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RATIONAL KERNEL-BASED INTERPOLATION FOR1

COMPLEX-VALUED FREQUENCY RESPONSE FUNCTIONS∗2

JULIEN BECT‡ , NIKLAS GEORG†§ , ULRICH RÖMER† , AND SEBASTIAN SCHÖPS§3

Abstract. This work is concerned with the kernel-based approximation of a complex-valued4
function from data, where the frequency response function of a partial differential equation in the5
frequency domain is of particular interest. In this setting, kernel methods are employed more and6
more frequently, however, standard kernels do not perform well. Moreover, the role and mathematical7
implications of the underlying pair of kernels, which arises naturally in the complex-valued case,8
remain to be addressed. We introduce new reproducing kernel Hilbert spaces of complex-valued9
functions, and formulate the problem of complex-valued interpolation with a kernel pair as minimum10
norm interpolation in these spaces. Moreover, we combine the interpolant with a low-order rational11
function, where the order is adaptively selected based on a new model selection criterion. Numerical12
results on examples from different fields, including electromagnetics and acoustic examples, illustrate13
the performance of the method, also in comparison to available rational approximation methods.14

Key words. Complex-valued kernel methods, dynamical systems, frequency response function,15
model selection, rational approximation16

AMS subject classifications. 65N99, 60G15, 46E2217

1. Introduction. We consider dynamical systems of the form18

(1.1) Mü(t) + Du̇(t) + Ku(t) = g(t),19

to be endowed with initial conditions and K,D,M ∈ Rnh×nh , u(t),g(t) ∈ Rnh . We20

are in particular interested in approximating scalar time-dependent quantities derived21

from the solution, of the form22

(1.2) f(t) = jTu(t), j ∈ Rnh ,23

which are commonly used to assess engineering designs. System (1.1) may stem from a24

partial differential equation after spatial discretization with nh degrees of freedom. In25

a mechanics context, K,D,M are referred to as stiffness, damping and mass matrix,26

but problems arising in many areas of science and engineering can be brought into this27

form. Our numerical results will cover electromagnetic and acoustic field problems in28

particular. In view of the linearity of the equation, a frequency domain analysis is29

often adopted. Assuming for simplicity that u and u̇ vanish at t = 0, the (one-sided)30

Laplace transform of (1.1)–(1.2) with respect to the time variable t is31 (
s2M + sD + K

)
û(s) = ĝ(s),

f̂(s) = jTû(s),
(1.3)32
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2 J. BECT, N. GEORG, U. RÖMER AND S. SCHÖPS

where s denotes the complex frequency variable, also known as the Laplace variable.33

Assuming a suitably normalized excitation ĝ(s), the frequency response function is34

defined as the value ω 7→ f̂(iω) of f̂ on the imaginary axis, where ω is called the35

angular frequency, and we are typically interested more specifically in its value on36

a certain interval Ω = [ωmin, ωmax] ⊆ [0,+∞). In the following, we omit explicitly37

indicating frequency domain variables to simplify the notation.38

The location of the poles of f̂ strongly depends on the properties of K,D,M,39

see [38]. We assume, in particular, that no pole is placed on the frequency axis iR40

and that the frequency response function is holomorphic on the shifted right half-41

plane Γα = {s ∈ C | <[s] > −α}, α > 0. The real parts of all poles are strictly42

negative for instance if K,D,M are symmetric positive definite, see Section 3 of [38].43

The same holds true if the homogeneous version of (1.1) is stable, in the sense that all44

solutions decay exponentially to zero as t→∞. The holomorphy of response functions45

has recently been studied also in the context of partial differential equations, see [7,46

Proposition 5.3] for instance. There, the frequency response map for an acoustic47

scattering problem was studied and appropriate damping terms ensured a locally48

holomorphic response function, with a negative real part for all poles1.49

Adopting a data-driven approach, (1.3) must be solved repeatedly on a set of50

interpolation/training points ωi ∈ Ω, with si = iωi. Numerical efficiency demands a51

small training set52

(1.4) {ωi, f(iωi)}ni=1, where ωi ∈ Ω, f(iωi) ∈ C, i = 1, . . . , n,53

hence, there is a need for accurate interpolation in the frequency domain.54

The data-driven approximation of frequency response functions has attracted con-55

siderable interest in the literature, see for instance [16, 23, 28] and the references56

therein. Among the numerous available approaches we mention vector fitting [16] and57

the adaptive Antoulas-Anderson method [28] in particular, which are widely used,58

state-of-the-art approximation methods.59

Vector Fitting (VF) is a rational approximation technique, specifically tailored to60

functions in the frequency domain. It is based on a representation in terms of partial61

fractions as62

(1.5) f(iω) ≈
M∑
m=1

rm
iω − pm

+ d+ iωh,63

where the M poles pm are relocated in each iteration by solving a linear least-square64

problem, see [15, 16] for details. The implementation guarantees that all poles are65

stable, i.e. R[pm] < 0, and are either real or come in complex-conjugate pairs.66

The adaptive Antoulas-Anderson (AAA) method [28] employs the barycentric67

interpolation68

(1.6) f(iω) ≈ r(ω) =
n(ω)

d(ω)
=

∑
j∈J

wjf(iωj)
ω−ωj∑

j∈J
wj

ω−ωj
,69

where J ⊆ {1, . . . , n} has cardinality m. The rational function in (1.6) is of type70

(m − 1,m − 1), which can be seen by multiplying both numerator and denominator71

by
∏
j∈J(ω − ωj). Moreover, r(ωj) = f(iωj) for all j ∈ J . The weights wj and72

1Because of a different convention [7] establishes a negative imaginary part of the eigenvalues
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KERNEL-BASED INTERPOLATION FOR COMPLEX-VALUED FUNCTIONS 3

nodes ωj , j ∈ J , are determined adaptively in a two-step procedure, based on linear73

least squares problems and a greedy strategy [28].74

Other data-driven approaches, related to rational interpolation and model order75

reduction are the Loewner framework [1] and the recent contribution [29], which76

employs the Heaviside representation. A Bayesian rational Polynomial Chaos-type77

model has been put forth in [37] to capture the effect of uncertain parameters, e.g.,78

on frequency response functions. A complex-valued version of support vector machine79

regression has been presented in [39], which is restricted to the so-called circular case80

with a single kernel only. Complex interpolation with a pair of kernels has been81

addressed in [6, 33] and also from a Gaussian process regression perspective in [5, 17].82

Despite recent progress with complex kernel methods, a general framework with a83

complete mathematical background on the underlying reproducing kernel Hilbert spa-84

ces is missing. In this paper, we introduce a new kernel-based interpolation method85

which is well adapted to frequency responses. We will put special emphasis on the86

complex-valued setting and show that the data are used more efficiently if a dedi-87

cated kernel method is constructed and interpolation of the real- and imaginary part88

individually is avoided. To address problems with a few dominant poles we include89

a low-order rational basis into the kernel method and present a new model selection90

scheme. We compare our rational kernel-based interpolation method against both91

AAA and vector fitting and observe an improved or at least comparable performance92

for a variety of test cases. Finally, the paper develops the required notions of repro-93

ducing spaces and minimum norm interpolation for complex-valued kernel methods94

in general.95

The material is structured in the following way. In Section 2 we introduce the96

concept of a complex/real kernel Hilbert space and consider the special case of fre-97

quency response functions as well as the connections to complex-valued Gaussian98

process regression. Section 3 introduces our new method, which employs a kernel,99

a pseudo-kernel and an additional rational basis for capturing dominant poles. Fi-100

nally, Section 4 reports several examples from PDE-based applications, comparing101

our method to AAA and vector fitting before conclusions are drawn.102

Nota bene: A method sharing some similarities with the one proposed in Section 3103

has been published recently in the automatic control literature [17]. We became aware104

of it at very late stage in the writing of the present article. After introducing our new105

method in Section 3, we discuss similarities and differences in Remark 3.3.106

2. Complex/Real RKHS interpolation. In order to address kernel-based107

interpolation of the frequency response function, we start by recalling basic facts108

on reproducing kernel Hilbert spaces (RKHSs); see, e.g., [30] for a comprehensive109

introduction to this topic.110

Definition 2.1 (Complex RKHS). A complex RKHS H over a non-empty set S111

is a complex Hilbert space of functions S→ C such that, for all s ∈ S, the evaluation112

functional δs : H → C, f 7→ f(s), is continuous.113

The Riesz representation theorem implies that there exists a unique function114

k : S× S→ C, called the reproducing kernel of H, such that k(·, s) ∈ H and115

(2.1) f(s) = δs(f) = 〈f, k(·, s)〉H116

for all s ∈ S and f ∈ H, where 〈·, ·〉H denotes the Hermitian inner product of H.117

Equation (2.1) is called the reproduction property, and it is easily seen that the118
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4 J. BECT, N. GEORG, U. RÖMER AND S. SCHÖPS

kernel k is Hermitian (i.e., k(s, s0) = k(s0, s)
∗ for all s, s0 ∈ S) and positive definite:119

for all n ∈ N∗ and all (s1, α1), . . . , (sn, αn) ∈ S× C,120

(2.2)
∑

1≤i,j≤n

α∗iαjk(si, sj) ≥ 0.121

Theorem 2.2 (Moore-Aronszajn). For any positive definite Hermitian kernel k :122

S× S→ C, there exists a unique complex Hilbert space H of functions on S such that123

the reproduction property holds with reproducing kernel k.124

Real RKHSs are defined similarly, replacing C by R in Definition 2.1: in this case125

H is a real Hilbert space, the reproducing kernel is symmetric positive definite, and126

a suitably modified statement of the Moore-Aronszajn theorem holds as well.127

Theorem 2.3 (Interpolation). Let H be a real or complex RKHS over S with128

kernel k : S×S→ K, where K = R or C depending on the type of RKHS. Let n ∈ N∗,129

s1, . . . , sn ∈ S and y1, . . . , yn ∈ K. Then there exists a function g ∈ H such that130

g(si) = yi for all i ∈ {1, . . . , n} if, and only if, the system131

(2.3)

k(s1, s1) . . . k(s1, sn)
...

. . .
...

k(sn, s1) . . . k(sn, sn)


γ1

...
γn

 =

y1

...
yn

132

admits a solution. Furthermore, for any solution of (2.3), g =
∑n
i=1 γi k(·, si) is the133

unique interpolant of the data (s1, y1), . . . , (sn, yn) with minimal norm in H.134

A positive definite kernel is called strictly positive definite if the kernel matrix Kn =135

(k(si, sj))1≤i,j≤n is invertible (equivalently, if (2.2) is strict for all (α1, . . . , αn) 6= 0)136

whenever s1, . . . , sn are distinct points. This ensures that (2.3) has a unique solution.137

We will proceed by introducing several complex RKHS and their kernels. For138

s ∈ C, let <[s] and =[s] denote the real and imaginary part, respectively. An important139

example is the Hardy space H2(D) on the unit disc, where D = {s ∈ C : |s| < 1}.140

This space plays a role in the analysis of the stability of discrete dynamical systems,141

see [2], for instance. Here, in the context of continuous-time dynamical systems, we142

are more interested in the corresponding Hardy space143

(2.4) H2(Γα)=

{
f ∈ Hol(Γα) :‖f‖H2(Γα) = sup

x>−α

(∫ ∞
−∞

∣∣f(x+ iy)2
∣∣ dy

) 1
2

<∞

}
,144

where Hol(Γα) denotes the space of holomorphic functions on Γα. Note, that there145

is a Banach space isometry between the H2 spaces on disc and half-plane, see [18,146

Chapter 8] for details.147

Theorem 2.4. The space H2(Γα) is a complex RKHS, with strictly positive def-148

inite reproducing kernel k given by149

(2.5) kα (s, s0) =
1

2π (2α+ s+ s∗0)
, s, s0 ∈ Γα.150

A proof is given in Appendix A.1. Following standard terminology in complex151

analysis (see, e.g., [22]), we will refer to kα as the Szegö kernel for the domain Γα.152

Evaluating (2.5) only on the imaginary axis s = iω, the expression simplifies to153

(2.6) kα (iω, iω0) =
1

2π (2α+ i(ω − ω0))
, ω, ω0 ∈ Ω.154

This manuscript is for review purposes only.
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We consider the stable spline kernel [34, 23] as another example. This kernel155

has been proposed in the time domain to model functions with a certain smoothness,156

which additionally incorporate impulse response stability [34]. The corresponding157

kernel for the frequency domain transfer function has been obtained in [23] and reads158

159

(2.7) kα (iω, iω0) =
1

2

1

3α+ i(ω − ω0)
×160 (

1

2α+ iω
+

1

2α− iω0
− 1

3(3α+ iω)
− 1

3(3α− iω0)

)
.161

162

Other related kernels can be found in the control literature, see [23, 17].163

2.1. Complex/real RKHS interpolation. The frequency response function164

fulfills the symmetry property f∗(s) = f(s∗) for all s ∈ Γα, since it is the Laplace165

transform of a real-valued function. We are thus naturally led to cast our interpolation166

problem not in H2(Γα) but in the subset167

(2.8) H2
sym(Γα) =

{
f ∈ H2(Γα) : ∀s ∈ Γα, f

∗(s) = f(s∗)
}
.168

This set of complex-valued functions, however, cannot by endowed with the structure169

of a complex RKHS. In fact, it is not even a vector space over C: indeed, for any f ∈170

H2
sym(Γα) and s ∈ Γα, we would have (if)∗(s) = −if∗(s) = −if(s∗) and (if)∗(s) =171

(if)(s∗) = if(s∗), which is a contradiction if f(s∗) 6= 0.172

Observing that the subset of H2(Γα) defined by (2.8) is a real vector space of173

complex-valued functions, we define in the following a new type of function space,174

which we call a complex/real RKHS.175

Definition 2.5 (Complex/real RKHS). Let S denote a non-empty set and let H176

denote a real Hilbert space of complex-valued functions on S. We say that H is a177

complex/real RKHS if the evaluation functionals are continuous (i.e., for all s ∈ S,178

the function δs : H → C, f 7→ f(s), is continuous).179

In the remaining part of this section we will establish general results related to180

these spaces. Section 2.2 will then present consequences for the RKHS with the181

symmetry property f∗(s) = f(s∗).182

Remark 2.6. Any complex RKHS H (such as H2(Γα)) can be seen as a com-183

plex/real RKHS by forgetting the complex structure, i.e., by considering H as a real184

vector space, endowed with the real inner product 〈f, g〉 7→ < (〈f, g〉H). More gener-185

ally, any real subspace of H (such as H2
sym(Γα)), endowed with this inner product, is186

clearly a complex/real RKHS. The converse statement is false, however.187

Proposition 2.7. There exists a complex/real RKHS of dimension two over the188

reals that is not a real subspace of a complex RKHS.189

The elements of a complex/real RKHS are complex-valued functions over S, but190

can be conveniently represented as real-valued functions over S̃ = S× {R, I} through191

the mapping A : CS → RS̃ defined by192

(2.9) (Af)(s, a) = Ga(f(s)),193

where GR(s) = <(s) and GI(s) = =(s). This mapping defines an isometric isomor-194

phism of real Hilbert spaces between H and the real vector space H̃ = AH ⊆ RS̃,195

endowed with the image inner product. The image space H̃ is easily seen to be a real196

This manuscript is for review purposes only.



6 J. BECT, N. GEORG, U. RÖMER AND S. SCHÖPS

RKHS if and only if H is a complex/real RKHS: this observation will be useful both197

from a theoretical point of view, to establish properties of complex/real RKHSs, and198

from a practical point of view (see Section 4).199

Remark 2.8. Complex/real RKHSs can also been seen a special case of vector-200

valued RKHSs [9, 26], through the usual identification of C with R2.201

The term “functional” is used in a loose sense in Definition 2.5, since H is a real202

vector space while δs is a complex-valued function. Therefore, in contrast with the203

usual case of complex RKHSs, the continuous functionals δs, s ∈ S, do not belong to204

the topological dual of H. The real and imaginary evaluation functions however—205

namely, <◦δs and =◦δs—do belong to the topological dual, and can thus be expressed206

through inner products.207

Proposition 2.9. Let H be a complex/real RKHS on a set S, and set208

(2.10) kaa0(s, s0) = k̃ ((s, a), (s0, a0)) , s, s0 ∈ S, a, a0 ∈ {R, I},209

where k̃ denotes the reproducing kernel of H̃ = AH. Then, for all s ∈ S, we have210

(2.11) δs = 〈 · , ϕR(·, s)〉H︸ ︷︷ ︸
<◦ δs

+ i 〈 · , ϕI(·, s)〉H︸ ︷︷ ︸
=◦ δs

,211

where ϕR = kRR + i kIR and ϕI = kRI + i kII.212

This result associates to each complex/real RKHS a pair (ϕR, ϕI) of kernels ϕa :213

S×S→ C, a ∈ {R, I}. Characterizing admissible choices for this pair of kernels, in the214

spirit of Theorem 2.2 for complex RKHSs, is possible but not convenient. Instead,215

motivated by the connection between complex/real RKHSs and complex Gaussian216

processes (to be discussed in Section 2.3), and in particular the work of Picinbono217

[32], we introduce another pair of kernels as follows.218

Definition 2.10. Let H denote a complex/real RKHS and let kRR, kII, kRI, kIR,219

ϕR and ϕI be defined as in Proposition 2.9. Then we define the complex kernel k of220

the complex/real RKHS as221

(2.12) k = (kRR + kII) + i (kIR − kRI) = ϕR − iϕI,222

and its pseudo-kernel c as:223

(2.13) c = (kRR − kII) + i (kIR + kRI) = ϕR + iϕI.224

Proposition 2.11. The functions of the form γ k(·, s0) + γ∗ c(·, s0), with γ ∈ C225

and s0 ∈ S, span a dense subset of H.226

Remark 2.12. Proposition 2.11 suggests that the concept of a complex/real227

RKHS, introduced in this article, provides a rigorous formalization of the idea of a228

“wide-linear complex-valued RKHS” (WL-RKHS) proposed in [6] (see Definition 3.1).229

It can be shown that the complex/real RKHS obtained by forgetting the complex230

structure of a complex RKHS with reproducing kernel k0, as described in Remark 2.6,231

is the complex/real RKHS with complex kernel k = 2k0 and vanishing pseudo-kernel—232

which, borrowing terminology from the signal processing literature [32], can be called233

circular. The factor 2 in the relation between k and k0 is the price to pay for the234

consistency of Definition 2.10 with the concepts of covariance and pseudo-covariance235

functions for complex Gaussian processes (see Section 2.3). More generally, we have236

the following characterization of the set of admissible (k, c) pairs.237

This manuscript is for review purposes only.



KERNEL-BASED INTERPOLATION FOR COMPLEX-VALUED FUNCTIONS 7

Theorem 2.13. For a given complex/real RKHS H, the kernels k and c intro-238

duced in Definition 2.10 satisfy the following:239

i) k is complex-valued, Hermitian and positive definite.240

ii) c is complex-valued and symmetric.241

Moreover, for all n ≥ 1 and all s1, . . . sn ∈ S:242

iii) kerKn ⊆ kerC∗n and,243

iv) if Kn is positive definite, K∗n − C∗nK−1
n Cn is positive semi-definite,244

where Kn = (k(si, sj))1≤i,j≤n and Cn = (c(si, sj))1≤i,j≤n.245

Conversely, for any pair of functions k, c : S × S → C that satisfies these four246

properties, there exists a unique complex/real RKHS on S with complex kernel k and247

pseudo-kernel c.248

Theorem 2.14 (Interpolation in a complex/real RKHS). Let H denote a com-249

plex/real RKHS over S with complex kernel k and pseudo-kernel c. Let n ∈ N∗,250

s1, . . . , sn ∈ S and y1, . . . , yn ∈ C. Then there exists a function g ∈ H such that251

g(si) = yi for all i ∈ {1, . . . , n} if, and only if, the system252

(2.14) Knγ + Cnγ
∗ = y253

admits a solution γ ∈ Cn, where Kn = (k(si, sj))1≤i,j≤n, Cn = (c(si, sj))1≤i,j≤n, and254

y = (y1, . . . , yn)
T

. Furthermore, for any solution of (2.14),255

(2.15) g =

n∑
i=1

γi k(·, si) +

n∑
i=1

γ∗i c(·, si)256

is the unique interpolant of the data (s1, y1), . . . , (sn, yn) with minimal norm in H.257

For the usual setting of real or complex RKHSs, strictly positive definite kernels258

guarantee that the interpolation system (2.3) has a solution for any data y1, . . . , yn.259

This remains true for the system (2.14) in the case of a complex/real RKHS if the260

associated real kernel k̃ is strictly positive definite on S̃ = S× {R, I}.261

2.2. Complex/real RKHS with symmetry condition. We now character-262

ize, in full generality, the complex/real RKHSs where a symmetry condition of the263

form f∗(s) = f(s∗) holds for all f ∈ H and s ∈ S. The following theorem provides a264

necessary and sufficient condition on k for such a space to exist and gives the expres-265

sion of the corresponding pseudo-kernel. The expression appeared previously in [23,266

Equations (48)–(49)] for a special type of kernel.267

Theorem 2.15. Let S denote a non-empty set, equipped with an involution s 7→ s∗268

and k : S×S→ C denote a Hermitian positive definite kernel on S. Then the following269

assertions are equivalent:270

i) There exists a complex/real RKHS H on S, with complex kernel k, such that271

(2.16) ∀f ∈ H, ∀s ∈ S, f∗(s) = f(s∗).272

ii) There exists a complex/real RKHS H on S, with complex kernel k and pseudo-273

kernel c defined by274

(2.17) ∀s, s0 ∈ S, c(s, s0) = k(s, s∗0).275

iii) ∀s, s0 ∈ S, k(s, s∗0) = k(s0, s
∗).276
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8 J. BECT, N. GEORG, U. RÖMER AND S. SCHÖPS

If any (and consequently all) of these assertions holds, then the complex/real277

RKHS H with complex covariance k and pseudo kernel (2.17) is the unique RKHS278

on S with complex covariance k such that (2.16) holds. Moreover, denoting by HC the279

complex RKHS with kernel k, we have HC = H ⊕ iH, H = {f ∈ HC | (2.16) holds}280

and 〈f, g〉 = < 〈f, g〉HC
for all f, g ∈ H.281

It follows from this theorem that H2
sym(Γα) can be characterized as the com-282

plex/real RKHS over Γα with complex kernel (2.5) and pseudo-kernel:283

(2.18) cα (s, s0) =
1

2π(2α+ s+ s0)
, s, s0 ∈ Γα.284

More generally, Theorem 2.15 shows that the problem of minimum-norm inter-285

polation in a complex RKHS, with a symmetry constraint of the form (2.16), can286

be solved by considering the equivalent problem of minimal-norm interpolation in287

the complex/real RKHS with the same complex kernel and the pseudo-kernel given288

by (2.17). In presence of the symmetry condition, even if the complex kernel k is289

strictly positive definite, k̃ is not and an additional condition on the data is required290

to ensure that (2.3) has a solution.291

Theorem 2.16. In the setting of Theorem 2.15, assume that k is strictly positive292

definite, c is given by (2.17), and s1, . . . , sn ∈ S are distinct. Then (2.14) has a293

solution if, and only if, yj = y∗i for all i, j such that sj = s∗i . When this holds, there294

is a unique solution such that γi = γ∗j for all i, j such that sj = s∗i .295

For illustration, we consider the third order rational function296

(2.19) Frat(iω) =
1

iω − (−0.1)
+

0.5

iω − (−0.1− 0.5i)
+

0.5

iω − (−0.1 + 0.5i)
, ω ∈ [0, 1],297

which is the Laplace transform of the real-valued function t 7→ e−0.1t
(
1 + cos(0.5t)

)
298

and thus belongs to H2
sym(Γ0.1+ε) ⊆ H2(Γ0.1+ε) for all ε > 0. To illustrate the im-299

portance of the choice of pseudo-kernel, we conduct a convergence study in terms of300

the root-mean-square error (RMSE) of the approximations, using equidistant train-301

ing points (details on the implementation and selection of hyper-parameters will be302

given in the following sections). In Figure 1 we demonstrate that choosing a suit-303

able pseudo-kernel might have a significant impact on the convergence properties of304

the (complex/real) RKHS interpolation. For the test function (2.19), the pseudo-305

kernel (2.17) improves the convergence significantly. Note that the test function is306

a low order rational function which is here only used to illustrate the impact of the307

pseudo-kernel. Accordingly, rational interpolation techniques as AAA or VF reach308

machine accuracy already with ≈ 8 training points and are hence excluded in the309

convergence plot for clarity. However, it can already be observed that complex/real310

RKHS interpolation with the Szegö kernel outperforms the alternative approach of311

separate kernel approximations for real and imaginary part with a Gaussian kernel,312

as well as polynomial interpolation on Chebyshev nodes.313

2.3. Relation to Gaussian process interpolation. This section draws con-314

nections between minimum norm interpolation in a RKHS and the posterior mean315

prediction of a Gaussian process (GP), for both the complex and complex/real case.316

GPs are widely used, but to the authors knowledge this is the first time that the317

RKHS associated to any complex GP prediction is characterized. Another intention318

of this section is to make results from the GP literature available for interpolation319
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inverse Laplace transform).
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(b) Convergence study of the RMSE for different
approximations of Frat(iω).

Fig. 1: Left: Illustrations with the test function Frat ∈ H2
sym(Γ0.1+ε), ε > 0 defined

in (2.19). Right: Convergence of the RMSE as a function of the number of (equidis-
tant) training points. Solid lines: complex/real interpolation with the Szegö kernel
for H2(Γα), combined with the zero pseudo-kernel (blue) and the pseudo-kernel (2.17)
(red). Dashed lines: interpolation with a Gaussian kernel for the real and imaginary
part separately (green) and polynomial interpolation on Chebyshev nodes (purple).

with a complex/real RKHS. In particular, we are interested in employing statistical320

methods for model selection (see, e.g., [31] and references therein)—this will be fur-321

ther developed in Section 3.2. We consider zero-mean processes in this section, for322

simplicity see Remark 2.19 below.323

Complex GPs are covered for instance in [27]. A complex GP is a complex process,324

where the real and imaginary part considered jointly are a real GP. We consider a325

zero-mean complex-valued random process ξ on S, with covariance function k and326

pseudo-covariance function c:327

E (ξ(s)ξ(s0)∗) = k(s, s0),(2.20)328

E (ξ(s)ξ(s0)) = c(s, s0).(2.21)329330

Relying on the mapping A, we can work in a real-valued setting, i.e., with a real-331

valued GP ξ̃ indexed on S̃. In the real-valued case, it is well-known that the conditional332

mean of a GP is identical to the minimum-norm interpolant in the RKHS associated333

to its covariance function. Hence, using A, the conditional mean of a complex GP ξ is334

also identical to a minimum-norm interpolant, but this time in a complex/real RKHS,335

the complex kernel k and pseudo-kernel c of which are equal to k and c respectively336

(this follows from Equations (2.12)–(2.13)). It is given by Equation (2.15) in general,337

which simplifies to338

(2.22) E (ξ(s)|y) =

n∑
i=1

γik(s, si), with Knγ = y,339

if the pseudo-covariance is zero (i.e., in the circular case).340
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Remark 2.17. A common approach to deal with complex data is to use GP inter-341

polation for the real and imaginary part separately (see, e.g., [14]). This corresponds,342

using notations from Proposition 2.9, to kRI = kIR = 0, and therefore to a complex343

GP with covariance k = kRR + kII and pseudo-covariance c = kRR − kII .344

Remark 2.18. GP regression with both covariance and pseudo-covariance function345

has also been considered under the name widely linear posterior mean. In [32] it is346

first shown that the posterior mean is widely linear [33], which leads to347

(2.23) E (ξ(s)|y) = (ks,n − cs,nK−∗n CHn )P−∗n y + (cs,n − ks,nK−1
n Cn)P−1

n y∗,348

where Pn = K∗n − CHn K−1
n Cn and P−∗n denotes the complex conjugate of the inverse349

of Pn. The formulas for the circular and non-circular case can also be found in [5].350

Remark 2.19. In practice, GP models often include a non-zero mean function m,351

usually written as a linear combination m(x) =
∑L
`=1 β`h`(x) of known basis func-352

tions h`, with unknown coefficients β`. If the coefficients are estimated by maximum353

likelihood (as in Section 3), the posterior mean of the GP is then equal to the inter-354

polant with minimal semi-norm in G = V +H, where V = span{h1, . . . hL} and the355

semi-norm is defined by |g|G = infv∈V ‖g − v‖H .356

3. Hybrid algorithm. We focus from now, unless otherwise specified, on func-357

tions satisfying the property f∗(s) = f(s∗), and we employ the Szegö kernel (2.5),358

together with the pseudo-kernel (2.18), for complex/real interpolation. In practice,359

the convergence of complex/real RKHS interpolation can be significantly slower than360

that of rational approximations techniques (such as AAA or VF) when the func-361

tion has a few dominant poles pi, i.e., poles with small attenuation <[pi] ≈ 0. In362

this section, we discuss how complex/real RKHS interpolation with the Szegö kernel363

and associated pseudo-kernel can be combined with a small number of rational basis364

functions for the approximation of such frequency response functions.365

3.1. Gaussian process model. We propose to use a complex GP model with366

rational mean function m =
∑L
`=1 β`h` (cf. Remark 2.19), covariance function σ2kα367

and pseudo-covariance function σ2cα, where kα denotes the Szegö kernel (2.5), cα368

the associated pseudo-kernel (2.18), and σ2, α, β1, . . . , βL are real parameters with369

σ2 > 0 and α > 0. For the mean function m we assume a rational function satisfying370

the property m∗(s) = m(s∗), of the form371

(3.1) m(s) =

K∑
i=1

{
1

s− pi
ri +

1

s− p∗i
r∗i

}
,372

with residues r1, . . . , rK ∈ C and (stable) complex conjugate poles p1, p
∗
1, . . . , pK , p

∗
K ∈373

C such that <(pi) < 0 and =(pi) > 0 for all i. This representation is similar to the374

one used in VF [15, 16]. Equation (3.1) can be rewritten as m =
∑L
`=1 β`h` with375

L = 2K,376

β` =

{
<(ri) if ` = 2i− 1,

=(ri) if ` = 2i,
and h`(s) =

{
1

s−pi + 1
s−p∗i

if ` = 2i− 1,
i

s−pi −
i

s−p∗i
if ` = 2i.

377

Note that m is an element of H2
sym(Γα′) with α′ = min1≤i≤K |<(pi)| + ε, ε > 0. For378

simplicity we only consider complex conjugate poles in (3.1), but real poles could be379

included as well, as in VF. In the context of the present work, we typically consider380

a small number K of pole pairs (K ≤ Kmax = min (5, bn/4c) in the examples).381
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For a given number K of pole pairs, we select the hyper-parameters σ2, α,382

p = (p1, . . . , pK) and r = (r1, . . . , rK) by maximization of a penalized log-likelihood383

function, where the penalty stems from a vague log-normal prior on α; see Supple-384

mentary Material for details. An original procedure for the selection of an appropriate385

number K of pole pairs will be presented in the next section.386

Remark 3.1. Note that we do not include a constant basis function, as is usually387

done in Gaussian process modeling, to ensure that the interpolant satisfies the desired388

property (namely, goes to zero) when ω → ±∞.389

Remark 3.2. Alternatively, the residues r1, . . . , rK could be integrated out ana-390

lytically using a Gaussian prior, resulting in additional terms in the covariance and391

pseudo-covariance functions of the GP; see, e.g., [17]. This would allow the uncer-392

tainty on the residues, for a given set of poles, to be reflected in the uncertainty393

quantification (posterior variances) produced by the GP model. We do not pursue394

this idea further in this article, since our focus is on interpolation rather than uncer-395

tainty quantification.396

3.2. Adaptive pole selection. Selecting a suitable number K of pole pairs to397

be included in the mean function (3.1) is a crucial step to ensure good accuracy of the398

proposed hybrid method. In this section we propose a model selection procedure to399

select this number automatically, in a data-driven manner. While this procedure relies400

on the well-established idea of (leave-one-out) cross-validation, it contains an original401

ingredient in the form an “instability penality”, which will be described below.402

First we build Kmax + 1 interpolants f
(K)
n , where the superscript K indicates the403

number of pole pairs, ranging from 0 (zero-mean Gaussian process model) to Kmax.404

Following standard VF practice [16], we begin with the maximum number of poles,405

K = Kmax, using an equidistant distribution of poles close to the frequency axis as406

a starting point for optimization. The other interpolants are then constructed itera-407

tively, going backwards: at each step optimization is initialized using K of the K + 1408

poles selected at the previous step, by removing the least relevant pole according to409

the (penalized) log-likelihood function.410

Model selection is then based on leave-one-out (LOO) cross-validation, i.e., on411

the error indicators412

(3.2) εKLOO =
1

n

n∑
i=1

∣∣∣f(iωi)− f̂ (K)
n−1,i(iωi)

∣∣∣2 , K = 0, 1, . . . ,Kmax,413

where f̂
(K)
n−1,i denotes a model constructed without the i-th data point. Keeping the414

poles and kernel hyper-parameters fixed, when removing points, makes it possible to415

reduce the computational effort, but was found to introduce an undesired preference416

for models with a larger number of poles. Hence, we employ the LOO criterion with417

re-tuning, using the poles and hyper-parameters of f
(K)
n as an initial guess when418

constructing f̂
(K)
n−1,i, 1 ≤ i ≤ n.419

Furthermore, we introduce an additional penalty term, which also takes global420

model variations into account. This approach can be motivated by the example il-421

lustrated in Figure 2 (top). The corresponding vibro-acoustic benchmark model will422

be described in Section 4, however, here we simply consider the approximation of423

the dashed function, based on interpolation of the training points (black dots), as424

a general example. At the top, it can be observed that the LOO criterion (3.2)425

leads to the selection of a model (solid lines) f̂
(5)
n which wrongly identifies a pole426
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4,500 4,520 4,540 4,560

−1

0

1

·10−8

ω (s−1)
4,600 4,800 5,000

−2

0

2

4

·10−8

ω (s−1)

<[f(iω)]

=[f(iω)]

<[f
(5)
n (iω)]

=[f
(5)
n (iω)]

4,500 4,520 4,540 4,560

−1

0

1

·10−8

ω (s−1)
4,600 4,800 5,000

−2

0

2

4

·10−8

ω (s−1)

<[f̂
(5)
n−1,1(ω)]

=[f̂
(5)
n−1,1(ω)]

<[f̂
(5)
n−1,2(ω)]

=[f̂
(5)
n−1,2(ω)]

...

Fig. 2: Top: Dashed lines show the function to approximate. Black dots indicate
the training data. Solid lines represent a bad approximation model which, however,
is selected by the LOO criterion. Zoomed plot (gray background) highlights the
influence of a wrongly identified pole. Bottom: Leave-on-out predictions, which show
strong local variations between 4500 s−1 and 4520 s−1. However, these variations do
not significantly affect the values at the respective training points.

at ≈ 4520 s−1. However, this effect is rather local, it mainly takes place between427

two training points (illustrated by black dots). At the bottom, we show the models428

f̂
(K)
n−1,i(ω), i = 1, . . . , n, which show strong variations close to ≈ 4510 s−1 but rather429

small errors at the training points ωi. To take this into account, we introduce an430

instability penalty term, which leads to the criterion431

(3.3) εKLOO,stab = εKLOO + λ
1

n

1

M

n∑
i=1

M∑
j=1

∣∣∣f (K)
n (iω̂j)− f̂ (K)

n−1,i(iω̂j)
∣∣∣2 ,432

where {ω̂j}Mj=1 denotes a fine grid on Ω (more precisely, an equidistant grid with433

M = 10n+ 1 points). The weighting factor λ is chosen as434

(3.4) λ = 0.2
ε0LOO

1
n

1
M

∑n
i=1

∑M
j=1

∣∣∣f (0)
n (iω̂j)− f̂ (0)

n−1,i(iω̂j)
∣∣∣2 ,435

i.e., 0.2 after normalizing both terms w.r.t. the respective values of the purely kernel-436

based interpolation model. To our knowledge, this approach for model selection has437

not been considered before, although it is related to the continuously-defined LOO438
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Fig. 3: Comparison of different model selection criteria for two benchmark prob-
lems. εLOO,1 and εLOO,2 denote the leave-on-out residual without and with retuning
of hyper-parameters, respectively. The stabilized criterion εLOO,stab (with retuning)
defined in (3.3) gives the best results.

error [20, 21, 13]. The continuously-defined LOO error was employed for sequential439

sampling, while we propose to use it to construct an instability penalty for model440

selection. Stability selection [24, 25] is another related approach, which is also based441

on resampling of the data, but usually employed for variable selection.442

Employing the stabilized criterion (3.3) for model selection gives satisfactory re-443

sults for the benchmark examples considered in this work. For illustration, we consider444

the convergence studies for two models, which will be described in Section 4. Figure 3445

shows the root-mean-square-errors (RMSEs) of the available models with gray dots446

and the accuracy of the selected models by the different criterions. It can be observed447

that the stabilized criterion εKLOO,stab gives the best results, while LOO residuals with448

retuning is superior to the approach without retuning.449

Remark 3.3. The combination of kernel methods with a small number of rational450

basis functions has also been considered in [17] for data-driven modeling of frequency451

response functions. Therein, the authors employ first order stable spline kernels, which452

encode stability, causality and smoothness and add a rational basis for capturing the453

resonsant poles of the transfer function. A prior is formed over the impulse responses454

linked to the resonant poles, which allows to derive additional kernels (one for each455

resonant pole) via the Fourier transform.456

Our approach proceeds in a similar way, as our VF-inspired rational basis could457

also be transformed into additional kernels through a prior over β. Differences can be458

found in the model selection strategies, which are based on the local rational method in459

[17], whereas our approach is based on statistical model selection. Additionaly, our fo-460

cus here is on providing a complete background on the RKHS concepts of complex/real461

interpolation, whereas [17] is additionally targeting uncertainty quantification for the462

data-driven modeling procedure.463

4. Numerical results. We apply the presented approximation techniques to a464

number of benchmark functions from different fields. We always employ n training465

points (ωi, f(iωi)), where the ωi are equidistant frequency points in [ωmin, ωmax], for466

simplicity. The accuracy of different approximations is then quantified in terms of467
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the root-mean-square error (RMSE), which is evaluated on a refined equidistant grid468

with 201 points for all numerical examples.469

In the following we give a few details on the implementation. For AAA [28],470

we rely on the implementation of the chebfun toolbox [12]. For VF, we employ471

the VectFit3 toolbox [16, 15, 11], where we use complex equidistant starting poles472

distributed according to the general recommendation, and always run 30 iterations.473

We apply the “relaxed non-triviality constraint” [15], include the constant but not474

the linear term, and enforce stable poles. The number of complex starting pole pairs475

is set to the maximum number of 2bn−1
2 c, which leads to the best results for the476

smooth test functions considered. For kernel interpolation we consider a separate477

interpolation of the real and imaginary part with the squared exponential kernel (SE)478

and complex/real interpolation with the Szegö kernel. The latter is also considered in479

combination with an adaptive rational basis (Sz.-Rat.) as described in Section 3. The480

implementation is done in Matlab as well, based on the STK toolbox [4]. To this end,481

we employ the mapping A defined in (2.9) for the complex/real RKHS interpolation,482

which allows to realize the implementation based on real RKHS interpolation on483

an augmented input space Ω × {0, 1}. Note that this approach could be employed484

with any toolbox for real RKHS interpolation that provides the option to specify485

custom kernel functions. The tuning of the hyper-parameters and poles based on486

the likelihood function (see Section 3) is carried out using fmincon in Matlab, i.e.,487

gradient-based optimization (more precisely an interior point algorithm), which we488

combine with a multistart procedure; see Supplementary Material for more details.489

Remark 4.1. By investigating the shape of the likelihood function for a number490

of benchmark problems, we have found that the logarithmic reparameterization, dis-491

cussed in [3] for instance, is not beneficial for the parameter α. Hence, it is only492

applied to the scaling parameter σ.493

4.1. Electric circuit (high order rational function). We consider in the494

following a parallel connection of N underdamped series RLC circuits, as illustrated495

on the left side in Figure 4. The admittance is given as496

(4.1) Y (s) =

N∑
i=1

s

s2Li + sRi + C−1
i

=

N∑
i=1

ci
s− ai

+
c∗i

s− a∗i
,497

where <[ai] = − Ri
2Li

(an explicit representation of the poles ai and residues ci is given498

in the Supplementary Material) and we consider the frequency range [10 kHz, 25 kHz].499

First, we assume N1 = 1000 random series RLC elements, where Ci ∼ U(1, 20) µF500

and Li ∼ U(0.1, 2) mH, and we assume the resistance Ri to be roughly proportional501

to the inductance, with random variations of ±20%: Ri = Li(1+∆) Ω(mH)−1, where502

∆ ∼ U(−0.2, 0.2).503

Note that for any combination of those parameters, the corresponding series RLC504

circuits are underdamped. For one particular realization, the distribution of the505

2N = 2000 poles is illustrated in Figure 4. The corresponding admittance Y1(iω)506

is shown in Figure 5 with dashed black lines. We then conduct a convergence study507

for the particular realization of the electric circuit, which is shown in Figure 6 (top,508

left). We repeat the convergence study for 100 random realizations and depict the509

median RMSE at each point in Figure 6 (top, right). It can be observed that for510

the considered range of the number of training points (where n ≤ 60 � N) the511

complex/real Szegö kernel-based interpolation outperforms AAA and VF. Employing512

the hybrid algorithm (Sz.-Rat.) does not yield an improvement, but leads to similarly513
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Fig. 4: Left: Parallel connection of (underdamped) series RLC circuits. Right: Black
crosses indicate the distribution of 2N1 = 2000 poles of the circuit admittance Y1

in the complex plane. Red crosses indicate the two additional poles considered for
the circuit admittance Y2 with 2N2 = 2004 poles. Blue line indicates the considered
frequency range.
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Fig. 5: Complex admittances Y1 and Y2 of the electric circuits versus frequency for a
particular random parameter realization and N1 = 1000 and N2 = 1002, respectively.

good results.514

In our second experiment, we introduce two additional circuit elements with a515

very small damping, i.e. we now consider N2 = 1002 and516

C1001 = 5 pF, L1001 = 1 mH, R1001 = 0.1 Ω,517

C1002 = 2 pF, L1002 = 1 mH, R1002 = 0.1 Ω.518519

This leads to two additional poles which are closer to the input domain, as illustrated520

by the red crosses in Figure 4. The corresponding admittance Y2(iω) differs very little521

from Y1(iω), except for two sharp peaks, as can be seen in Figure 5. However, the522

accuracy of the respective RKHS interpolation is significantly affected. In particular,523

at the bottom of Figure 6, it can be observed that the convergence order of Szegö524

kernel interpolation is significantly reduced. By adding the rational basis we are able525

to mitigate the impact of the two dominant poles: it exhibits fast convergence and an526

improvement w.r.t. AAA and VF can again be observed.527
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Fig. 6: Convergence study for admittances Y1 (top) and Y2 (bottom). Left: RMSE
for one particular realization. Right: Median for 100 random realizations.

4.2. PDE-based examples. In the following, we investigate a number of PDE-528

based examples. We start with the acoustic Helmholtz equation, in particular, the529

PAC-MAN benchmark example, introduced in [40] which is also included in the plat-530

form for benchmark cases in computational acoustics from the European Acoustics531

Association [19]. The model, shown in Figure 7, has the PAC-MAN shape with an532

opening angle of 30◦ and radius of 1 m. As in [40, Section 6.1], we consider as excita-533

tion a vibration of the surface of the PAC-MAN with cylindrical modes and observe534

the radiated field pi at a point in 2 m distance at an angle of 10◦. As in [19], the535

computation was done based on the implementation of the analytical solution pro-536

vided in [40] by replacing the python module scipy by mpmath for the computation537

of higher order Bessel functions. In particular, we set the truncation order to 300.538

The complex acoustic pressure field phasor pi of the total sound-field versus the fre-539

quency f ∈ [2000 Hz, 4000 Hz] is shown in Figure 7 (top, right). We then conduct a540

convergence study w.r.t. the number of training points, which is depicted in Figure 7541

(bottom, left). It can be observed that the complex/real Szegö kernel-based interpo-542

lation outperforms the alternative approaches in the range up to about 40 training543

points. Adding the rational mean function does not further improve the accuracy,544

but does not harm the accuracy either.545

Next, we consider an electromagnetic model problem, which is a demonstration546

example of CST Microwave Studio [10], solving the full set of Maxwell equations in the547

frequency domain. The model consists of a waveguide junction with 4 ports, which548

contains a small metallic disk and is connected to an external cavity resonator (see549
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Fig. 7: Top left: We consider a surface vibration of the PAC-MAN model and evaluate
the radiated acoustic field pi at a point (black dot) in 2 m distance to the center. Top
right: Complex frequency response function. Bottom left: Magnitude of frequency
response function. Bottom right: Convergence study w.r.t. the number of training
points.
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Fig. 8: Top left: Waveguide junction model, taken from CST Microwave Studio [10].
Top right: Complex frequency response functions. Bottom: Convergence studies
w.r.t. the number of training points.
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Fig. 9: Top left: Vibro-acoustic benchmark problem, based on [36]. Top right: Com-
plex frequency response function. Bottom: Convergence study w.r.t. the number of
training points.

Figure 8). The structure is excited at the first port and simulated using the finite550

element method in the frequency domain. In particular, we set the solver accuracy551

of the 3rd order solver to 10−6 and use a curved mesh with standard settings. We552

employ an initial adaptive mesh refinement at 9 GHz, where we set the scattering553

parameter criterion threshold with 2 subsequent checks to 10−4. As quantity of in-554

terest we consider the scattering parameters on a frequency range of [7 GHz, 9 GHz]555

using equidistant sample points, where we restrict ourself to S21 and S41 for brevity,556

however, the results are qualitatively similar for all four scattering parameters. It557

can be seen that, the QoIs have a dominant pole at around 8 GHz. This causes the558

purely kernel-based interpolations to be inferior compared to the rational approxima-559

tions. However, the proposed combination of kernel-based interpolation and rational560

approximations leads to satisfactory results, with an accuracy comparable to that561

of AAA and VF.562

The final test case is a vibroacoustic finite element model, taken from [36] and563

depicted in Figure 9. A 2D Mindlin plate (vibrating structure Ds) is excited by a564

point force and strongly coupled to a 3D acoustic domain (air cavity Df ). Then, the565

response at a point in the fluid is evaluated. See [36] for more details on the model.566

We consider the frequency response on a frequency interval ω ∈ [4500 s−1, 5000 s−1],567

shown in Figure 9 (top, right). The convergence study, given in Figure 9 (bottom),568

indicates that the proposed approach usually achieves an accuracy at least comparable569

to that of AAA and VF, with at certain points an improvement by about an order570

of magnitude can be observed. It can also be seen that the rational mean function571

improves the accuracy at the majority of points compared to the pure Szegö kernel-572

based interpolation.573
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5. Conclusion. We have presented a comprehensive framework for kernel-based574

interpolation of complex-valued functions and frequency response functions. In the575

complex-valued case, the pseudo-kernel is an additional ingredient, which can be used576

to improve the interpolation accuracy. We have introduced the concept of com-577

plex/real reproducing kernel Hibert spaces to reveal the role of the pseudo-kernel578

and to establish results on minimum norm interpolation. Furthermore, we have pro-579

posed a hybrid method, which complements the kernel-interpolant with a low-order580

rational function and a new model selection criterion: this extension is crucial to581

account for dominant poles in applications.582

The capabilities of the rational-kernel method have been illustrated with sev-583

eral examples, from circuits to frequency response functions originating from PDE584

problems. In all examples the performance was at least comparable, in some cases585

improved, compared to AAA and vector fitting on the same set of training data.586

The kernel method was further linked to complex-valued Gaussian process regres-587

sion, which can be used in future work to include noise and adaptive sampling. A588

generalization to the multivariate case, where, e.g., uncertain parameters are consid-589

ered as well, and comparisons against multivariate AAA [35] or rational Polynomial590

Chaos [37], would also be of interest.591

Appendix A. Proofs.592

A.1. Proof of Theorem 2.4. We assume without loss of generality that α = 0593

in this proof—i.e., we consider the case of the Hardy space H2(Γ0) on the right half-594

plane Γ0 = {s ∈ C | <[s] > 0}. The general case follows by translation.595

The fact that H2(Γ0) is an RKHS is well known. Indeed, recall the one-sided596

Paley-Wiener theorem (see, e.g., Chapter 8 of [18]): for all f ∈ H2(Γ0), there exists597

a unique f̂ ∈ L2(R+) such that598

(A.1) f(s) =
1√
2π

∫ +∞

0

f̂(t) e−st dt, ∀s ∈ Γ0,599

and the mapping f 7→ f̂ is a surjective isometry: ‖f‖H2(Γ0) = ‖f̂‖L2(R+). This proves600

that H2(Γ0) is a Hilbert space, and a simple application of the Cauchy-Schwartz601

inequality for s = x+ iy ∈ Γ0 yields:602

|f(s)| ≤ 1

2
√
πx
· ‖f̂‖L2(R+),603

which proves that the evaluation functionals are continuous on H2(Γ0).604

Let us now determine the kernel k of this RKHS. Let s0 ∈ Γ0 and set h = k(·, s0).605

Then, for any f ∈ H2(Γ0), the reproduction property combined with (A.1) yields:606

〈f, h〉H2(Γ0) = f(s0) =
1√
2π

∫ +∞

0

f̂(t) e−s0t dt =

〈
f̂ ,

1√
2π

e−s
∗
0(·)
〉
L2(R+)

,607

which implies that ĥ = 1√
2π
e−s

∗
0(·) since f 7→ f̂ is an isometric isomorphism. The608

expression of the kernel follows:609

(A.2) k(s, s0) = h(s) =
1√
2π

∫ +∞

0

ĥ(t) e−st dt =
1

2π (s+ s∗0)
.610

It remains to show that k is strictly positive definite. For any m ≥ 1 and611

s1, . . . , sm ∈ Γ0, the kernel matrix Km = (k(si, sj))1≤i,j≤m can be seen as the conju-612
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gate Gram matrix of h1, . . . , hm in L2(R+), where hj(t) = 1√
2π
e−s

∗
j t, t ≥ 0. Assume613

that s1, . . . , sm are distinct. Then it is well known that the complex exponen-614

tials e−s
∗
1(·), . . . , e−s

∗
m(·) are linearly independent entire functions on C. It follows,615

using the identity theorem, that h1, . . . , hm are linearly independent as well. The616

kernel matrix Km is thus invertible and, consequently, positive definite. Therefore k617

is strictly positive definite.618

Remark A.1. The expression of the reproducing kernel is also derived in [8, Theo-619

rem 2.12] (for the upper half-plane instead of Γ0) using a different approach involving620

the kernel of the Hardy space of the unit disk. Note, however, that the factor 2π621

in the denominator of (A.2) is missing in [8, Equation (2.9)]; the discrepancy comes622

from a missing factor 1
2π in the definition of the norm on Hp(D) on page 14.623

A.2. Proof of Proposition 2.7. Take H = {αf0, α ∈ C}, where f0 : X → C624

is some fixed function, and define a real inner product over H by 〈αf0, βf0〉 :=625

<α · <β + 4=α · =β. Assuming that f0 6≡ 0, the resulting space is complex/real626

RKHS of dimension two, spanned by {f0, if0}. (H is also a complex vector space of627

dimension 1.)628

It not possible to embed H as a subspace of a complex Hilbert space HC with629

inner product 〈·, ·〉C such that 〈f, g〉 = < 〈f, g〉C for all f, g ∈ H. To see it, note for630

instance that ‖f0‖ = 1 while ‖if0‖ = 2.631

A.3. Proof of Proposition 2.9. Let f ∈ H, s0 ∈ S and a0 ∈ {R, I}. Then632

Ga0 (f(s0)) = (Af) (s0, a0) =
〈
Af, k̃ (·, (s0, a0))

〉
H̃

(A.3)633

=
〈
f, A−1

(
k̃ (·, (s0, a0))

)〉
H
.(A.4)634

635

Taking a0 = R, we have thus proved that < ◦ δs0 = 〈 · , ϕR (·, s0) 〉H , where636

(A.5) ϕR (·, s0) = A−1
(
k̃ (·, (s0,R))

)
∈ H637

can be computed as follows:638

< [ϕR (s, s0)] = (A [ϕR (·, s0)]) (s,R) = k̃ ((s,R), (s0,R)) = kRR(s, s0),(A.6)639

= [ϕR (s, s0)] = (A [ϕR (·, s0)]) (s, I) = k̃ ((s, I), (s0,R)) = kIR(s, s0).(A.7)640641

The expression of ϕI (·, s0) is derived similarly by taking a0 = I in (A.4).642

A.4. Proof of Proposition 2.11. In a real or complex RKHS, it is well known643

that the partial kernel functions k(·, s0), s ∈ S, span a dense subset of the Hilbert644

space. Moreover, recall that the bijection A defined in Section 2.1 is an isometric645

isomorphism between H and a real RKHS H̃ on S̃ = S × {R, I}, whose kernel k̃ can646

be recovered from k and c by inverting (2.9)–(2.10). The claim then follows from the647

observation that any function on S̃ of the form648

g̃ =

n∑
i=1

αi k̃ (·, (si,R)) +

n∑
i=1

βi k̃ (·, (si, I)) ,649
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where α1, β1, . . . , αn, βn ∈ R, corresponds to the image by A of650

g =

n∑
i=1

αiA−1
(
k̃ (·, (si,R))

)
+

n∑
i=1

βiA−1
(
k̃ (·, (si, I))

)
651

=

n∑
i=1

αi ϕR (·, si) +

n∑
i=1

βi ϕI (·, si)652

=

n∑
i=1

γi k (·, si) +

n∑
i=1

γ∗i c (·, si) , with γi =
1

2
(αi + iβi) .653

654

A.5. Proof of Theorem 2.13. Assume first that k and c are the complex655

kernel and pseudo-kernel associated to a given complex/real RKHS H. Let ξ̃ denote656

a zero-mean (e.g., Gaussian) real-valued random process indexed by S with covariance657

function equal to the kernel k̃ of the real RKHS H̃ = AH, and set ξ = ξ̃(·,R)+i ξ̃(·, I).658

Then ξ is a complex-valued random process on S, with covariance function k and659

pseudo-covariance function c; indeed, for all s, s0 ∈ S,660

E (ξ(s) ξ(s0)∗) =
(
k̃ ((s,R), (s0,R)) + k̃ ((s, I), (s0, I))

)
661

+ i
(
k̃ ((s, I), (s0,R))− k̃ ((s,R), (s0, I))

)
= k(s, s0),662

663

and similarly E (ξ(s) ξ(s0)) = c(s, s0). It follows readily that k is Hermitian and664

positive definite, and that c is symmetric, which proves i) and ii).665

Pick s1, . . . sn ∈ S, and set Kn = (k(si, sj))1≤i,j≤n and Cn = (c(si, sj))1≤i,j≤n.666

Then Kn and Cn are respectively the covariance and pseudo-covariance matrix of the667

random vector Z = (ξ(s1), . . . , ξ(sn))
T

, and thus iv) is precisely the “only if” part668

the following result, due to [32].669

Proposition A.2. Let n ∈ N∗. Let K be a complex, Hermitian, positive defi-670

nite matrix of order n, and let C be a complex, symmetric matrix of the same size.671

Then there exists a complex random vector Z with covariance matrix K and pseudo-672

covariance matrix C if, and only if, K∗ − CHK−1C is positive semi-definite.673

It remains to prove iii): let u ∈ kerKn. Then uHKnu = E
(∣∣uHZ

∣∣2) = 0, therefore674

uHZ = 0 almost surely, and as a consequence:675

C∗nu = E
(
ZZT

)∗
u = E

(
Z∗ZHu

)
= E

(
Z∗(uHZ)H

)
= 0.676

This completes the proof of i)–iv).677

Conversely, assume now that k and c are two functions from S×S to C, such that678

i)–iv) hold. Then it is easy to see that there is a unique function k̃ : S× {R, I} → R679

such that (2.12)–(2.13) hold, given by680

kRR(s, s0) =
1

2
< (k(s, s0) + c(s, s0))681

kII(s, s0) =
1

2
< (k(s, s0)− c(s, s0))682

kIR(s, s0) =
1

2
= (k(s, s0) + c(s, s0)) = kRI(s0, s).683

684

It remains to prove that k̃ is positive definite. It is easy to see that this is true685

if, and only if, the matrices Kn and Cn defined above are the covariance and686
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pseudo-covariance matrices of a complex random vector Z, for any choice of the687

points s1, . . . , sn ∈ S. Pick such a set of points, and let r denote the rank of Kn.688

Assume without loss of generality that689

(A.8) Kn =

(
K11 K12

KH
12 K22

)
,690

with K11 a positive definite r × r matrix. Then K22 = KH
12K

−1
11 K12 and691

(A.9) Kn = M

(
K11 0

0 0

)
MH, where M =

(
Ir 0

KH
12K

−1
11 In−r

)
692

Denote by C11 the upper-left r × r block in Cn. Then it follows from iv) that693

K∗11−CH
11K

−1
11 C11 is positive semi-definite, and thus by Proposition A.2 there exists a694

complex random vector Z1 of size r with covariance matrix K11 and pseudo-covariance695

matrix C11. It is then clear from (A.9) that Kn is the covariance matrix of696

Z = M

(
Z1

0

)
.697

To complete the proof, it remains to observe that Cn is the pseudo-covariance matrix698

of Z:699

(A.10) Cn = M

(
C11 0
0 0

)
MT = E

(
ZZT

)
,700

which follows from the facts that Cn is symmetric and that kerKn ⊆ kerC∗n, respec-701

tively by ii) and iii).702

A.6. Proof of Theorem 2.14. Using the bijection A defined in Section 2.1,703

the interpolation problem on S with complex-valued data (s1, y1), . . . , (sn, yn) can704

be reformulated as an interpolation problem on S̃ = S × {R, I} with real-valued705

data ((s1,R),<(y1)), ((s1, I),=(y1)), . . . , ((sn,R),<(yn)), ((sn, I),=(yn)). The claim706

then follows from Theorem 2.3 using, as in the proof of Proposition 2.11, the fact that707

A is an isometric isomorphism between H and the real RKHS H̃ = A(H).708

A.7. Proof of Theorem 2.15. i) ⇒ ii). Let H denote a complex/real RKHS709

on S with complex kernel k, such that (2.16) holds. Let c denote the pseudo-covariance710

of H. Let s0 ∈ S. It follows from Proposition 2.11 that711

fγ = γ k(·, s0) + γ∗ c(·, s0)712

is in H for all γ ∈ C. Using (2.16), we see then that713

fγ(s∗) = γ k(s∗, s0) + γ∗ c(s∗, s0)714

= γ c(s, s0)∗ + γ∗ k(s, s0)∗ = fγ(s)∗715716

holds for all γ ∈ C. This yields in particular that c(s, s0) = k(s∗, s0)∗ = k(s0, s
∗), and717

the claim follows from the symmetry of c:718

c(s, s0) = c(s0, s) = k(s, s∗0).719

Note that we have actually proved a little more than ii): if i) holds, then ii) holds720

for the same complex/real RKHS H. Since we will now prove that ii) ⇒ iii) ⇒ i),721
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it follows that the complex/real RKHS with complex kernel k and pseudo-kernel c722

defined by (2.17), if it exists, is the only complex/real RKHS with complex kernel k723

such that (2.16) holds.724

ii) ⇒ iii). Let H denote a complex/real RKHS on S with complex kernel k.725

Assume that the pseudo-kernel c satisfies (2.17). Then, for all s, s0 ∈ S,726

k(s, s∗0) = c(s, s0) = c(s0, s) = k(s0, s
∗).727

iii)⇒ i). Let k denote a Hermitian positive definite kernel on S such that728

(A.11) ∀s, s0 ∈ S, k(s, s∗0) = k(s0, s
∗).729

Let (HC, 〈·, ·〉C) denote the complex RKHS with kernel k and let 〈·, ·〉R = < 〈·, ·〉C.730

Then, as observed in Remark 2.6, (HC, 〈·, ·〉R) is a complex/real RKHS. The associated731

real and imaginary evaluation kernels, which we denote by ϕ�R and ϕ�I respectively,732

are easily seen to be given by ϕ�R = k and ϕ�I = i k, and the complex kernel and733

pseudo-kernel follow:734

k� = ϕ�R − iϕ�I = 2k and c� = ϕ�R + iϕ�I = 0.735

Now let H denote the subset of all the functions f ∈ HC that satisfy (2.16): H is736

clearly a real subspace of HC, and thus (H, 〈·, ·〉R) is a complex/real RKHS as well.737

Moreover, for any f ∈ H,738

< f(s) = <
{

1

2
(f(s) + f(s∗)∗)

}
739

=
1

2

{
〈f, ϕ�R(·, s)〉R + 〈f, ϕ�R(·, s∗)〉R

}
740

=

〈
f,

1

2
(ϕ�R(·, s) + ϕ�R(·, s∗))

〉
R
.741

742

As a consequence of (A.11), the function s 7→ 1
2 (ϕ�R(·, s) + ϕ�R(·, s∗)) in this inner743

product satisfies744

1

2
(ϕ�R(s0, s)

∗ + ϕ�R(s0, s
∗)∗)745

=
1

2
(ϕ�R(s, s0) + ϕ�R(s∗, s0))746

747

is an element of H, which proves that the real evaluation functional ϕR of (H, 〈·, ·〉R)748

is given by749

ϕR(s, s0) =
1

2
(ϕ�R(s, s0) + ϕ�R(s, s∗0)) =

1

2
(k(s, s0) + k(s, s∗0)) .750

Similarly for the imaginary evaluation functional ϕI:751

ϕI(s, s0) =
1

2
(ϕ�I (s, s0)− ϕ�I (s, s∗0)) =

i

2
(k(s, s0)− k(s, s∗0)) .752

Therefore ϕR − iϕI = k is the complex kernel of (H, 〈·, ·〉R), which proves i).753

To prove the remaining assertions, assume that i–iii) hold. Let G denote the754

closed linear span of {k(·, s0); s0 ∈ S} over R. Then we have G + iG = HC, and it755
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follows from (A.11) that G ⊆ H. Observing that756

iH = {f ∈ HC | ∀s ∈ S, f(s∗) = −f(s)∗} ,757

we conclude that H ∩ iH = {0}, therefore G = H and H ⊕ iH = HC.758

A.8. Proof of Theorem 2.16. Observe first that, without loss of generality,759

we can add m extra data points (si, yi), for some m ≤ n, in such way that 1) the760

points si ∈ S (1 ≤ i ≤ n + m) are still distinct, and 2) for each i we have sj = s∗i761

and yj = y∗i for some j.762

Existence. Since k is strictly positive definite, we can find α1, . . . , αn+m ∈ C such763

that h =
∑n+m
i=1 αik(·, si) interpolates the extended data (s1, y1), . . . , (sn+m, yn+m).764

This function h belongs to HC but not in general to H. Set g(s) = 1
2 (h(s) + h(s∗)∗).765

Then g clearly satisfies the symmetry condition (g(s∗) = g(s)∗ for all s ∈ S) and still766

interpolates the extended data (s1, y1), . . . , (sn+m, yn+m). Moreover, using iii) from767

Theorem 2.15, we obtain that768

g(s) =
1

2

n+m∑
i=1

(αik(s, si) + α∗i k(s, s∗i )) ,769

which shows that g ∈ HC, and thus g ∈ H. Besides, we easily see using (2.17) that:770

if si = s∗i then771

(A.12)
1

2

{
αik(s, si) + α∗i k(s, s∗i )

}
= γik(s, si) + γ∗i c(s, si)772

with γi = 1
2αi, and if sj = s∗i with i 6= j then773

(A.13)

1

2

{(
αik(s, si) + α∗i k(s, s∗i )

)
+
(
αjk(s, sj) + α∗jk(s, s∗j )

)}
=
(
γik(s, si) + γ∗i c(s, si)

)
+
(
γjk(s, sj) + γ∗j c(s, sj)

)774

with γi = 1
2

(
αi + α∗j

)
and γj = 0. It follows that g can be rewritten under the775

form (2.15), using the fact that γj = 0 in (A.13) to get rid of the m extra terms. Thus776

γ = (γ1, . . . , γn)
T

solves (2.14), which proves the “existence” part of the theorem.777

Uniqueness. Let g ∈ H denote a function of the form (2.15), where the coeffi-778

cients γi are such that (2.14) holds. Using the property that c(s, si) = k(s, s∗i ), any779

such function can be rewritten as g =
∑n+m
i=1 αik(·, si). Moreover, since the si’s are780

n+m distinct points in S and k is strictly positive definite, the coefficients αi ∈ C are781

uniquely determined by the interpolation conditions: g(si) = yi, 1 ≤ i ≤ n+m. The782

first n conditions come directly from (2.14), and the m additional conditions must783

hold as well by symmetry, since g ∈ H.784

For each i such that si = s∗i , it is easily seen that αi = γi+γ
∗
i is real, and thus the785

value of γi is uniquely determined by αi and the additional condition that γi = γ∗i .786

Similarly, if si = s∗j for some i, j ≤ n, i 6= j, then αi = γi + γ∗j , αj = γ∗i + γj , and787

therefore γi, γj are uniquely determined by αi, αj and the condition γi = γ∗j . Finally,788

if si = s∗j for some i ≤ n and j > n, then αi = γi. We have thus proved that there is789

a unique γ = (γ1, . . . , γn)
T

, with the property that γi = γ∗j when si = s∗j , such that790

(2.14) holds.791
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[28] Y. Nakatsukasa, O. Sète, and L. N. Trefethen, The AAA algorithm for rational approxi-852

mation, SIAM J. Sci. Comput., 40 (2018), pp. A1494–A1522.853
[29] F. Nobile and D. Pradovera, Non-intrusive double-greedy parametric model reduction by854

interpolation of frequency-domain rational surrogates, arXiv:2008.10864, (2020).855

This manuscript is for review purposes only.

https://github.com/stk-kriging/stk/
https://www.cst.com


26 J. BECT, N. GEORG, U. RÖMER AND S. SCHÖPS
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880

881

SUPPLEMENTARY MATERIAL882

883

SM1. Introduction. This supplementary material is structured in the following884

way. We first present additional material on the new method presented in the paper:885

Section SM2.1 provides details on a non-intrusive implementation, and Section SM2.2886

contains specifics on parameter optimization. We then collect material relevant to887

the examples. In particular, a partial fraction representation of the circuit model in888

Section SM3.1 and an additional numerical example in Section SM3.2. The algorithm889

applied to this example, a spiral antenna, yields results which are comparable to the890

pacman model shown in the main paper. Finally, some theoretical results regarding891

circular complex/real RKHS are collected in Section SM4.1.892

SM2. Implementation details.893

SM2.1. Non-intrusive implementation.894

SM2.1.1. Zero-mean case. The main idea is to construct an isomorphic real-895

valued GP g̃(x̃) ∼ GP(0, k̃) on an augmented input space x̃ ∈
(
Rn × {0, 1}

)
, s.t.,896

(SM2.1)
g̃(
[
x 0

]
) = Re[g(x)],

g̃(
[
x 1

]
) = Im[g(x)].

897

The augmented training data
(
x̃, ỹ
)
∈
(
Rn × {0, 1}

)
× R is for each observation898 (

x(i), y(i)
)
∈ Rn × C obtained as:899

x̃(i,1) =
[
x(i) 0

]
, ỹ(i,1) = Re[y(i)],900

x̃(i,2) =
[
x(i) 1

]
, ỹ(i,2) = Im[y(i)].901902

The new covariance function k̃ can be derived by enforcing (SM2.1),903

k̃(x̃, x̃′) = k̃([x j], [x′ j′]) =


1
2 Re[k(x,x′) + c(x,x′)] j = j′ = 0
1
2 Re[k(x,x′)− c(x,x′)] j = j′ = 1
1
2 Im[−k(x,x′) + c(x,x′)] j = 0, j′ = 1
1
2 Im[k(x,x′) + c(x,x′)] j = 1, j′ = 0

,904

905

Note that this approach requires to define the modified covariance function k̃, however,906

no (other) internal functions of existing GP implementations need to be able to cope907

with complex numbers, which is why we refer to the implementation as non-intrusive.908

SM2.1.2. Linear model in the mean function. Consider now the superpo-909

sition910

g(x) = g(x) + h(x)Tb911

of a mean-free (real/)complex Gaussian Process g(x) ∼ CGP(0, k, c) and a complex912

linear model, where h(x) : Rn → Cm denote explicit basis functions and b ∈ Cm the913

corresponding coefficients. Define the augmented process914

g̃(x̃) = g̃(x̃) + h̃(x̃)Tb̃,915
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where g̃(x̃) ∼ GP(0, k̃), b̃ ∈ R2m, h̃(x̃) : Rn×{0, 1} → R2m and we require, similarly916

as in the last subsection, that917

g̃([x 0]) = Re[g(x)],918

g̃([x 1]) = Im[g(x)].919920

Incorporating (SM2.1), we can conclude that921

h̃([x 0])Tb̃ = Re[h(x)Tb] = Re[h(x)]T Re[b]− Im[h(x)]T Im[b]922

h̃([x 1])Tb̃ = Im[h(x)Tb] = Im[h(x)]T Re[b] + Re[h(x)]T Im[b].923924

needs to be fulfilled. This can be achieved by setting925

h̃(x̃) = h̃([x j]) =

[{
+ Re[h(x)] j = 0

+ Im[h(x)] j = 1

{
− Im[h(x)] j = 0

+ Re[h(x)] j = 1

]T

,926

which leads to the coefficients vector927

b̃ =

[
Re[b]
Im[b]

]
.928

SM2.2. Details on parameter optimization.929

SM2.2.1. Penalized log-likelihood criterion. We select the parameters α930

and σ2 of the the Szegö kernel σ2kα (cf. Section 3 in the article), together with the931

dominant poles p = (p1, . . . , pK) in the case of the hybrid method, by maximizing a932

penalized log-likelihood criterion:933

(SM2.2) J
(
α, σ2,p

)
= max

r∈CK
ln
(
p
(
y|α, σ2,p, r

))
+ ln(ρ(α)),934

where the first term is the log-likelihood of the model, maximized (profiled) analyti-935

cally with respect to the residues r of the rational mean function model m, and the936

second term is a penalty term, designed to pull α away from 0.937

More precisely, we take for ρ(α) the probability density function (pdf) of a log-938

normal random variable with parameters µα (to be specified) and σα = 3; in other939

words, we use a “vague” prior distribution on α, such that log(α) is Gaussian with940

mean µα and variance σ2
α. The parameter µα is chosen in such a way that the log-941

normal density for α has its mode at |Ω| = ωmax−ωmin, or equivalently that the prior942

density for α/ |Ω| has its mode at 1. Using that the mode of the lognormal density is943

at eµα−σ
2
α , we deduce that µα = σ2

α + ln |Ω|. The resulting pdf944

(SM2.3) ρ(α) =
1

ασα
√

2π
exp
(−(ln(α)− µα)2

2σ2
α

)
945

is shown in Figure SM1 for |Ω| = 1. It can be seen that the chosen parameters allow946

for the choice of α within a range of several orders of magnitude.947

The penalized log-likelihood criterion (SM2.2) is maximized numerically using948

bound-constrained gradient-based optimization—more precisely, interior point algo-949

rithm available from Matlab’s fmincon function—with a multistart procedure. Details950

about the bounds for the search domain and the initial points for the local search are951

provided in Sections SM2.2.2–SM2.2.3.952
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Fig. SM1: Log-normal prior on hyper-parameter α for |Ω| = 1. Left: log-normal prior
density of α. Note that the mode of the density is indeed at α = |Ω| = 1. Right:
prior density of log10(α). This is a Gaussian density with mean µα/ ln(10) ≈ 3.91 and
standard deviation σα/ ln(10) ≈ 1.30.

Remark SM2.1. This parameter selection procedure can be considered as maxi-953

mum a posteriori estimate in the Bayesian sense. Indeed, the penalized log-likelihood954

criterion (SM2.2) can be seen as the log-posterior density, up to a constant, assuming955

a lognormal prior for α and an improper uniform prior for all the other parameters.956

Remark SM2.2. Even when the complex kernel k is strictly positive definite, the957

distribution of data under the GP model does not always admit a probability density958

function with respect to Lebesgue’s measure on R2n (cf. related discussion regarding959

the strict positive definiteness of k̃ in Section 2.2 of the article). When this happens, a960

suitable reference measure has to be used in order to define the likelihood function. For961

instance, when the pseudo-kernel c(s, s0) = k(s, s∗0) is used to enforce the symmetry962

condition, the value at ω = 0 must be real, which yields a degenerate distribution if963

the response is evaluated at ω = 0: the solution is simply to remove the imaginary964

part of the response at this point from the vector of observed variables. See Section 2965

of [23] for related considerations.966

SM2.2.2. Bounds for the search domain. We optimize with respect to the967

transformed kernel parameters968

θ1 = ln

(
σ2

2π

)
,969

θ2 = α,970971

within the optimization bounds972

−15 ≤ θ1 ≤ 15,973

10−6|Ω| ≤ θ2 ≤ |Ω|,974975

where |Ω| = ωmax − ωmin = max {ωi, 1 ≤ i ≤ n)−min {ωi, 1 ≤ i ≤ n).976

For the hybrid model, the poles are optimized simultaneously with the kernel977

hyper-parameters, within the bounds978

−|Ω| ≤ < (pi) ≤ −10−6|Ω|,979

max

{
10−6|Ω|, ωmin −

|Ω|
3

}
≤ = (pi) ≤ ωmax +

|Ω|
3
,980

981
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where we set the maximum number of poles pairs to Kmax = min{5, bn/4c}. The982

bounds are enlarged, if needed, in such a way that all the poles in the starting point983

of the optimization are contained within them.984

SM2.2.3. Starting point(s). We use a multistart procedure to optimize the985

kernel parameters α and σ2. More precisely, we start Nms = 20 local optimizations,986

with the initial value of α uniformly distributed between 10−6|Ω| and |Ω|. For a given987

value of α, and a given choice of poles in the case of the hybrid algorithm, the GLS988

(generalized least squares) estimate is used as a starting point for σ2.989

For the poles in the hybrid algorithm, we start from equidistant poles p1, . . . , pK990

close to the frequency axis:991

pk = −δ< |Ω| + i

(
ωmin +

(
k − 1

2

)
δ=

)
, 1 ≤ k ≤ K,992

where δ< = 10−3 (weak attenuation) and δ= = |Ω| /Kmax. The kernel parameters993

are initialized a described previously (with the GLS estimate for σ2 and a multi-start994

procedure for α).995

SM3. Complements for the results section.996

SM3.1. Partial fraction representation of RLC circuit. The residues ci, c
∗
i997

and poles ai, a
∗
i of the partial fraction representation of the electric circuit admittance998

(SM3.1) Y (s) =

N∑
i=1

ci
s− ai

+
c∗i

s− a∗i
,999

are given as1000

ai =
−Ri
2Li

+ i

√
1

LiCi
−
( Ri

2Li

)2

,(SM3.2)1001

ci =
ai

L(ai − a∗i )
=

√
1

LiCi
−
(
Ri
2Li

)2

+ Ri
2Li

i

2Li

√
1

LiCi
−
(
Ri
2Li

)2
,(SM3.3)1002

1003

where we assumed an underdamped system, i.e.1004

(SM3.4)
Ri
2

√
Ci
Li

< 1,1005

which implies that the argument of the square roots is positive.1006

SM3.2. Additional numerical example. The model is a spiral antenna, de-1007

picted in Figure SM2, where we consider the reflection coefficient S11 on a frequency1008

range of [4 GHz, 6 GHz] as quantity of interest. The data sets are obtained using the1009

boundary element method in CST Microwave Studio [10]. The results are qualitatively1010

the same as for the PAC-MAN model, see Fig. SM2 (bottom).1011

SM4. Complements for the theoretical section.1012

SM4.1. Circular complex/real RKHSs.1013

Definition SM4.1. We say that a complex/real RKHS is circular if it has a1014

vanishing pseudo-kernel.1015
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Fig. SM2: Top left: Spiral antenna model, taken from CST Microwave Studio [10].
Top right: Complex frequency response function S11. Bottom: Convergence study
w.r.t. the number of training points.

The terms “proper” or “strictly complex” are also sometimes used instead of1016

“circular”, in the statistics and signal processing literature, for the case where the1017

pseudo-covariance of a complex Gaussian random vector or function vanishes (see,1018

e.g., [32, 5]).1019

Theorem SM4.2. Let HC denote a complex RKHS with kernel k0, and let H1020

denote the complex/real RKHS obtained by considering HC as a real vector space,1021

endowed with the inner product: 〈f, g〉 7→ < (〈f, g〉C). Then H is the circular com-1022

plex/real RKHS with complex kernel k = 2k0.1023

Since a complex/real RKHS is uniquely characterized by its (k, c) pair, the con-1024

verse holds as well: given a circular complex/real RKHS H with complex kernel k,1025

there is a unique complex RKHSHC (namely, the complex RKHS with kernel k0 = 1
2k)1026

such that H is obtained from HC as in Theorem SM4.2.1027

Proof. The main idea is already included in the proof of Theorem 2.14 of the1028

article, but we give here a slightly more detailed version. Let ϕR and ϕI denote the1029

real and imaginary evaluation kernels of H. Then, for all f ∈ H and s ∈ S,1030

〈f, k0(·, s)〉 = < (〈f, k0(·, s)〉) = < (f(s))1031

and1032

〈f, ik0(·, s)〉 = < (〈f, ik0(·, s)〉) = < (−i 〈f, k0(·, s)〉)1033

= < (−i f(s)) = = (f(s)) ,10341035

which proves that ϕR = k0 and ϕI = ik0. The complex kernel and pseudo-kernel of H1036
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are thus given by1037

k = ϕR − iϕI = 2k0,1038

c = ϕR + iϕI = 0.10391040

SM4.2. A relation between the Szegö and rational quadratic kernels.1041

Consider the Szegö kernel on H2(Γα):1042

kα (s, s0) =
1

2π (2α+ s+ s∗0)
1043

=
1

2π

(2α+ x+ x0)− i (y − y0)

(2α+ x+ x0)
2

+ (y − y0)
2 ,1044

1045

where s = x+ iy, s0 = x0 + iy0 ∈ Γα. In the circular case, the corresponding kernels1046

for the real and imaginary parts are given by:1047

kR(s, s0) = kI(s, s0) =
1

4π

2α+ x+ x0

(2α+ x+ x0)
2

+ (y − y0)
2 ,1048

For a fixed value of x = x0 > −α, this is of the form1049

(y, y0) 7→ 1

4π

A

A2 + (y − y0)
2 , with A = 2α+ x+ x0 > 0,1050

which is a special case of the so-called rational quadratic kernel (see, e.g., [43, 44]),1051

also called generalized inverse multiquadric kernel (see, e.g., [42, 41]).1052
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