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Abstract

This article focuses on the characterization of a particular spectral property calledMultiplicity-induced-dominancyapplying for linear dynamical systems described by delay-differential equations. More precisely, we char-acterize the property in the scalar neutral case with respect to the system parameters. Particular attentionis paid to the so-called over-order multiplicities corresponding to real double and triple characteristic roots.
Keywords: Functional differential equations, Neutral equations, Control theory, Control design, Stabilitytheory, Stabilization of dynamical systems, partial pole placement.

1. INTRODUCTION

Dynamical systems with delays provide useful models in a wide range of scientific and technologicaldomains such as biology, chemistry, economics, physics, or engineering, where the presence of the delaysis inherent to propagation phenomena, such as ofmaterial, energy, or information, with a finite propagationspeed. Due to their numerous applications, these kinds of systems have been the subject of much attentionby researchers in several fields, in particular since the 1950s and 1960s. More precisely, and to the bestof the authors’ knowledge, modeling propagation and transport phenomena by delay-differential algebraicequations dates back to the 50s; see, for instance, a few examples in [1], [2], [3], [4] and the referencestherein.On the one hand, various electrical and fluid dynamical systems initially described by partial differen-tial equations (PDEs) of hyperbolic type with mixed initial, and derivative boundary conditions in feedbackinterconnection, can be integrated along the characteristics to arrive at a set of delay differential-algebraicequations (DDAEs), i.e. coupled delay-differential equations and -difference equations in continuous-time(see, e.g. [5], [6]). For a more comprehensive introduction to the subject including a long list of referenceswe refer to Răsvan [7]. On the other hand, the presence of a delay in the input-output channels in the caseof proper dynamical systems may lead to DDAEs for the closed-loop schemes (see, e.g., [4], [8]), whosestability may be sensitive to the delay parameter as shown in [9].An interesting property, entitled multiplicity-induced-dominancy (MID in short), which corresponds toconditions on the system’s parameters for which a multiple root defines the spectral abscissa1 of the cor-responding quasipolynomial. The MID property applying for the spectrum of the linear delay-differentialequations (DDEs), was recently introduced in [10] and proved in [11, 12] in the generic MID case (GMIDfor short), which corresponds to roots whose multiplicity is equal with the degree of the corresponding
∗Corresponding author
Email addresses: amina.benarab@centralesupelec.fr (Amina Benarab), islam.boussaada@centralesupelec.fr(Islam Boussaada), silviu.niculescu@centralesupelec.fr (Silviu-Iulian Niculescu), karim.trabelsi@ipsa.fr (Karim L.Trabelsi)1The spectral abscissa is defined by the real part of the rightmost root of the spectrum of the corresponding characteristic function;see, for instance, [4] and the references therein for a deeper discussion of the notion.
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quasipolynomial defines necessarily the spectral abscissa in both retarded and neutral cases. The GMID isshown by using an appropriate integral factorization of the corresponding quasipolynomial which appearsto be nothing but a Kummer hypergeometric function (see also [13]). Such a multiplicity is called generic,and it is always larger than the degree of the delay-free polynomial. By exploiting different properties ofWhittaker (confluent hypergeometric) functions, its extension to neutral DDEs can be found in [12]. For anoverview of existing methods for characterizing multiple characteristic roots we refer to [14].As discussed in the references above, MID triggers interesting perspectives in the control area by pro-viding a new methodology based on the so-called partial pole placement; see, for instance, some examplesand discussions in [15] on human balancing and [16] on vibration control. In our opinion, the said methodis easy to implement, and gives an explicit tuning rule for a prescribed decay rate of the solutions of theclosed-loop system. Finally, it should be mentioned that this method further exploits the idea of using thedelay as a control parameter (see also [17] for an overview on existing results).To the best of the authors’ knowledge, excepting some sufficient conditions proposed by [18], there areno explicit proofs of the MID property holding in the non-generic case, and this paper offers new insightsfor a better understanding of the property. With the remarks above, the aim of this paper is twofold. First,a full characterization of the MID property in the case of scalar neutral systems in both generic and non-generic cases is carried out. Indeed, if the generic case corresponds to the triple characteristic root locatedon the real axis (see, e.g., [11], [12]), the non-generic case (double root) corresponds to the so-called over-
order (intermediate) multiplicity2 (IMID). Surprisingly, although the stability of the scalar neutral DDEwas fullyaddressed in the open literature and complete characterization of the stability regions in the parameterspace exists (see, for instance, [19, 8, 1, 2, 3], however, the link between the multiplicity of the real rootsand the corresponding spectral abscissa was not explicitly characterized. However, it should be mentionedthat, in characterizing the stability charts in the scalar neutral DDE case, Wright [20] observed that thecharacteristic function can have three real roots but there is no an explicit discussion regarding doubleand/or triple real characteristic roots.Second, in the non-generic case (that is, double and triple real roots), the analysis exhibits the advantagesand the limitations of the MID with respect to the corresponding “free” parameter and reinforces the ideathat the delay, seen as a control parameter, can be beneficial in closed-loop.The remaining of the paper is organized as follows. Some preliminary results as well as a motivatingexample are presented in Section 2. Section 3 includes the main results as well as various discussions onthe over-ordermultiplicities (double and triple characteristic real roots). Some remarks conclude the paper.Throughout this paper, the following notations are used: R(R+) and C denote the sets of real (positive)numbers and the set of complex numbers, respectively. For a complex number λ , ℜ(λ ) (ℑ(λ )) denote itsreal (imaginary) part. Finally, for a (quasi)polynomial P(·), deg(P) denotes its degree.
2. PREREQUISITES

In the study of linear time-invariant (LTI) dynamical delay systems, we deal with transfer functions in-volving quasipolynomials, which are defined hereafter.
Definition 2.1. A quasipolynomial is a particular entire function ∆ : C×Rk

+ 7→Cwhich may be written as follows

∆(s;τ1, · · · ,τi) =
k

∑
i=0

Pi(s)e−τi s, (1)
where k is a positive integer, τi (i = 0..k) are pairwise distinct non-negative real numbers and Pi (i = 0..k) are
polynomials of degree di ≥ 0. The degree D of the quasipolynomial ∆ is equal to the sum of the degrees of the
involved polynomials Pi plus the number of delays, i.e.,

D = k+
k

∑
i=0

di.

2multiplicity larger than the degree of the corresponding polynomial in the delay-free case and smaller than the degree of thequasipolynomial
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An important result in the open literature, knownas Polya-Szegö bound, shows that there exists an explicitlink between the degree of a quasipolynomial and the number of its roots in horizontal strips of the complexplane C.
Proposition 2.1. [21, Problem 206.2, page 144 and page 347]. Let ∆ be a quasipolynomial of degree D as in (1),
and α , β ∈ R satisfy α ≤ β . If M is the number of roots of ∆ contained in the set {s ∈ C |α ≤ ℑ(s)≤ β} counting
multiplicities, then

(τk − τ0)(β −α)

2π
−D ≤ M ≤ (τk − τ0)(β −α)

2π
+D.

Furthermore, for a given root s0 ∈C of a quasipolynomial ∆, one obtains the following link between themultiplicity of s0 and the degree of ∆.
Corollary 2.1. Let ∆ be a quasipolynomial of degree D. Then, any root s0 ∈C of ∆ exhibits a multiplicity at most
equal to D.

Remark 2.1. Corollary 2.1 is obtained immediately by letting α = β = ℑ(s0) in Proposition 2.1. Notice also
that Polya-Szegö bound has been recovered in [22] using a constructive approach based on functional Birkhoffmatrices. Furthermore, if some coefficients of the polynomials Pi defined in (1) vanish, then a sharper bound for
the multiplicity is provided in [22].

In what follows, we give a precise definition of the dominant root.
Definition 2.2. A spectral eigenvalue (root) s0 is said to be a dominant (respectively, strictly dominant) root of ∆,
if the following inequality holds ℜ(s̃)≤ ℜ(s0) (respectively, ℜ(s̃)< ℜ(s0)) for any s̃ ∈C\{s0}, a distinct eigenvalue
(root) of ∆.

2.1. Motivating example: Feedback stabilization for a scalar conservation law with PI boundary control
Consider the problem of stabilization of solutions of a dynamical system described by partial differen-tial equations. More precisely, we revisit the problem of exponential stabilization of the following scalarconservation law proposed in [23, 12]:

∂tϕ(t,x)+λ ∂xϕ(t,x) = 0, t ∈ [0, ∞), x ∈ (0, L), (2)
where L> 0 andϕ(t,x) denotes the system state at position x∈ (0,L) and in time t ∈ [0,+∞). As considered in[23], the value λ , which denotes the velocity of propagation, is assumed to be a positive constant. Equation(2) comes with a boundary condition under the form of a PI controller:

ϕ(t, 0) = kp ϕ(t,L)+ ki

∫ t

0
ϕ(ν ,L)dν , (3)

where kp and ki are the feedback parameters representing “proportional” and “integral” control gains. Ap-plying the Laplace transform to both sides of the boundary condition and multiplying by s, one obtains theclosed-loop characteristic function
∆(s) = s− (ki + kp s)e−

L
λ

s, (4)
which corresponds to the characteristic function of a first-order neutral DDE. In this case, the degree DPSof ∆ is equal to 3 and, as mentioned in [12], the maximal multiplicity can be achieved only by a root on thereal axis.Next, by exploiting the results of Theorem 3.1, Theorem 3.6, and Theorem 3.10 from [12], or Theorem 4from [24], we conclude that forcing a triple spectral value guarantees its dominance as a root of (4), andthen the exponential stability of solutions of (2)–(3). More precisely, by tuning the controller gains as

kp =−e−2, ki =−4e−2 λ

L
, (5)
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one achieves the unique admissible triple root, which is s0 =− 2λ

L and corresponds to the decay rate of solu-
tions of (2)–(3). Furthermore, as shown in Theorem 3.10 from [12], the set of roots of ∆ is{s0 + i λ ζ

L

∣∣∣ ζ ∈ Ξ1

}
where Ξ1 =

{
ζ ∈ R

∣∣∣ tan
(

ζ

2

)
= ζ

2

}. Figure 1(a) shows the result of a numerical computation of the roots of
(4) with the parameters (5), while Figure 1(b) shows the solution of (2)–(3) in the case L

λ
= 1 with an initialcondition ϕ(0,x) = sin(2πx).
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Figure 1: (a) Spectrum distribution of (4) and (b) solution of (2) with initial condition ϕ(0,x) = sin(2πx), with L

λ
= 1 and parameters kpand ki satisfying (5). Figure taken from [12].

3. Main Results

3.1. First-order neutral equation
Under appropriate initial conditions, consider the following scalar neutral DDE:

ẋ(t)+a0 x(t)+α1 ẋ(t − τ)+α0 x(t − τ) = 0 (6)
with four (real) parameters (a0,α0) ∈ R2, α1 ∈ (−1,1) and τ ∈ R+.To the best of the authors’ knowledge, the first study in frequency-domain concerning the root locationof scalar DDEs of retarded type goes back to the 30s and it concerns the Kalecki’ dynamical model of aneconomic system [25]. Next, the complete characterization of the stability regions in the parametric spacefor the scalar DDE goes back to the 50s and the works of Hayes [26]. By the end of the 50s, Pinney [19]constructs the stability charts in the scalar and second-orded DDEs, covering both retarded and neutralcases. It should be mentioned that the first analysis in the second-order neutral and retarded cases can befound in the works of Callender et al. [27].Regarding (6), note that the condition imposed to the parameter α1 corresponds to the stability of thetrivial solution of the associated scalar delay-difference equation (in continuous-time), and it is known thatits exponential stability is a necessary condition for the exponential stability of the null-solution of theDDEs ofneutral type. For further discussions and explanations, we refer to [28, 8, 1], [4] and the references therein.
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The corresponding characteristic function ∆ : C×R2 × (−1,1)×R+ 7→ C reads as:
∆(s;a0,α0,α1,τ) = s+a0 +(α1s+α0)e−τ s. (7)

It is easy to observe that deg(∆) = 3, and ∆ reduces to a polynomial of degree 1 if τ = 0. Thus, the cases of
double, triple characteristic roots correspond to the only situationswherewehave over-ordermultiplicity. Suchsituations are specific to dynamical delay systems and have no natural meaning in the finite-dimensionalcase. Finally, it should be mentioned that the maximal multiplicity of the characteristic roots located on theimaginary axis out from the origin is equal to 1, and therefore such a root (if it exists) is simple.
Remark 3.1. It should be mentioned that, in the 60s, Wright [20] observed that the characteristic function ∆

given by (7) can have three real roots but he has not explicitly analyzed the link between their multiplicity and the
spectral abscissa. His argument was based on appropriate change of parameters and it did not exploit the degree
of the corresponding quasipolynomial.

Theorem 3.1 (over-order multiplicities). Consider the characteristic function ∆ defined by (7).
1. GMID [24] : spectral value of maximal admissible multiplicity

• The real s0 is a root of maximal multiplicity 3 of ∆ if, and only if, the coefficients a0,α0,α1, the root s0
and the delay τ satisfy the following relations

a0 =−s0 −
2
τ
, α0 =

(
−s0 +

2
τ

)
es0τ , α1 = eτ s0 . (8)

• If relations (8) are satisfied then s0 is necessarily a dominant root of ∆.

2. IMID : codimension 2

• The real number s0 is a root of intermediate multiplicity 2 of ∆ if, and only if, the following relations
hold

α0 =
(
τ a0s0 + τ s0

2 −a0
)

eτ s0 , α1 = (−τ a0 − τ s0 −1)eτ s0 . (9)
• If the relations are satisfied and a0 satisfies the lower bound a0 > 0, then s0 chosen such that

−a0 −
1
τ
≤ s0 ≤−a0. (10)

is a dominant root of ∆.

Proof. The proof follows the steps of an algorithm introduced in [29], and it consists of five steps: forcingmultiplicity, normalization, appropriate (Fredholm) integral representation, explicit frequency bound esti-mation, and dominancy.
1. Proof of Item 1: it can be found in [24] and it is summarized as follows:

(a) Forcing multiplicity: The real s0 is a root of multiplicity 3 of ∆ if, and only if, the coefficients
a0,α0,α1, the root s0 and the delay τ satisfy the following relations

a0 =−s0 −
2
τ
, α0 =

(
−s0 +

2
τ

)
es0τ , α1 = eτ s0 . (11)

(b) Normalization: Performing the translation and scaling of the spectrum by the following changeof variables
∆̃(z) = τ ∆(z/τ + s0) (12)

for z ∈ C, we get the following normalized characteristic function ∆̃ : C 7→ C,
∆̃(z) = z+b0 +(β1z+β0)e−z (13)
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with relations (11) normalized as follows:
b0 = τ (a0 + s0) , β0 = τ (α1 s0 +α0) e−τ s0 , β1 = α1 e−τ s0 . (14)

It is easy to observe that deg(∆̃) = deg(∆) = 3.
(c) Integral representation: The real root s0 is a root of multiplicity 3 of ∆ if, and only if, 0 is a tripleroot of ∆̃, that is:

∆̃(0) = ∆̃
′(0) = ∆̃

′′(0) = 0. (15)
The latter identities yield a linear system whose unique solution is (b0,β0,β1) = (−2,2,1). Fromrelations (14), one concludes that s0 is a root of multiplicity 3 of ∆ if, and only if, relations (11)hold. Moreover, under the latter conditions, the quasipolynomial (7) reduces to

∆̃(z) = P̃0(z)+ P̃1(z)e−z, P̃0(z) = z−2 and P̃1(z) = z+2. (16)
Hence, the quasipolynomial ∆̃ admits the following Fredholm integral representation

∆̃(z) =
∫ 1

0
q(t)K (z, t)dt, q(t) = t (1− t) and K (z, t) = z3e−t z (17)

which is easily verified via an integration by parts.
(d) Frequency bound: Assume that z0 = x0 + ι̇ω0 ∈ R++ ι̇R+ is a root of ∆̃, so that ∆̃(z0) = 0 if, andonly if,

|P̃0(x0 + iω0)|2 e2x0 = |P̃1(x0 + iω0)|2. (18)
Considering a truncation of order 1 of the exponential term e2x, the latter is lower bounded by
1+2x. Next, define

F(x,ω) = |P̃1(x+ iω)|2 − (1+2x) |P̃0(x+ iω)|2 (19)
where F > 0 for any x > 0. The zeros of F are characterized by the first-order polynomial

G(Ω = ω
2) =−2xΩ−2x3 +8x2. (20)

The polynomial functionG admits a single real rootΩ0(x) =−x(x−4), which reaches amaximumvalue at x∗ = 2. As a consequence, Ω0 is bounded by Ω∗ = 4 < π2. Thus, one obtains the desiredfrequency bound,
0 < ω ≤ 2 < π. (21)

(e) Dominancy: The goal of the frequency bound is to prove the dominancy by a contradiction ar-gument. For this purpose, assume that there exists z0 ∈ R++ iR+ root of ∆̃. Then, the integralrepresentation yields ∫ 1

0
t (1− t)e−t z0 dt = 0, (22)

the imaginary part of which is ∫ 1

0
t (1− t)e−t x sin(ω t)dt = 0. (23)

Now, the frequency bound 0 < ω ≤ π of the previous step entails that the function
t 7→ t (1− t)e−xt sin(ω t) (24)

is strictly positive in (0,1), thereby contradicting the last equality.
2. Proof of Item 2:
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(a) Forcingmultiplicity: The real number s0 is a root ofmultiplicity 2 of∆ if, and only if, the coefficients
α0,α1, the root s0 and the delay τ satisfy the relations below

α0 =
(
τ a0s0 + τ s0

2 −a0
)

eτ s0 and α1 = (−τ a0 − τ s0 −1)eτ s0 . (25)
(b) Normalization: Performing the translation and scaling of the spectrum by the following linearchange of variables

∆̃(z) = τ ∆(z/τ + s0) (26)
for z ∈ C, we get the following normalized characteristic function ∆̃ : C 7→ C,

∆̃(z) = ((−ρ −1)z−ρ)e−z + z+ρ, (27)
where ρ = τ (s0 +a0) is a real number.

(c) Integral representation: It can be verified via an integration by parts that the quasipolynomial ∆̃defined in (27) can be factorized as
∆̃(z) = z2

∫ 1

0
qρ(t)e−tz dt (28)

where
qρ(t) = ρ t +1. (29)

In our approach, the sign constancy of the polynomial qρ for t ∈ (0,1) is necessary. We easily seethat it is guaranteed if, and only if, ρ ∈ [−1,+∞[.

(d) Frequency bound: In the following, let z0 = x0 + iω0 ∈ R++ iR+ be a root of
∆̃(z) = P0(z)+P1(z)e−z, P0(z) = z+ρ, and P1(z) = (−ρ −1)z−ρ, (30)

as defined in (27) and z0 satisfies the following equality
|P0(x0 + iω0)|2e2x0 = |P1(x0 + iω0)|2. (31)

Considering a truncation of order 2 of the exponential term e2x, the latter is lower bounded by
1+2x+2x2 for any x ∈ R+, see [24, 29]. Next, we define the following function Fρ : R2

+ 7→ R,
Fρ(x,ω) = |P1(x+ iω)|2 −|P0(x+ iω)|2 (1+2x) , (32)

which satisfies Fρ(x0,ω0) > 0. Moreover, the zeros of Fρ can be characterized by the followinglinear polynomial in Ω = ω2

Gρ(x,Ω) =
(
ρ

2 −2x2 +2ρ −2x
)

Ω−2x4 −2(2ρ +1)x3 −ρ (ρ +2)x2. (33)
In our analysis, we are interested in the cases where Gρ(x,Ω) is bounded. Hence, let Ω0

ρ(x) =
Nρ(x)/Dρ(x) be the real solution of Gρ(x,Ω), where

Nρ(x) = x2 (
ρ

2 +4ρx+2x2 +2ρ +2x
) and Dρ(x) = ρ

2 −2x2 +2ρ −2x.

We proceed by setting an upper bound for the solution Ω0
ρ(x)with respect to the variation of the

parameter ρ in (−1,+∞). First, note that the denominator D(x,ρ) admits for ρ ∈
(
−1+

√
2

2 ,+∞

)
two real roots:

x±D(ρ) =−1
2
±

√
2ρ2 +4ρ +1

2
. (34)

Then, we divide our analysis into two parts:
7



i. ρ ∈
(
−1,−1+

√
2

2

):
• The numerator Nρ(x) admits 4 real roots:{

0,0,x±N (ρ) =−ρ − 1
2
±

√
2ρ2 +1

2

}
, (35)

where Nρ(x) is negative for x ∈
(
0,x+N (ρ)

) and is positive for x > x+N (ρ).• The denominator keeps a constant (negative) sign, since it has no real roots.
Note that, sinceΩ0

ρ(x) is required to be positive, we only consider x∈
(
0,x+N (ρ)

), case inwhich
Nρ(x) and Dρ(x) are both of negative sign. Then, an upper bound for Ω0

ρ(x) requires lowerbounds for both Nρ(x) and Dρ(x):
Nρ(x)≥− x2

(
−4x2 +2

√
2+4x+1

)
/2, (36)

Dρ(x)≥−1/2−
√

2−2x2 −2x, (37)
which yields the following upper bound for the solution Ω0

ρ(x):

Ω
0
ρ(x)≤ Ω

∗(x) =
x2
(
−4x2 +2

√
2+4x+1

)
4x2 +2

√
2+4x+1

, (38)
which itself is bounded by π2; see Figure 2-(a).

(a) (b)
Figure 2: (a) 3D plot showing how Ω0(x,ρ) (in blue) is upper bounded by Ω∗

0(x,ρ) (in green) for ρ ∈
(
−1,−1+

√
2

2

) and x ∈
(
0,x+N

) (b)
3D plot showing how Ω0(x,ρ) (in blue) is upper bounded by Ω∗

0(x,ρ) (in green) for ρ ∈
(
−1+

√
2

2 ,0
) and x ∈

(
0,x+N

).
ii. ρ ∈

(
−1+

√
2

2 ,0
): In this case, one can notice that x+D(ρ) < 0, which implies that Dρ(x) < 0.

SinceΩ0
ρ(x) is required to be positive, we only consider x∈

(
0,x+N (ρ)

). Using a similar analysis,
8



in order to set an upper bound forΩ0
ρ(x), we first set a lower bound for bothNρ(x) andDρ(x):

Nρ(x)≥x2
(

2x
√

2+2x2 +
√

2−2x−2
)
, (39)

Dρ(x)≥−2−2x2 +
√

2−2x, (40)
which yields the following upper bound of the solution Ω0

ρ(x):

Ω
0
ρ(x)≤ Ω

∗(x) =
x2
(

2x
√

2+2x2 +
√

2−2x−2
)

−2−2x2 +
√

2−2x
(41)

which itself is bounded by π2; see Figure 2-(b).
Now, is the solution Ω0

ρ(x) is upper bounded with respect to ρ by the following parameter-freefunction

Ω
∗(x) =


x2
(
−4x2 +2

√
2+4x+1

)
4x2 +2

√
2+4x+1

for ρ ∈
(
−1,−1+

√
2

2

)and x ∈
(
0,x+N (ρ)

)
,

x2
(

2x
√

2+2x2 +
√

2−2x−2
)

−2−2x2 +
√

2−2x
for ρ ∈

(
−1+

√
2

2 ,0
)and x ∈

(
0,x+N (ρ)

)
.

(42)

Hence, we have characterized the regions where the frequency is bounded.
(e) Dominancy: By a contradiction argument, assume that there exists z0 ∈R++ iR+ root of ∆̃. Then,the integral representation yields

∫ 1

0
(ρ t +1)e−t z0 dt = 0, (43)

the imaginary part of which is ∫ 1
0 t (ρ t +1)e−t x sin(ω t)dt= 0.Now, the frequency bound 0<ω ≤ πof the previous step entails that the function

t 7→ t (ρ t +1)e−xt sin(ω t) (44)
is strictly positive in (0,1), thereby contradicting the last equality.

To conclude, if relations (25) are verified and a0 satisfies the lower bound a0 > 0, then the exponentialdecay s0 is chosen such that
−a0 −

1
τ
≤ s0 ≤−a0 (45)

is necessarily negative and dominant.

Remark 3.2. Note that in the over-order MID (IMID) case (item 2 of Theorem 3.1), one may expect to obtain a
larger range to assign the dominant root albeit for truncation orders of the exponential term in the “frequency
bound” step that are strictly greater than 2, as illustrated in Figure 3(b).

Remark 3.3. As pointed out in [12], the GMID does not allow any degree of freedom in allocating s0. Indeed, if a0
and τ are fixed then the assigned spectral abscissa is uniquely determined from (8) as s0 = −a0 − 2

τ
. In order to

allow some leeway when allocating, as illustrated in (45), one can relax the constraint by forcing the root s0 to have
an over-order multiplicity albeit lower than themaximal one. This fact is important from a robustness perspective.
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(a) (b)
Figure 3: (a) Spectrum distribution of the quasipolynomial function ∆̂(z) (b) With a truncation order of the exponential term raised to 4the 3D plot illustrates how Ω0(x,ρ) (in blue) is upper bounded by π2 (in red) for ρ ∈

(
−1, 1

2

) and x > 0, which enlarges the assignmentrange.

To illustrate it, reconsider the motivating example, that is the feedback stabilization of a scalar conservation law
with PI boundary control presented in section 2.1. Following (10), an assignable s0 as a dominant double root of
∆ has to satisfy

−λ

L
≤ s0 ≤ 0,

which occurs if

ki =−Ls0
2

λ
e

Ls0
λ , kp =−λ +Ls0

λ
e

Ls0
λ .

Remark 3.4. As emphasized in [12, 18], the over-order MID property has an interesting link with the well-knownKummer confluent hypergeometric functions. As a matter of fact, quasipolynomials with dominant roots of
over-order multiplicities can be represented in terms of such special functions. As it was developed by E. Kummer,
P. Humbert, E. T. Whittaker, F. Tricomi, L. Erdelyi and others, see, for instance, [30, 31, 32, 33], for every a,b,z ∈C
such that ℜ(b)> ℜ(a)> 0, Kummer functions admit the integral representation

Φ(a,b,z) =
Γ(b)

Γ(a)Γ(b−a)

∫ 1

0
eλ tta−1(1− t)b−a−1 dt. (46)

In particular, the quasipolynomial (7) whose parameters satisfy (8), i.e. the GMID is satisfied, can be written as:

∆(s) =
τ2

6
(s− s0)

3
Φ(2,4,−τ (s− s0)).

However, the quasipolynomial (7) whose parameters satisfy (9) admits a double root at s0 arbitrarily chosen in
accordance with (10), i.e. the IMID is satisfied, can be written as a linear combination of two Kummer functions:

∆(s) = τ (s− s0)
2
(

τ (s0 +a0)

2
Φ(2,3,−τ (s− s0))+Φ(1,2,−τ (s− s0))

)
.
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4. CONCLUSION

In this paper, we provided a complete characterization of the multiplicity-induced-dominancy (MID)property for single-delay linear first-order delay-differential equation (DDE) thanks to the five-step algorithmdescribed in [24, 29]. Despite the complete characterization of the generic multiplicity-induced-dominancy(GMID) property for single-delay systems of arbitrary order [12], the intermediate multiplicity-induced-dominancy (IMID) property, which is more suited for control purposes, remains an open question. Furthereffort devoted to studying the distribution of zeros of Kummer’s confluent hypergeometric functions seemsto be the key to answering this question.
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