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ABSTRACT 

Distribution systems operators’ (DSO) upcoming 

challenge is to monitor and control low voltage (LV) grids. 

Real time measurements’ acquisition from LV grids has 

become possible thanks to the deployment of smart meters 

(SM) but it is still limited by technical constraints. Thus, a 

real time state estimator (SE) is needed to ensure the LV 

grid’s observability. A machine learning model can be 

trained using the SM historical data and then run in real 

time using few available measurements to estimate the 

system’s state. For the purpose of evaluating the 

performance of a machine learning based SE on a realistic 

LV grid, an auto-encoder based SE is presented in this 

paper. An accuracy enhancement using pseudo-

measurements is proposed and a method for 

reconstructing realistic LV grid models is also described.  

1. INTRODUCTION 

Low voltage (LV) distribution grids are facing a major 

transition due to the high penetration of decentralized 

energy production and the introduction of new types of 

consumers such as electric vehicles and heat pumps. In 

order to deal with this new bidirectional use of LV grids 

and these new types of consumptions, distribution systems 

operators (DSO) target to use a real-time state estimator 

(SE) to evaluate the distribution system's current state 

(voltage magnitude notably). 

In the recent literature, Weighted Least Square (WLS) 

based SE has been proposed to perform state estimation on 

LV grids [1]. Even if this technique is already successfully 

applied to high voltage and medium voltage (MV) grids 

[2], its application to LV grids faces many challenges [3]. 

Among them, the most complex to handle are the 

unbalance of LV grids and the lack of real-time transmitted 

measurements due to the communication constraints 

limiting the usage of smart meter (SM) data. 

However, the availability of historical data provided by the 

deployment of SM opens to the possibility to train machine 

learning based SE and then execute the trained model in 

real time, even in case of a limited number of SM 

measurements. Several techniques are investigated in the 

literature: for example, feed-forward neural network, 

linear regression and support vector machine techniques 

[4], neural network based SE [5] and auto-encoder with 

particle swarm optimization (AE-PSO) based SE [6], [7]. 

 

Among the several methodologies, the AE-PSO based SE 

showed great flexibility in dealing with different missing 

measurements situations, which is often the case in LV 

grids, while still providing accurate results. In the present 

paper, we aim to increase the accuracy of an AE-PSO 

based SE in case of less available real-time measurements 

by adding pseudo-measurements. To the best of authors’ 

knowledge, no work is present in the literature of AE-PSO 

based SE for LV grids that consider pseudo-

measurements, and the main contribution of this paper lies 

in this research line.  The methodology is tested on a 

realistic LV grid with realistic grid unbalance conditions.  

Another contribution of the present paper concerns the 

method introduced to reconstruct realistic LV grids model 

while taking into account grids’ topology and sizing, to be 

used for testing and verifying the performance of the 

considered SE. The tool developed on the introduced 

technique is based on open data, and allows to meet the 

growing need for data with the increasing tendency 

towards smart grids and artificial intelligence applications. 

 

The remainder of this paper is organized as follows. In 

section 2, we recall the AE-PSO algorithm that is used to 

include pseudo-measurements. In section 3, we detail the 

method of reconstruction of LV grids models based on 

DSO’s open data. Section 4 presents a case study on a 

reconstructed grid model and state estimation’s results are 

discussed. And finally, conclusion is made in section 5. 

2. AE-PSO STATE ESTIMATOR 

Auto-encoder 

The auto-encoder is an unsupervised machine learning 

model using a symmetrical neural network (NN) aiming at 

reconstructing the initial input values using an encoder-

decoder process [6], [7].  

The encoder is a fully connected NN aiming to compress 

the input vector 𝑥 into a 𝑑-dimensional reduced latent 

space (Figure 1). By noting the compressed vector of the 

input, 𝑓 the mapping function, 𝑤, 𝑏 and 𝜎 respectively the 

weights, bias and activation functions of the encoder’s NN, 

𝑥𝑑 is written as follows: 

 𝑥𝑑 = 𝑓𝑤,𝐵(𝑥) = 𝜎(𝑤𝑥 + 𝑏) ( 1 ) 

The decoder is another fully connected NN aiming to map 

back from the vector 𝑥𝑑 to an output vector 𝑥′, that has 
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same dimension as the input vector and is expected to be 

as similar as possible to the input vector (Figure 1). By 

noting  𝑓′ the mapping function, 𝑤′, 𝑏′ and 𝜎′ respectively 

the weights, bias and activation functions of decoder’s NN, 

𝑥′ is written as follows: 

 𝑥′ = 𝑓𝑤′,𝐵′(𝑥𝑑) = 𝜎′(𝑤′𝑥𝑑 + 𝑏′) ( 2 ) 

To accomplish this task, the optimal parameters 

{𝑤𝑜𝑝𝑡 , 𝑏𝑜𝑝𝑡 , 𝑤𝑜𝑝𝑡
′ , 𝑏𝑜𝑝𝑡

′ } are learnt iteratively using a 

training dataset {𝑥𝑖}𝑖=1
𝑁 , composed of 𝑁 input vectors. The 

loss function 𝐽 to minimize during the training process is: 

 
{𝜃, 𝜃′} = min

𝜃,𝜃′

1

𝑁
∑𝐽(𝑥𝑖 , 𝑥𝑖

′)

𝑁

𝑖=1

 ( 3 ) 

where 𝜃 = {𝑤, 𝑏} and 𝜃′ = {𝑤′, 𝑏′} are the trainable 

parameters of the encoder and decoder, respectively. 

 

It should be noted that the dimension 𝑑 of the latent space 

and the number of the encoder’s (and the decoder’s) 

hidden layers 𝑛ℎ𝑖𝑑𝑑𝑒𝑛 are hyperparameters to be tuned. 

They depend on the dimension of the input vector, i.e., 

grid’s size. In fact, the complexity of the model can be 

extended by increasing the number of hidden layers. Given 

a tuned option for the hyperparameters 𝑑 and 𝑛ℎ𝑖𝑑𝑑𝑒𝑛, the 

number of neurons for each hidden layer is calculated in a 

way that they decrease linearly for the encoder and then 

increase linearly for the decoder (Figure 1). 

 
Figure 1. Auto-encoder training 

For state estimation application, the learning dataset 

consists of a history of measurements of voltage 

magnitude, active power and reactive power of all nodes 

and all phases. Training the auto-encoder as described 

above leads to a model able to reconstruct all these 

parameters in the output vector. 

A sample of the learning dataset is noted by 𝑥𝑖 and can be 

written as follows: 

 𝑥𝑖 = [𝑋1
𝑎, 𝑋1

𝑏 , 𝑋1
𝑐, … , 𝑋𝑛

𝑎, 𝑋𝑛
𝑏 , 𝑋𝑛

𝑐]𝑖 ( 4 ) 

where 𝑖 = {1, …𝑁}, 𝑁 being the number of samples, 𝑋𝑗
𝜑
=

[𝑃𝑗
𝜑
, 𝑄𝑗

𝜑
, 𝑉𝑗

𝜑
] the vector of the three measurements of a 

phase 𝜑 ∈ {𝑎, 𝑏, 𝑐} of a node 𝑗 ∈ {1, … 𝑛}, 𝑛 being the 

number of grid’s nodes. 

Particle Swarm Optimization 

Once the training phase is over and we move to the real-

time application, the amount of real-time measurements 

will be limited due to technical constraints. Thus, the input 

vector will present missing data, e.g., non-transmitted 

measurements of certain nodes. Among these 

measurements, there are the voltage magnitudes that are 

our final estimation goal. 

The real time input vector 𝑥 can be thus written as follows: 

 𝑥 = [𝑥𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 , 𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔] ( 5 ) 

A particle swarm optimization (PSO) technique is used to 

search for the values of the missing variables by using the 

pre-trained auto-encoder denoted by 𝐴𝐸𝑡𝑟𝑎𝑖𝑛𝑒𝑑  in the 

objective function as follows: 

 min
𝑥𝑚𝑖𝑠𝑠𝑖𝑛𝑔

𝑀𝑆𝐸(𝑥 − 𝐴𝐸𝑡𝑟𝑎𝑖𝑛𝑒𝑑(𝑥)) ( 6 ) 

where MSE is the mean squared error. 

 
Figure 2. Particle Swarm Optimization for real time state 

estimation 

Pseudo-measurements 

When a phase 𝜑 of a node 𝑗 is not measured, we suggest 

using pseudo-measurements for active and reactive power 

such that the only missing variables to be estimated would 

be the voltage magnitudes. The pseudo-measurements are 

generally derived from historical data or standard load 

profiles and present an error around 50% [8]. 

3. LV GRID RECONSTRUCTION  

For an industrial application of a machine learning SE, the 

data needed to train the model is provided by the historical 

data of SM. However, the access to these data for research 

purposes is more complex. Thus, the creation of a database 

made up of simulated grids models is necessary. 

 

In this section, we present a method consisting of different 

steps to reconstruct LV grids models from open data. We 

refer to "LV grid" as the set of transformers, lines and loads 

associated to a MV/LV substation. The developed tool is 

based on the distribution network geographical data 

available on Enedis’ (the main French DSO) open data 

website [9]. 

The dataset in [9] provides the geographical positions 

(latitude and longitude) of the MV/LV substations, the LV 

overhead lines and the LV underground cables. No 

information on the topology (connections between lines, 

attribution of lines to the MV/LV substations…), or 

electrotechnical sizing information (transformers’ power, 

lines’ sections, ...) are given. 
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Consequently, the proposed method consists in completing 

this missing information according to the sequential steps 

described below, while respecting given sizing rules of LV 

networks. It allows for the development of an automatic 

tool. 

 

Topology identification 
Given the geographical coordinates of the MV/LV 

substations and LV overhead and underground cables, a 

distance calculation between each two elements allows to 

identify the connections between elements.  

 

Transformer sizing 
Once the network topology is identified in the first step, 

the number of feeders is known and can be used to 

determine the rated power of the transformer according to 

the DSO’s technical note [10], which indicates the 

maximum number of feeders for each transformer’s rated 

power. 

 

Load distribution 
The transformer rated power fixed in the second step will 

be used to distribute the load powers to the different 

feeders, nodes and phases. However, since LV loads have 

very different load profiles, the consumption peaks of the 

different loads are spread over the day. A load diversity 

factor is then necessary to load the transformer properly. 

The NF C14-100 standard specifies the diversity factor to 

be considered according to the number of users located 

downstream of the section considered. 

Since the number of connected users increases with the 

transformer’s rated power, we consider a diversity factor 

for each transformer rated power according to Table I. 

 

Transformer rated power (kVA) Diversity factor 

50 - 100 0.63 

160 - 250 0.44 

400 – 630 - 1000 0.41 
Table I. Diversity factor per transformer’s rated power 

By dividing the transformer rated power by the 

corresponding diversity factor, we get the total power of 

loads that can be connected to the transformer. This power 

is distributed in a random quasi-balanced way to the 

feeders, then to the nodes and finally to the phases. Finally, 

each phase of each node will be a random combination of 

LV clients. 

 

Assigning load profiles 
Once the clients’ rated powers are set in the previous step, 

different load profiles should be assigned for each client in 

order to represent the individual behavior. 

Enedis’ open data provides an average profile coefficient 

for residential consumers [11]. 

A first approach is to add random noise to the average 

profile in order to create different profiles corresponding 

to different consumers. This approach leads to a 

synchronous behavior of all customers, thus eliminating 

the effect of the previously mentioned diversity factor. 

A second considered approach consists in using available 

open-source data of Irish residential electricity 

consumption [12]. Since these pieces of data are real, they 

are a more realistic representation of individual behavior 

than the first approach. 

After verifying sufficient similarity between the Irish and 

French electricity consumption on a daily and annual basis 

at the considered level, the Irish load profiles are selected 

to be randomly assigned to the consumers in our grid 

model generator tool. 

 

Cables sizing 
The section of a cable is determined according to the 

power of loads connected downstream the cable. In this 

step, for each cable, we add up the powers connected 

downstream and refer to the French DSO’s technical note 

which specifies a cable section according to the power 

connected and the type of the cable (overhead or 

underground). 

4. CASE STUDY AND RESULTS  

Generated test grid 
With the aim of testing the developed SE on a realistic 

grid, we selected a grid generated by our pre-described 

open data-based LV grid reconstruction tool. This grid has 

a 630 kVA substation and is composed of 25 nodes 

including the substation’s node (node 1). It should be noted 

that since our tool is based on respecting grid’s sizing 

rules, we ran it in an overloading mode to get significant 

voltage drops so the developed SE faces challenging 

situations. In order to consider distributed energy 

resources (DERs), we randomly distributed 5 photovoltaic 

(PVs) production per phase, of 30 kVA each.  

The geographical topology of the considered grid is shown 

in Figure 3, while a schematic representation is given in 

Figure 4.  

 

 
Figure 3. Geographical topology of the 25 nodes grid 

 
Figure 4. Representation of the topology of the 25 nodes grid 
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We consider 2000 samples with a time step of 30 minutes. 

Figure 5 shows voltage magnitude levels and voltage 

unbalance rate at each node. Clearly, we can notice a 

particular behavior for nodes 13, 14 and 15 in terms of 

voltage margin and unbalance rate. These are the farthest 

three nodes from the substation that are located in the 

lower part of Figure 3, which explains their critical 

conditions. We will refer to these nodes as “constrained 

nodes”. We highlight that all the nodes present voltage 

values within the regulation limits and a realistic 

unbalance rate that remains below 2%. 

 

 
Figure 5. Voltage magnitudes levels and unbalance rate of the 

25 nodes grid 

Test description 
According to standard procedures, we split our initial 

dataset into a training dataset and a test dataset. The 

training dataset is used to train the auto-encoder to 

reconstruct the input data as described above. The test 

dataset is used to test the AE-PSO state estimator under 

different cases of missing data. 

We target an estimation error of 2% as desired 

performance for the SE of the LV grids.  

Knowing that the voltage margin not to be exceeded is 

±5% for MV grids against ±10% for LV grids, and that a 

1% estimation error is acceptable for MV grids, the choice 

of having an error about 2% for LV is coherent. 

When a node is not measured, then the voltage magnitude, 

active power, and reactive power of the three phases are all 

missing. We incrementally increased the ratio of missing 

measurements from 4% (1 node missing) to 96% (24 nodes 

missing) while always considering the node 1 that 

corresponds to the MV/LV substation as measured. 

For each ratio of missing measurements, a group of 

missing nodes is randomly selected, and then the input data 

of the AE-PSO is constructed according to two case 

studies: 

- no information for the missing measurements (red plot 

of Figure 6), 

- pseudo-measurements for the missing active and 

reactive power measurements are considered, only the 

voltage magnitudes are missing (blue plot of figure 6). 

 

Results 
As shown in Figure 6, in the first case, where pseudo-

measurements are not included, the SE performs well up 

to 64% of unmeasured nodes. When the ratio of missing 

measurements is further increased, the absolute estimation 

error increases significantly. In other words, without 

considering pseudo-measurements, a minimum of 36% of 

nodes should be measured and transmitted in real time in 

order to have satisfactory results. These observations are 

coherent with the literature. 

In the second case, we investigate the effect of adding 

pseudo-measurements; we can note clearly a more stable 

performance against the increasing ratio of unmeasured 

notes. Actually, the estimation error remains within the 

acceptable margin up to 96% of missing measurements. 

This shows that an accurate state estimation is possible 

using only the substation’s real measurements and pseudo-

measurements for the remaining nodes. 

 

 
Figure 6. Pseudo-measurements’ effect on estimation error with 

variable ratio of unmeasured nodes  

Furthermore, we notice that a higher precision is obtained 

when estimating unconstrained nodes. It means that the 

acceptable error margin is always respected with two 

levels of accuracy: 1% for the unconstrained nodes and 2% 

for the constrained nodes, as shown in Figure 7. 

 

 
Figure 7. Voltage estimation scatter  
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Finally, we were interested in visualizing the estimation 

over 24 hours, i.e., 48 samples of an unconstrained node 

and a constraint node, e.g., nodes 7 and 13, respectively. 

The figure 8 shows that the global shape is well estimated 

in both cases, with a better estimation of voltage variation 

for the unconstrained node. 

 
Figure 8. Voltage estimation of phase a of an unconstrained 

node (node 7) and a constrained node (node 13)  

5. CONCLUSION  

This paper evaluated the performance of an AE-PSO based 

SE on a realistic LV grid model when considering pseudo-

measurements. Moreover, a method describing how to use 

available open data to reconstruct realistic LV grid models 

is presented. The resulting tool is of a great interest as it 

provides numerous realistic models and data that are 

necessary but often difficult to gather for research 

purposes.  

The AE-PSO was then tested on a realistic 25 nodes LV 

grid model with DER. The possibility to use pseudo-

measurements allowed for a state estimation that needs 

only the real-time measurement from the MV/LV 

substation. Although several nodes present important 

voltage constraints and unbalance rates, the developed SE 

ensured an acceptable estimation with an error below 2%, 

with very high accuracy in case of unconstrained nodes, 

i.e., an error below 1%.  

Future works aim to study the robustness of the developed 

model with respect to variations such as topology changes 

or the lack of knowledge about client’s connection to 

phases.  
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