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INTRODUCTION

Dynamical systems with delays provide useful models in a wide range of scientific and technological domains such as biology, chemistry, economics, physics, or engineering, where the presence of the delays is inherent to propagation phenomena, such as of material, energy, or information, with a finite propagation speed. Due to their numerous applications, these kinds of systems have been the subject of much attention by researchers in several fields, in particular since the 1950s and 1960s. More precisely, and to the best of the authors' knowledge, modeling propagation and transport phenomena by delay-differential algebraic equations dates back to the 50s; see, for instance, a few examples in [START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF], [START_REF] Gu | Stability of time-delay systems[END_REF], [START_REF] Michiels | Stability, control, and computation for time-delay systems: an eigenvalue-based approach[END_REF] and the references therein.

On the one hand, various electrical and fluid dynamical systems initially described by partial differential equations (PDEs) of hyperbolic type with mixed initial, and derivative boundary conditions in feedback interconnection, can be integrated along the characteristics to arrive at a set of delay differential-algebraic equations (DDAEs), i.e. coupled delay-differential equations and -difference equations in continuous-time (see, e.g. [START_REF] Brayton | Small-signal stability criterion for electrical networks containing lossless transmission lines[END_REF], [START_REF] Cooke | Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations[END_REF]). For a more comprehensive introduction to the subject including a long list of references we refer to Răsvan [START_REF] Răsvan | Propagation, delays, and stability (robust versus fragile)[END_REF]. On the other hand, the presence of a delay in the input-output channels in the case of proper dynamical systems may lead to DDAEs for the closed-loop schemes (see, e.g., [START_REF] Michiels | Stability, control, and computation for time-delay systems: an eigenvalue-based approach[END_REF], [START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF]), whose stability may be sensitive to the delay parameter as shown in [START_REF] Logemann | Conditions for robustness and nonrobustness of the stability of feedback systems with respect to small delays in the feedback loop[END_REF].

An interesting property, entitled multiplicity-induced-dominancy (MID in short), which corresponds to conditions on the system's parameters for which a multiple root defines the spectral abscissa 1 of the corresponding quasipolynomial. The MID property applying for the spectrum of the linear delay-differential equations (DDEs), was recently introduced in [START_REF] Boussaada | Multiplicity-induced-dominancy in parametric second-order delay differential equations: analysis and application in control design[END_REF] and proved in [START_REF] Mazanti | Multiplicity-induced-dominancy for delay-differential equations of retarded type[END_REF][START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF] in the generic MID case (GMID for short), which corresponds to roots whose multiplicity is equal with the degree of the corresponding quasipolynomial defines necessarily the spectral abscissa in both retarded and neutral cases. The GMID is shown by using an appropriate integral factorization of the corresponding quasipolynomial which appears to be nothing but a Kummer hypergeometric function (see also [START_REF] Boussaada | Multiplicity and stable varieties of time-delay systems: A missing link[END_REF]). Such a multiplicity is called generic, and it is always larger than the degree of the delay-free polynomial. By exploiting different properties of Whittaker (confluent hypergeometric) functions, its extension to neutral DDEs can be found in [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF]. For an overview of existing methods for characterizing multiple characteristic roots we refer to [START_REF] Niculescu | Stability, delays and multiple characteristic roots in dynamical systems: A guided tour[END_REF].

As discussed in the references above, MID triggers interesting perspectives in the control area by providing a new methodology based on the so-called partial pole placement; see, for instance, some examples and discussions in [START_REF] Balogh | Conditions for stabilizability of time-delay systems with real-rooted plant[END_REF] on human balancing and [START_REF] Boussaada | Further remarks on the effect of multiple spectral values on the dynamics of time-delay systems. application to the control of a mechanical system[END_REF] on vibration control. In our opinion, the said method is easy to implement, and gives an explicit tuning rule for a prescribed decay rate of the solutions of the closed-loop system. Finally, it should be mentioned that this method further exploits the idea of using the delay as a control parameter (see also [START_REF] Sipahi | Stability and stabilization of systems with time delay: limitations and opportunities[END_REF] for an overview on existing results).

To the best of the authors' knowledge, excepting some sufficient conditions proposed by [START_REF] Boussaada | MID Property for Delay Systems: Insights on Spectral Values with Intermediate Multiplicity[END_REF], there are no explicit proofs of the MID property holding in the non-generic case, and this paper offers new insights for a better understanding of the property. With the remarks above, the aim of this paper is twofold. First, a full characterization of the MID property in the case of scalar neutral systems in both generic and nongeneric cases is carried out. Indeed, if the generic case corresponds to the triple characteristic root located on the real axis (see, e.g., [START_REF] Mazanti | Multiplicity-induced-dominancy for delay-differential equations of retarded type[END_REF], [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF]), the non-generic case (double root) corresponds to the so-called overorder (intermediate) multiplicity2 (IMID). Surprisingly, although the stability of the scalar neutral DDE was fully addressed in the open literature and complete characterization of the stability regions in the parameter space exists (see, for instance, [START_REF] Pinney | Ordinary difference-differential equations[END_REF][START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF][START_REF] Hale | Introduction to functional differential equations[END_REF][START_REF] Niculescu | Delay effects on stability. A robust control approach[END_REF][START_REF] Gu | Stability of time-delay systems[END_REF], however, the link between the multiplicity of the real roots and the corresponding spectral abscissa was not explicitly characterized. However, it should be mentioned that, in characterizing the stability charts in the scalar neutral DDE case, Wright [START_REF] Wright | Stability criteria and the real roots of a transcedental equation[END_REF] observed that the characteristic function can have three real roots but there is no an explicit discussion regarding double and/or triple real characteristic roots.

Second, in the non-generic case (that is, double and triple real roots), the analysis exhibits the advantages and the limitations of the MID with respect to the corresponding "free" parameter and reinforces the idea that the delay, seen as a control parameter, can be beneficial in closed-loop.

The remaining of the paper is organized as follows. Some preliminary results as well as a motivating example are presented in Section 2. Section 3 includes the main results as well as various discussions on the over-order multiplicities (double and triple characteristic real roots). Some remarks conclude the paper.

Throughout this paper, the following notations are used: R(R + ) and C denote the sets of real (positive) numbers and the set of complex numbers, respectively. For a complex number λ , ℜ(λ ) (ℑ(λ )) denote its real (imaginary) part. Finally, for a (quasi)polynomial P(•), deg(P) denotes its degree.

PREREQUISITES

In the study of linear time-invariant (LTI) dynamical delay systems, we deal with transfer functions involving quasipolynomials, which are defined hereafter. Definition 2.1. A quasipolynomial is a particular entire function ∆ : C × R k + → C which may be written as follows

∆(s; τ 1 , • • • , τ i ) = k ∑ i=0 P i (s) e -τ i s , ( 1 
)
where k is a positive integer, τ i (i = 0..k) are pairwise distinct non-negative real numbers and P i (i = 0..k) are polynomials of degree d i ≥ 0. The degree D of the quasipolynomial ∆ is equal to the sum of the degrees of the involved polynomials P i plus the number of delays, i.e.,

D = k + k ∑ i=0 d i .
An important result in the open literature, known as Polya-Szegö bound, shows that there exists an explicit link between the degree of a quasipolynomial and the number of its roots in horizontal strips of the complex plane C. 

, β ∈ R satisfy α ≤ β . If M is the number of roots of ∆ contained in the set {s ∈ C | α ≤ ℑ(s) ≤ β } counting multiplicities, then (τ k -τ 0 ) (β -α) 2π -D ≤ M ≤ (τ k -τ 0 ) (β -α) 2π + D.
Furthermore, for a given root s 0 ∈ C of a quasipolynomial ∆, one obtains the following link between the multiplicity of s 0 and the degree of ∆.

Corollary 2.1. Let ∆ be a quasipolynomial of degree D. Then, any root s 0 ∈ C of ∆ exhibits a multiplicity at most equal to D.

Remark 2.1. Corollary 2.1 is obtained immediately by letting

α = β = ℑ(s 0 ) in Proposition 2.1.
Notice also that Polya-Szegö bound has been recovered in [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems[END_REF] using a constructive approach based on functional Birkhoff matrices. Furthermore, if some coefficients of the polynomials P i defined in (1) vanish, then a sharper bound for the multiplicity is provided in [START_REF] Boussaada | Characterizing the codimension of zero singularities for time-delay systems[END_REF].

In what follows, we give a precise definition of the dominant root.

Definition 2.2. A spectral eigenvalue (root) s 0 is said to be a dominant (respectively, strictly dominant) root of ∆, if the following inequality holds

ℜ( s) ≤ ℜ(s 0 ) (respectively, ℜ( s) < ℜ(s 0 )) for any s ∈ C\{s 0 }, a distinct eigenvalue (root) of ∆.

Motivating example: Feedback stabilization for a scalar conservation law with PI boundary control

Consider the problem of stabilization of solutions of a dynamical system described by partial differential equations. More precisely, we revisit the problem of exponential stabilization of the following scalar conservation law proposed in [START_REF] Coron | Feedback stabilization for a scalar conservation law with PID boundary control[END_REF][START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF]:

∂ t ϕ(t, x) + λ ∂ x ϕ(t, x) = 0, t ∈ [0, ∞), x ∈ (0, L), (2) 
where L > 0 and ϕ(t, x) denotes the system state at position x ∈ (0, L) and in time t ∈ [0, +∞). As considered in [START_REF] Coron | Feedback stabilization for a scalar conservation law with PID boundary control[END_REF], the value λ , which denotes the velocity of propagation, is assumed to be a positive constant. Equation (2) comes with a boundary condition under the form of a PI controller:

ϕ(t, 0) = k p ϕ(t, L) + k i t 0 ϕ(ν, L) dν, (3) 
where k p and k i are the feedback parameters representing "proportional" and "integral" control gains. Applying the Laplace transform to both sides of the boundary condition and multiplying by s, one obtains the closed-loop characteristic function

∆(s) = s -(k i + k p s)e -L λ s , (4) 
which corresponds to the characteristic function of a first-order neutral DDE. In this case, the degree D PS of ∆ is equal to 3 and, as mentioned in [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF], the maximal multiplicity can be achieved only by a root on the real axis. Next, by exploiting the results of Theorem 3.1, Theorem 3.6, and Theorem 3.10 from [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF], or Theorem 4 from [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF], we conclude that forcing a triple spectral value guarantees its dominance as a root of (4), and then the exponential stability of solutions of (2)-(3). More precisely, by tuning the controller gains as

k p = -e -2 , k i = - 4 e -2 λ L , (5) 
one achieves the unique admissible triple root, which is s 0 = -2 λ L and corresponds to the decay rate of solutions of ( 2)-(3). Furthermore, as shown in Theorem 3.10 from [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF], the set of roots of ∆ is s

0 + i λ ζ L ζ ∈ Ξ 1 where Ξ 1 = ζ ∈ R tan ζ 2 = ζ 2 . Figure 1(a)
shows the result of a numerical computation of the roots of (4) with the parameters (5), while Figure 1 

Main Results

First-order neutral equation

Under appropriate initial conditions, consider the following scalar neutral DDE:

ẋ(t) + a 0 x(t) + α 1 ẋ(t -τ) + α 0 x(t -τ) = 0 (6) with four (real) parameters (a 0 , α 0 ) ∈ R 2 , α 1 ∈ (-1, 1) and τ ∈ R + .
To the best of the authors' knowledge, the first study in frequency-domain concerning the root location of scalar DDEs of retarded type goes back to the 30s and it concerns the Kalecki' dynamical model of an economic system [START_REF] Frisch | The characteristic solutions of a mixed difference and differential equation occurring in economic dynamics[END_REF]. Next, the complete characterization of the stability regions in the parametric space for the scalar DDE goes back to the 50s and the works of Hayes [START_REF] Hayes | Roots of the transcendental equation associated with a certain difference-differential equation[END_REF]. By the end of the 50s, Pinney [START_REF] Pinney | Ordinary difference-differential equations[END_REF] constructs the stability charts in the scalar and second-orded DDEs, covering both retarded and neutral cases. It should be mentioned that the first analysis in the second-order neutral and retarded cases can be found in the works of Callender et al. [START_REF] Callender | Time-lag in a control system[END_REF].

Regarding [START_REF] Cooke | Differential-difference equations and nonlinear initial-boundary value problems for linear hyperbolic partial differential equations[END_REF], note that the condition imposed to the parameter α 1 corresponds to the stability of the trivial solution of the associated scalar delay-difference equation (in continuous-time), and it is known that its exponential stability is a necessary condition for the exponential stability of the null-solution of the DDEs of neutral type. For further discussions and explanations, we refer to [START_REF] Bellman | Differential-difference equations[END_REF][START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF][START_REF] Hale | Introduction to functional differential equations[END_REF], [START_REF] Michiels | Stability, control, and computation for time-delay systems: an eigenvalue-based approach[END_REF] and the references therein.

The corresponding characteristic function

∆ : C × R 2 × (-1, 1) × R + → C reads as: ∆(s; a 0 , α 0 , α 1 , τ) = s + a 0 + (α 1 s + α 0 ) e -τ s . (7) 
It is easy to observe that deg(∆) = 3, and ∆ reduces to a polynomial of degree 1 if τ = 0. Thus, the cases of double, triple characteristic roots correspond to the only situations where we have over-order multiplicity. Such situations are specific to dynamical delay systems and have no natural meaning in the finite-dimensional case. Finally, it should be mentioned that the maximal multiplicity of the characteristic roots located on the imaginary axis out from the origin is equal to 1, and therefore such a root (if it exists) is simple.

Remark 3.1. It should be mentioned that, in the 60s, Wright [START_REF] Wright | Stability criteria and the real roots of a transcedental equation[END_REF] observed that the characteristic function ∆

given by [START_REF] Răsvan | Propagation, delays, and stability (robust versus fragile)[END_REF] can have three real roots but he has not explicitly analyzed the link between their multiplicity and the spectral abscissa. His argument was based on appropriate change of parameters and it did not exploit the degree of the corresponding quasipolynomial.

Theorem 3.1 (over-order multiplicities). Consider the characteristic function ∆ defined by [START_REF] Răsvan | Propagation, delays, and stability (robust versus fragile)[END_REF].

1. GMID [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF] : spectral value of maximal admissible multiplicity

• The real s 0 is a root of maximal multiplicity 3 of ∆ if, and only if, the coefficients a 0 , α 0 , α 1 , the root s 0 and the delay τ satisfy the following relations

a 0 = -s 0 - 2 τ , α 0 = -s 0 + 2 τ e s 0 τ , α 1 = e τ s 0 . (8) 
• If relations (8) are satisfied then s 0 is necessarily a dominant root of ∆.

IMID : codimension 2

• The real number s 0 is a root of intermediate multiplicity 2 of ∆ if, and only if, the following relations hold α 0 = τ a 0 s 0 + τ s 0 2a 0 e τ s 0 , α 1 = (-τ a 0τ s 0 -1) e τ s 0 .

• If the relations are satisfied and a 0 satisfies the lower bound a 0 > 0, then s 0 chosen such that

-a 0 - 1 τ ≤ s 0 ≤ -a 0 . ( 10 
)
is a dominant root of ∆.

Proof. The proof follows the steps of an algorithm introduced in [START_REF] Benarab | Multiplicity-induced-dominancy property for second-order neutral differential equations with application in oscillation damping[END_REF], and it consists of five steps: forcing multiplicity, normalization, appropriate (Fredholm) integral representation, explicit frequency bound estimation, and dominancy.

1. Proof of Item 1: it can be found in [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF] and it is summarized as follows:

(a) Forcing multiplicity: The real s 0 is a root of multiplicity 3 of ∆ if, and only if, the coefficients a 0 , α 0 , α 1 , the root s 0 and the delay τ satisfy the following relations

a 0 = -s 0 - 2 τ , α 0 = -s 0 + 2 τ e s 0 τ , α 1 = e τ s 0 . (11) 
(b) Normalization: Performing the translation and scaling of the spectrum by the following change of variables

∆(z) = τ ∆(z/τ + s 0 ) (12) 
for z ∈ C, we get the following normalized characteristic function ∆ : C → C,

∆(z) = z + b 0 + (β 1 z + β 0 ) e -z (13) 
with relations (11) normalized as follows:

b 0 = τ (a 0 + s 0 ) , β 0 = τ (α 1 s 0 + α 0 ) e -τ s 0 , β 1 = α 1 e -τ s 0 . ( 14 
)
It is easy to observe that deg( ∆) = deg(∆) = 3.

(c) Integral representation: The real root s 0 is a root of multiplicity 3 of ∆ if, and only if, 0 is a triple root of ∆, that is:

∆(0) = ∆′ (0) = ∆′′ (0) = 0. ( 15 
)
The latter identities yield a linear system whose unique solution is (b 0 , β 0 , β 1 ) = (-2, 2, 1). From relations [START_REF] Niculescu | Stability, delays and multiple characteristic roots in dynamical systems: A guided tour[END_REF], one concludes that s 0 is a root of multiplicity 3 of ∆ if, and only if, relations [START_REF] Mazanti | Multiplicity-induced-dominancy for delay-differential equations of retarded type[END_REF] hold. Moreover, under the latter conditions, the quasipolynomial ( 7) reduces to

∆(z) = P0 (z) + P1 (z) e -z , P0 (z) = z -2 and P1 (z) = z + 2. ( 16 
)
Hence, the quasipolynomial ∆ admits the following Fredholm integral representation

∆(z) = 1 0 q(t) K (z,t) dt, q(t) = t (1 -t) and K (z,t) = z 3 e -t z (17) 
which is easily verified via an integration by parts.

(d) Frequency bound: Assume that z 0 = x 0 + ιω 0 ∈ R + + ιR + is a root of ∆, so that ∆(z 0 ) = 0 if, and

only if, | P0 (x 0 + iω 0 )| 2 e 2 x 0 = | P1 (x 0 + iω 0 )| 2 . ( 18 
)
Considering a truncation of order 1 of the exponential term e 2 x , the latter is lower bounded by

1 + 2x. Next, define F(x, ω) = | P1 (x + iω)| 2 -(1 + 2x) | P0 (x + iω)| 2 (19) 
where F > 0 for any x > 0. The zeros of F are characterized by the first-order polynomial

G(Ω = ω 2 ) = -2 x Ω -2 x 3 + 8 x 2 . ( 20 
)
The polynomial function G admits a single real root Ω 0 (x) = -x (x -4), which reaches a maximum value at x * = 2. As a consequence, Ω 0 is bounded by Ω * = 4 < π 2 . Thus, one obtains the desired frequency bound,

0 < ω ≤ 2 < π. (21) 
(e) Dominancy: The goal of the frequency bound is to prove the dominancy by a contradiction argument. For this purpose, assume that there exists z 0 ∈ R + + i R + root of ∆. Then, the integral representation yields

1 0 t (1 -t) e -t z 0 dt = 0, (22) 
the imaginary part of which is

1 0 t (1 -t) e -t x sin(ω t)dt = 0. (23) 
Now, the frequency bound 0 < ω ≤ π of the previous step entails that the function

t → t (1 -t) e -xt sin(ω t) (24) 
is strictly positive in (0, 1), thereby contradicting the last equality.

Proof of Item 2:

(a) Forcing multiplicity: The real number s 0 is a root of multiplicity 2 of ∆ if, and only if, the coefficients α 0 , α 1 , the root s 0 and the delay τ satisfy the relations below α 0 = τ a 0 s 0 + τ s 0 2a 0 e τ s 0 and α 1 = (-τ a 0τ s 0 -1) e τ s 0 .

(b) Normalization: Performing the translation and scaling of the spectrum by the following linear change of variables

∆(z) = τ ∆(z/τ + s 0 ) (26) 
for z ∈ C, we get the following normalized characteristic function ∆ : C → C,

∆(z) = ((-ρ -1) z -ρ) e -z + z + ρ, (27) 
where ρ = τ (s 0 + a 0 ) is a real number.

(c) Integral representation: It can be verified via an integration by parts that the quasipolynomial ∆ defined in ( 27) can be factorized as

∆(z) = z 2 1 0 q ρ (t) e -tz dt (28) 
where

q ρ (t) = ρ t + 1. (29) 
In our approach, the sign constancy of the polynomial q ρ for t ∈ (0, 1) is necessary. We easily see that it is guaranteed if, and only if, ρ ∈ [-1, +∞[.

(d) Frequency bound: In the following, let

z 0 = x 0 + iω 0 ∈ R + + i R + be a root of ∆(z) = P 0 (z) + P 1 (z) e -z , P 0 (z) = z + ρ, and P 1 (z) = (-ρ -1) z -ρ, (30) 
as defined in [START_REF] Callender | Time-lag in a control system[END_REF] and z 0 satisfies the following equality

|P 0 (x 0 + iω 0 )| 2 e 2 x 0 = |P 1 (x 0 + iω 0 )| 2 . (31) 
Considering a truncation of order 2 of the exponential term e 2 x , the latter is lower bounded by 1 + 2 x + 2 x 2 for any x ∈ R + , see [START_REF] Mazanti | Effects of roots of maximal multiplicity on the stability of some classes of delay differential-algebraic systems: The lossless propagation case[END_REF][START_REF] Benarab | Multiplicity-induced-dominancy property for second-order neutral differential equations with application in oscillation damping[END_REF]. Next, we define the following function

F ρ : R 2 + → R, F ρ (x, ω) = |P 1 (x + iω)| 2 -|P 0 (x + iω)| 2 (1 + 2 x) , (32) 
which satisfies F ρ (x 0 , ω 0 ) > 0. Moreover, the zeros of F ρ can be characterized by the following linear polynomial in

Ω = ω 2 G ρ (x, Ω) = ρ 2 -2x 2 + 2ρ -2x Ω -2x 4 -2 (2ρ + 1) x 3 -ρ (ρ + 2) x 2 . ( 33 
)
In our analysis, we are interested in the cases where G ρ (x, Ω) is bounded. Hence, let Ω 0 ρ (x) = N ρ (x)/D ρ (x) be the real solution of G ρ (x, Ω), where

N ρ (x) = x 2 ρ 2 + 4ρx + 2x 2 + 2ρ + 2x and D ρ (x) = ρ 2 -2x 2 + 2ρ -2x.
We proceed by setting an upper bound for the solution Ω 0 ρ (x) with respect to the variation of the parameter ρ in (-1, +∞). First, note that the denominator D(x, ρ) admits for ρ ∈ -1 + √ 2 2 , +∞ two real roots:

x ± D (ρ) = - 1 2 ± 2ρ 2 + 4ρ + 1 2 . (34) 
Then, we divide our analysis into two parts:

i. ρ ∈ -1, -1 + √ 2 
2 : • The numerator N ρ (x) admits 4 real roots:

0, 0, x ± N (ρ) = -ρ - 1 2 ± 2ρ 2 + 1 2 , (35) 
where N ρ (x) is negative for x ∈ 0, x + N (ρ) and is positive for x > x + N (ρ).

• The denominator keeps a constant (negative) sign, since it has no real roots.

Note that, since Ω 0 ρ (x) is required to be positive, we only consider x ∈ 0, x + N (ρ) , case in which N ρ (x) and D ρ (x) are both of negative sign. Then, an upper bound for Ω 0 ρ (x) requires lower bounds for both N ρ (x) and D ρ (x):

N ρ (x) ≥ -x 2 -4x 2 + 2 √ 2 + 4x + 1 /2, ( 36 
)
D ρ (x) ≥ -1/2 - √ 2 -2x 2 -2x, (37) 
which yields the following upper bound for the solution Ω 0 ρ (x):

Ω 0 ρ (x) ≤ Ω * (x) = x 2 -4x 2 + 2 √ 2 + 4x + 1 4x 2 + 2 √ 2 + 4x + 1 , ( 38 
)
which itself is bounded by π 2 ; see Figure 2-(a). ii. ρ ∈ -1

+ √ 2 
2 , 0 : In this case, one can notice that x + D (ρ) < 0, which implies that D ρ (x) < 0. Since Ω 0 ρ (x) is required to be positive, we only consider x ∈ 0, x + N (ρ) . Using a similar analysis, in order to set an upper bound for Ω 0 ρ (x), we first set a lower bound for both N ρ (x) and D ρ (x):

N ρ (x) ≥x 2 2x √ 2 + 2x 2 + √ 2 -2x -2 , (39) 
D ρ (x) ≥ -2 -2x 2 + √ 2 -2x, (40) 
which yields the following upper bound of the solution Ω 0 ρ (x):

Ω 0 ρ (x) ≤ Ω * (x) = x 2 2x √ 2 + 2x 2 + √ 2 -2x -2 -2 -2x 2 + √ 2 -2x (41) 
which itself is bounded by π 2 ; see Figure 2-(b). Now, is the solution Ω 0 ρ (x) is upper bounded with respect to ρ by the following parameter-free function

Ω * (x) =            x 2 -4x 2 + 2 √ 2 + 4x + 1 4x 2 + 2 √ 2 + 4x + 1 for ρ ∈ -1, -1 + √ 2 2
and x ∈ 0, x + N (ρ) ,

x 2 2x √ 2 + 2x 2 + √ 2 -2x -2 -2 -2x 2 + √ 2 -2x for ρ ∈ -1 + √ 2 2 , 0 and x ∈ 0, x + N (ρ) . (42) 
Hence, we have characterized the regions where the frequency is bounded.

(e) Dominancy: By a contradiction argument, assume that there exists z 0 ∈ R + + i R + root of ∆. Then, the integral representation yields 1 0

(ρ t + 1) e -t z 0 dt = 0, (43) 
the imaginary part of which is 1 0 t (ρ t + 1) e -t x sin(ω t)dt = 0. Now, the frequency bound 0 < ω ≤ π of the previous step entails that the function

t → t (ρ t + 1) e -xt sin(ω t) (44) 
is strictly positive in (0, 1), thereby contradicting the last equality.

To conclude, if relations (25) are verified and a 0 satisfies the lower bound a 0 > 0, then the exponential decay s 0 is chosen such that

-a 0 - 1 τ ≤ s 0 ≤ -a 0 (45) 
is necessarily negative and dominant.

Remark 3.2. Note that in the over-order MID (IMID) case (item 2 of Theorem 3.1), one may expect to obtain a larger range to assign the dominant root albeit for truncation orders of the exponential term in the "frequency bound" step that are strictly greater than 2, as illustrated in Figure 3(b).

Remark 3.3. As pointed out in [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF], the GMID does not allow any degree of freedom in allocating s 0 . Indeed, if a 0 and τ are fixed then the assigned spectral abscissa is uniquely determined from (8) as s 0 = -a 0 -2 τ . In order to allow some leeway when allocating, as illustrated in (45), one can relax the constraint by forcing the root s 0 to have an over-order multiplicity albeit lower than the maximal one. This fact is important from a robustness perspective. Remark 3.4. As emphasized in [START_REF] Boussaada | The generic multiplicity-induced-dominancy property from retarded to neutral delaydifferential equations: When delay-systems characteristics meet the zeros of kummer functions[END_REF][START_REF] Boussaada | MID Property for Delay Systems: Insights on Spectral Values with Intermediate Multiplicity[END_REF], the over-order MID property has an interesting link with the well-known Kummer confluent hypergeometric functions. As a matter of fact, quasipolynomials with dominant roots of over-order multiplicities can be represented in terms of such special functions. As it was developed by E. Kummer, P. Humbert, E. T. Whittaker, F. Tricomi, L. Erdelyi and others, see, for instance, [START_REF] Buchholz | The confluent hypergeometric function with special emphasis on its applications[END_REF][START_REF] Erdélyi | Higher transcendental functions[END_REF][START_REF]NIST Handbook of Mathematical Functions[END_REF][START_REF] Boussaada | Some remarks on the location of non-asymptotic zeros of Whittaker and Kummer hypergeometric functions[END_REF] In particular, the quasipolynomial (7) whose parameters satisfy [START_REF] Stépán | Retarded Dynamical Systems: Stability and Characteristic Functions[END_REF], i.e. the GMID is satisfied, can be written as:

∆(s) = τ 2 6
(ss 0 ) 3 Φ(2, 4, -τ (ss 0 )).

However, the quasipolynomial (7) whose parameters satisfy (9) admits a double root at s 0 arbitrarily chosen in accordance with [START_REF] Boussaada | Multiplicity-induced-dominancy in parametric second-order delay differential equations: analysis and application in control design[END_REF], i.e. the IMID is satisfied, can be written as a linear combination of two Kummer functions: ∆(s) = τ (ss 0 ) 2 τ (s 0 + a 0 ) 2 Φ (2, 3, -τ (ss 0 )) + Φ (1, 2, -τ (ss 0 )) .
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 21 [START_REF] Pólya | Problems and Theorems in Analysis[END_REF] Problem 206.2, page 144 and page 347]. Let ∆ be a quasipolynomial of degree D as in[START_REF] Hale | Introduction to functional differential equations[END_REF], and α

  (b) shows the solution of (2)-(3) in the case L λ = 1 with an initial condition ϕ(0, x) = sin(2πx).
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 41 Figure 1: (a) Spectrum distribution of (4) and (b) solution of (2) with initial condition ϕ(0, x) = sin(2πx), with L λ = 1 and parameters k p and k i satisfying (5). Figure taken from [12].
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 222 Figure 2: (a) 3D plot showing how Ω 0 (x, ρ) (in blue) is upper bounded by Ω * 0 (x, ρ) (in green) for ρ ∈ -1, -1 + √ 2 2 and x ∈ 0, x + N (b) 3D plot showing how Ω 0 (x, ρ) (in blue) is upper bounded by Ω * 0 (x, ρ) (in green) for ρ ∈ -1 + √ 2 2 , 0 and x ∈ 0, x + N .

Figure 3 :

 3 Figure 3: (a) Spectrum distribution of the quasipolynomial function ∆(z) (b) With a truncation order of the exponential term raised to 4 the 3D plot illustrates how Ω 0 (x, ρ) (in blue) is upper bounded by π 2 (in red) for ρ ∈ -1, 1 2 and x > 0, which enlarges the assignment range.
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 1 , for every a, b, z ∈ C such that ℜ(b) > ℜ(a) > 0, Kummer functions admit the integral representationΦ(a, b, z) = Γ(b) Γ(a)Γ(ba) λ t t a-1 (1t) b-a-1 dt. (46)

multiplicity larger than the degree of the corresponding polynomial in the delay-free case and smaller than the degree of the quasipolynomial

CONCLUSION

In this paper, we provided a complete characterization of the multiplicity-induced-dominancy (MID) property for single-delay linear first-order delay-differential equation (DDE) thanks to the five-step algorithm described in [24,29]. Despite the complete characterization of the generic multiplicity-induced-dominancy (GMID) property for single-delay systems of arbitrary order [12], the intermediate multiplicity-induceddominancy (IMID) property, which is more suited for control purposes, remains an open question. Further effort devoted to studying the distribution of zeros of Kummer's confluent hypergeometric functions seems to be the key to answering this question.