒−𝑖

𝜋

8
𝒁2⋅𝒁1⋅𝑿0

Alternative method using a T gate as the Eigenlogic seed operator: 𝑻 = 𝒁
1

4 = 𝑒𝑖
𝜋

8𝑒−𝑖
𝜋

8
𝒁 = diag 1, 𝑒𝑖

𝜋

4

using a Reed-Muller form for the CCZ gate [*] : 𝑪𝑪𝒁 = 𝑻0 ⋅ 𝑻1 ⋅ 𝑻2 ⋅ (𝑻𝑥⊕𝑦)
† ⋅ (𝑻𝑥⊕𝑧)

† ⋅ (𝑻𝑦⊕𝑧)
† ⋅ (𝑻𝑥⊕𝑦⊕𝑧)

by the Hadamard gate extension one has again the Toffoli gate : 𝑻𝑶 = 𝑯0 ⋅ 𝑪𝑪𝒁 ⋅ 𝑯0

[*] Selinger, P., Quantum circuits of T-depth one, Phys. Rev. A, 87, 252–259, (2013) 53

 |𝑥  |𝑥

 |𝑧  |𝑧 ⊕ 𝑥 ∧ 𝑦

 |𝑦  |𝑦 𝑻𝑶 =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

control bit



logical universality and quantum entanglement
In binary propositional logic the following set of 8 connectives when combined with negation (NOT) constitutes 

a universal gate set : AND, OR, NOR, NAND, ⇒ , ⇏, ⇐ , ⇍
one observes that they possess an odd number of True and False truth values

the other 8 connectives are not universal: P, Q, ¬P, ¬Q, ≡ , XOR, F ,T
one observes that they possess an even number of True and False truth values

For involution logical operators 𝑮 with eigenvalues {+1,−1}
the universal logical gates correspond to 8 operators with an odd number of  eigenvalues +1 and −1
therefore these are all entangling gates
the 8 other logical operators with even number of eigenvalues are separable (not entangled) and not universal.

This states clearly the correspondence between logical universality and entanglement.
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P Q F NOR P ⇍ Q ¬P P ⇏ Q ¬Q XOR NAND AND P ≡ Q Q P ⇒ Q P Q ⇒ P OR T

+ + + − + − + − + − + − + − + − + −

+ − + + − − − + − − + + − − + + − −

− + + + + + + − − − + + + + − − − −

− − + + + + + + + + − − − − − − − −



The Deutsch algorithm is one of the first quantum algorithms more efficient than its classical 
counterpart.

Deutsch algorithm [*]

x f00(x) f01(x) f10(x) f11(x) 
0 
1 

0 
0 

0 
1 

1 
0 

1 
1 

 

 

constant constantbalanced balanced

The algorithm measurement is made on the upper qubit of the following circuit

The answer to the question: is the logical function 𝑓 𝑥 constant or balanced? 
can be performed by a quantum computer in one step.
(the classic treatment requires two steps.) 
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𝑼𝑓:  |𝑥  |𝑦 →  |𝑥  |𝑦⨁𝑓(𝑥)

= −1 𝑓(0)  |𝑓(0)⨁𝑓(1)  |1
= −1 𝑓(0)  |0  |1 if constant
= −1 𝑓(0)  |1  |1 if balanced

𝑼𝑓

𝑯 𝑯

𝑯 𝑯 |1

 |0  | +

 | −

[*] D. Deutsch, Quantum theory, the 
Church-Turing principle and the 
universal quantum computer, Proc. 
R. Soc. A, 400, 97–117, (1985)



expressing the quantum oracle circuit in Eigenlogic

56

A Boolean logical function 𝑓 is represented by a quantum oracle 𝑼𝑓:

Particular cases are:
the 2-qubit CNOT gate 𝑪 (𝑓 is the NOT function)
the 3-qubit Toffoli gate 𝑻𝑶 (𝑓 is the AND function)

 |𝒙  |𝒙

 |𝑏  |𝑏 ⊕ 𝑓(𝒙)

𝑼𝑓

control bit

The logical function 𝑓 is represented by the projective Eignelogic operator 𝑭

The control bit corresponds to the seed projection operator in the  |𝑥 basis: 𝜫− =  | −  −| =
1

2
(𝕀 − 𝑿)

The oracle is then simply expressed in Eigenlogic as :  𝑼𝑓 = −1 𝑭⨂𝜫− = 𝑒𝑖𝜋𝑭⨂𝜫− = 𝕀 − 2𝑭⨂𝜫−
(similar approach by S. Hadfield in [*])

In the case of a one bit Boolean function 𝑓(𝑥) : 𝑼𝑓 = 𝜫0⨂𝑿𝑓 0 + 𝜫1⨂𝑿𝑓 1

the Deutsch algorithm result is obtained by applying the oracle on :  | +  | − =
1

2
(  |0 +  |1 )

1

2
 (|0 −  |1 )

𝑼𝑓  | +  | − =
1

2
 |0 −1 𝑓(0)  | − +

1

2
 |1 −1 𝑓(1)  | −

for constant 𝑓 0 = 𝑓(1) 𝑼𝑓  | +  | − = ±  | +  | − and for  balanced    𝑓 0 ≠ 𝑓(1) 𝑼𝑓  | +  | − = ±  | −  | −

[*] S. Hadfield, On the Representation of Boolean and Real Functions as Hamiltonians for Quantum Computing. 
to appear in ACM Transactions on Quantum Computing, arXiv:1804.09130



Grover's search algorithm [*]

n-qubit

1-qubit

We consider a “black box” (oracle 𝐔𝒇)

Having for the value 𝑥0 the property :
𝑓 𝑥0 = 1 and   𝑓 𝑥 = 0 for 𝑥 ≠ 𝑥0

Problem: finding the value  x0 in a 
large database with the fewest queries
possible.

[*] L. K. Grover. A fast quantum mechanical algorithm 
for database search, Proceedings, 28th Annual ACM 
Symp. on the Theory of Computing, p. 212, (1996)

Classical query: complexity: 𝑶(𝐞𝐱𝐩(𝒏))

Grover quantum query: complexity:  𝑶(𝐞𝐱𝐩( 𝒏))
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Grover algorithm and first-order-logic
The Grover search algorithm looks for an element 𝑎 (here  |𝑎2𝑎1𝑎0 =  |111 ) satisfying the property 𝑃 (oracle)
and  becomes the predicate proposition in first-order-logic using the existential logical quantifier ∃ :

∃𝑎 𝑃 𝑎

The Grover amplification gate corresponds to an Eigenlogic negated disjunction operator NOR in the X system.

The phase oracle is a double control Z gate (Eigenlogic 3-input AND: −1 𝜫⨂𝜫⨂𝜫).

¬ 𝑃𝑋 ∨ 𝑄𝑋∨ 𝑅𝑋𝑃𝑍 ∧ 𝑄𝑍 ∧ 𝑅𝑍

Z

H

H

H

H

H

H

X

X

X

X

X

XZ

H

H

H

|  0

|  0

|  0

init Grover amplification gateoracle phase gate

Eigenlogic NORX double CZ

marking |  111
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∃𝑎 𝑃 𝑎 decomposes, using Skolemization
methods into a succession of “disjunction ∨“ 
connectives.

∃𝑎 ⟺ 𝑎1 ∨ 𝑎2 ∨ ⋯∨ 𝑎𝑁

∀𝑎 ⟺ 𝑎1 ∧ 𝑎2 ∧ ⋯∧ 𝑎𝑁

A justification can be found in Herbrand’s theorem
that provides a constructive characterization of 
derivability in first-order predicate logic by means 
of propositional (sentential) logic.




