Inequality Restricted Estimator for Gamma Regression: Bayesian approach as a solution to the Multicollinearity - CentraleSupélec
Article Dans Une Revue Communications in Statistics - Theory and Methods Année : 2023

Inequality Restricted Estimator for Gamma Regression: Bayesian approach as a solution to the Multicollinearity

Résumé

In this paper, we consider the multicollinearity problem in the gamma regression model when model parameters are linearly restricted. The linear restrictions are available from prior information to ensure the validity of scientific theories or structural consistency based on physical phenomena. In order to make relevant statistical inference for a model any available knowledge and prior information on the model parameters should be taken into account. This paper proposes therefore an algorithm to acquire Bayesian estimator for the parameters of a gamma regression model subjected to some linear inequality restrictions. We then show that the proposed estimator outperforms the ordinary estimators such as the maximum likelihood and ridge estimators in term of pertinence and accuracy through Monte Carlo simulations and application to a real dataset.
Fichier principal
Vignette du fichier
2303.05120.pdf (385.28 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04191517 , version 1 (30-08-2023)

Identifiants

Citer

Solmaz Seifollahi, Hossein Bevrani, Kaniav Kamary. Inequality Restricted Estimator for Gamma Regression: Bayesian approach as a solution to the Multicollinearity. Communications in Statistics - Theory and Methods, 2023, pp.1-15. ⟨10.1080/03610926.2023.2281267⟩. ⟨hal-04191517⟩
52 Consultations
39 Téléchargements

Altmetric

Partager

More