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PRESCRIBING TRANSPORT EQUATION SOLUTION’S DECAY VIA MULTIPLICITY MANIFOLD AND
AUTOREGRESSIVE BOUNDARY CONTROL

KAÏS AMMARI, ISLAM BOUSSAADA, SILVIU-IULIAN NICULESCU, AND SAMI TLIBA

Abstract. This paper addresses the boundary control problem of the transport equation. Namely, we propose a control method,
which is merely a delayed output feedback relying on a partial pole placement idea, that consists in assigning an appropriate
exponential decay rate to the closed-loop system’s solution. The proposed control structure appearing in the transport boundary,
which has proven its effectiveness in controlling finite dimensional systems, consists of an autoregressive relation linking the
transport equation’s input and output. The obtained result provides an analytical lower bound for the solution’s exponential
decay.

1. Introduction

An intense research activity over the past decades pertaining to the multiple spectral values of functional differential
equations [15, 14, 5] was initially motivated by a better understanding of the mechanism of coalescence of spectral values
and the splitting of emerging branches when varying some parameters, as well as the resulting bifurcations. To complete
the picture, several works have been devoted to the qualitative properties of such dynamical systems through the effect
of the spectral values’ multiplicity. Since then, using a standard complex analysis result from [17], a generic bound for
allowable multiplicities has been established and related to the degree1 of the corresponding characteristic function called
quasipolynomial. Consequently, a remarkable property called multiplicity-induced-dominancy (or MID for short) has been
emphasized in [4]. The MID property consists of conditions on the parameters of the dynamical system, guaranteeing that
a multiple spectral value corresponds to the spectral abscissa [4]. Mysteriously, by introducing an integral representation
of quasipolynomials corresponding to retarded equations [3], it appears that a spectral value with the maximal allowable
multiplicity corresponds necessarily to the spectral abscissa. More recently, in the single delay case, it has been shown that
a quasipolynomial admitting a root with multiplicity equal to its degree, shares its remaining zeros with the well-known
Kummer hypergeometric function [13, 3]. However, a quasipolynomial admitting a root with intermediate multiplicity
shares its remaining zeros with an appropriate linear combination of Kummer hypergeometric functions. By exploiting
a more than a century-old result on oscillations in the complex domain, in particular, the Green-Hill transform [11], it
allows to prescribe some regions (in the complex plane) from containing zeros, shedding some light on the mystery. Since,
several works have been dedicated not only to studying the extent of the MID [3, 1, 2, 8], but also to the use of the MID
property in practical control applications. The MID property inspired a frequency-domain control methodology called
partial poles placement in assigning the spectral abscissa as a multiple root of the closed-loop characteristic equation.
The MID-based control strategy has shown its effectiveness in the design of standard controllers such as the boundary
proportional-integral-derivative control of the transport equation with a prescribed stabilization [3].

It is well known that apart from the tuning strategy, a good choice of control structure is crucial for a cheap implemen-
tation as well as for a safe and reliable control process, since the design of low-complexity control laws has the notable
advantage of easing the implementation in real-time processes. In this paper, we revisit the boundary control of the
transport equation, as formulated in [7, 3], but under boundary conditions consisting of a four-parameter autoregressive
input/output difference relation. The MID property is then put to use in the design procedure of the said controller.

The structure of this paper is as follows. In Section 2, we recall some prerequisites about qualitative properties of delay
difference equations as well as the MID-based partial pole placement. Section 3 is dedicated to the problem formulation.
In Section 4 we report the main contribution of the paper, where existence and uniqueness of the solution are established,
as well as some sufficient conditions guaranteeing a prescribed decay rate.
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1The sum of the degrees of the involved polynomials plus the number of delays.
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2. On delay difference equations with two interfering delays and the partial poles placement

We consider the problem of stabilizing the following delay difference equation in the continuous time function θ(t)
with two interfering delays, τ1 > 0 and τ2 > 0, such that

(2.1) θ(t)+αθ(t−τ1)+βθ(t−τ2)+γθ(t−τ1−τ2) = 0,

where α, β and γ are some real scalars (with the assumption that γ , αβ) to be tuned for ensuring the exponential stability
of (2.1). The corresponding characteristic function, where s ∈ C stands for the complex Laplace variable, reads as

(2.2) Q(s; τ1, τ2) := 1+αe−τ1 s+βe−τ2 s+γe−(τ1+τ2) s,

which is a quasipolynomial of degree three if τ1 , τ2 and αβγ , 0, and is of degree two if either τ1 = τ2 or only one of
the parameters α, β,γ vanish.

2.1. Standard results on delay difference equations stability. The well-known Hale-Silkowski criterion completely
characterizes the exponential stability region (in the parameters space) corresponding to (2.1), see for instance [9, Chapter
9, Theorem 6.1]. However, the estimation of the solution’s decay rate is out of its scope. In order to get some estimate
of the decay rate, one has to locate the zeros of the corresponding quasipolynomial (2.2). To do so, one requires the
following settings and results established by Henry in [10]. Consider the quasipolynomial

(2.3) Γ(p, κ,h) :=
N∑

k=0

κk e−pχk .h

where κ = (κ1, . . . , κN)T ∈ RN , h = (h1, . . . ,hM)T ∈ RM
+ , χ j = (χ j,1, . . . ,χ j,M), χ j,k ∈ N

∗ ( j ∈ ⟦1,N⟧, k ∈ ⟦1,M⟧) and χ j.h =∑M
k=1χ j,khk. We also adopt the notations κ0 = 1 and χ0 = (0, . . . ,0). Define ZΓ(κ,h) :=

{
ℜ(p) : Γ(p, κ,h) = 0

}
and denote its

closure by Z̄Γ(κ,h). Let us define ρ j = ρ j(κ, h) ( j ∈ ⟦0,N⟧), if they exist, by the relation

(2.4) |κ j|e−ρ j χ j.h =
∑
k, j

|κk |e−ρ j χk .h for j ∈ ⟦0,N⟧.

If χN .h ≥ χ j.h > 0 for j ∈ ⟦1,N −1⟧, then ρN and ρ0 are uniquely defined and ρN < ρ0 for N ≥ 2.

Lemma 2.1 ([10]). If χN .h ≥ χN−1.h > . . . > χ1.h > 0, then Z̄Γ(κ,h) ⊆ [ρN , ρ0].

2.2. Recent delay difference stability results using the MID paradigm. In this section we exploit the manifold of
spectral values’ multiplicities to get some insights on the solutions’ decay rates. Roughly speaking, the MID property
consists in conditions under which a multiple spectral value is dominant. More precisely, in this section, we shall provide
some configurations in which the MID applies; this corresponds to the dominancy of spectral values with a multiplicity
which is equal to the degree of the considered quasipolynomial. Notice that such a degree may vary when some coefficients
are set to be zero or when some delays are set to be equal.

In particular, the case τ1 = τ2 may be considered separately since it allows to decrease the degree of the quasipolynomial
Q. In fact, the quasipolynomial Q reads as

(2.5) Q(s ; τ2, τ2) = 1+ (α+β)e−τ2 s+γe−2τ2 s,

which admits a degree equal to two for γ , 0 and α , −β. In such a case, one can apply the following result which is
strongly inspired from [1] and relies on the MID property.

Lemma 2.2 ([1]). Consider the quasipolynomial Q(· ; τ1, τ2) given by (2.2) and let τ1 = τ2.
A given real number s0 is a double root of (2.5) if, and only if,

(2.6) γ = e2τ2 s0 , α+β = −2eτ2 s0 .

If (2.6) is satisfied then the MID holds, that is, s0 corresponds to the spectral abscissa of the quasipolynomial Q(· ; τ2, τ2)
given by (2.5). Furthermore, all zeros of (2.5) are double and lie on the vertical axisℜ(s) = s0.

Now, let us consider the quasipolynomial (2.2) where τ1 , τ2 and αβγ , 0, i.e., the case where the quasipolynomial’s
degree is equal to three.
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Lemma 2.3 ([1]). Consider the quasipolynomial Q(· ; τ1, τ2) given by (2.2) and let τ1 , τ2.
A given real number s0 is a triple root of (2.2) if, and only if,

(2.7) α =
τ1+τ2
τ1−τ2

eτ1 s0 , β = −
τ1+τ2
τ1−τ2

eτ2 s0 , γ = −e(τ1+τ2) s0 .

If (2.7) is satisfied and τ1 = kτ2 with k an integer greater than one, then the MID holds, that is, s0 corresponds to the
spectral abscissa of the quasipolynomial Q(· ; kτ2, τ2) given by (2.2).

Remark 2.4. From a control theory viewpoint, the MID property can be exploited by tuning the control parameters as
emphasized above after prescribing a negative number s0 which corresponds to the closed-loop system solution’s decay
rate.

The proof of Lemma 2.3 follows the same lines as the proof of Theorem 7.2 from [1]. It relies on properties of self-
inversive polynomials, the standard A. Cohn Theorem and an Eneström-Kakeya Theorem. When the MID property fails,
one can prescribe a lower bound for the decay rate as will be discussed in the next section.

2.3. Beyond the MID property when τ1 , kτ2. By substituting the expressions of α, β and γ given in system (2.7) into
the expression of Q in expression (2.2) and by introducing the variable change

(2.8) p := τ2 (s− s0)/2

and the new parametrization τ = 2τ1/τ2, it comes that Q(s;τ1, τ2) := Q̃(p;τ), where

(2.9) Q̃(p;τ) = 1−
τ+2
τ−2

e−2 p+
τ+2
τ−2

e−τ p− e−(τ+2) p,

and it remains to examine the roots of Q̃(·; τ) with respect to τ.
Notice that quasipolynomials with real coefficients admit zeros’ distributions which are symmetric with respect to the

real axis. In that case, the following lemma emphasizes an additional symmetry structuring the distribution of zeros of
Q̃(·; τ) with respect to the imaginary axis.

Lemma 2.5 ([1]). Let p ∈ C be a zero of Q̃(·;τ) defined by expression (2.9). Then, −p is also a zero of Q̃(·;τ).

The following lemma provides a vertical strip in the complex plane, which is symmetric with respect to the imaginary
axis and contains the set of zeros of Q̃(·; τ).

Lemma 2.6 ([1]). The set Z̄Q̃(κ,h) ⊆ [−ρ∗, ρ∗] where ρ∗ is the unique positive zero of

(2.10) Q̂(ρ,τ) := 1−
∣∣∣∣∣τ+2
τ−2

∣∣∣∣∣e−2ρ−

∣∣∣∣∣τ+2
τ−2

∣∣∣∣∣ e−τρ− e−(τ+2)ρ.

Lemma 2.7 ([1]). Consider the quasipolynomial Q̂ given by (2.10) with τ , 2. Then, the spectral abscissa σ of Q̂ is
upper-bounded by ρ̂(τ) where ρ̂ is given by

(2.11) ρ̂(τ) :=
1

min{τ,2}
ln

(
1+2

τ+2
|τ−2|

)
.

3. Problem formulation

We study the boundary stabilization of a transport equation in (0,L) ⊂ R. The system is given by:

(3.1) ut +λux = 0, x ∈ (0,L), t > 0, u(0, t) = v(t), t > 0, u(x,0) = u0(x), x ∈ (0,L),

where v designates the control law applied at the boundary, L and λ are positive constants, and the initial data u0 is a given
function belonging to a suitable space.

In [7], a proportional-integral controller, i.e., with

v(t) = kp u(L, t)+ ki

∫ t

0
u(L,µ)dµ,

has been used to uniformly stabilize solutions of system (3.1) using the well-known Walton & Marshall frequency domain
approach. More recently, the same problem has been considered in [3] with the aim to provide a uniform stabilization
with a prescribed decay. Notice that, in both references, an analysis of a single delay scalar first-order neutral differential
equation is performed to obtain the mentioned results.
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The aim of this paper is to exploit the effect of an autoregressive input/output difference equation at the boundary as
well as a partial poles placement idea as described in Section 2. More precisely,

v(t) = −αu(0, t−τ)−βu(L, t)−γu(L, t−τ)

where the delay τ ∈ R∗+ is considered as a control parameter additionally to the gains α, β, γ ∈ R; the aim being to provide
a uniform stabilization with a prescribed decay. In this configuration, the analysis reduces to a delay difference equation
with two interfering delays, which enables to benefit from the results of Section 2.

4. Autoregressive boundary control of the transport equation

We study the boundary stabilization of a transport equation in (0,L) ⊂ R. The system is given by:

(4.1)


ut +λux = 0, x ∈ (0,L), t > 0,
u(0, t)+αu(0, t−τ1)+βu(L, t)+γu(L, t−τ1) = 0, t > 0,
u(x,0) = u0(x), x ∈ (0,L),
u(L, t−τ1) = 0,u(0, t−τ1) = 0, t ∈ (0, τ1).

The constant τ1 > 0 is the time delay and L,λ > 0, α, β, and γ are real numbers and the initial data u0 is a given function
belonging to a suitable space that will be precised later. This section aims to study the problem (4.1), in which some delay
terms are involved in the boundary’s expression, where one of them stands for an autoregressive term with respect to the
control. We shall show the global existence of a solution for problem (4.1) by transforming the delay term and by using a
semigroup approach. We shall prove that the problem is asymptotically stable with an exponential decay rate.

4.1. Well-posedness of problem (4.1). In order to prove the global existence and the uniqueness of the solution for
problem (4.1), first we transform problem (4.1) into problem (4.3) by making the change of variables (4.2), and second
we apply the semigroup approach to prove the existence of the unique solution to problem (4.3). To overcome the problem
of the boundary delay, we introduce the new variables:

(4.2) z (ρ, t) = u (0, t−τ1 ρ) , w(ρ, t) = u(L, t−τ1 ρ), ρ ∈ (0,1) , t > 0.

Then, for (ρ, t) ∈ (0,1)× (0,+∞) one has: {
τ1 zt (ρ, t)+ zρ (ρ, t) = 0,
τ1 wt (ρ, t)+wρ (ρ, t) = 0,

Therefore, problem (4.1) is equivalent to:

(4.3)



ut +λux = 0, x ∈ (0,L), t > 0,
u(0, t)+αz(1, t)+βu(L, t)+γw(1, t) = 0, t > 0
τ1 zt(ρ, t)+ zρ(ρ, t) = 0, ρ ∈ (0,1) , t > 0
τ1 wt(ρ, t)+wρ(ρ, t) = 0, ρ ∈ (0,1) , t > 0
z(0, t) = u(0, t), w(0, t) = u(L, t), t > 0
u(x,0) = u0(x), x ∈ (0,L),
z(ρ,0) = 0, w(ρ,0) = 0, ρ ∈ (0,1).

In this section we shall provide a sufficient condition that guarantees that the above problem is well-posed in the sense
of Hadamard.

For this purpose, we consider a semigroup formulation of the initial-boundary value problem (4.3). If we denote
V := (u,z,w)T and define the energy space:

H = H1(0,L)×L2(0,1)×L2(0,1),

clearly H is a Hilbert space with respect to the inner product

⟨V1,V2⟩H =

∫ L

0
u1 u2dx+ ξ1

∫ 1

0
z1z2dρ+ ξ2

∫ 1

0
w1w2dρ

for V1 = (u1,z1,w1)T , V2 = (u2,z2,w2)T and ξ1, ξ2 > 0 a nonnegative real number defined later.
Therefore, if V0 ∈H and V ∈H , problem (4.3) is formally equivalent to the following abstract evolution equation in the
Hilbert space H .

(4.4) V′(t) =A V(t), t > 0, V (0) = V0,
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where ′ denotes the derivative with respect to time t, V0 := (u0,0,0)T and the operator A is defined by

A (u, z, w)T =
(
−λux, −τ1

−1zρ, −τ1−1wρ
)T
.

The domain of A is the set of V = (u,z,w)T such that (u,z,w)T ∈ H1(0,L) ×H1(0,1) ×H1(0,1), u(0) = z(0), u(L) =
w(0), u(0)+αz(1)+βu(L)+γw(1) = 0. Assume (α,β,γ,ξ1, ξ2) satisfies the following conditions

(4.5) α2 < 1/3, β2 < 1/3, γ2 < 1/3,
1−3β2

6
>max

(
α2,γ2

)
, ξ1 = ξ2, max

(
3α2

1−3α2 ,
3γ2

1−3γ2

)
<
ξ1
λτ1
<

1−3β2

1+3β2 ,

then the well-posedness of problem (4.3) is ensured by the following theorem.

Theorem 4.1. Let V0 ∈H , then there exists a unique solution V ∈C (R+;H ) of problem (4.4). Moreover, if V0 ∈D (A ),
then V ∈C (R+;D (A ))∩C1 (R+;H ).

Proof. In order to prove the existence and uniqueness of the solution of problem (4.4), we use the semigroup approach and
the Lumer-Phillips’ theorem. Indeed, let V = (u,z,w)T ∈ D (A ). By definition of the operator A and the scalar product
of H , we have:

⟨A V,V⟩H = −λ
∫ L

0
uxudx+ −

ξ1
τ1

∫ 1

0
zzρ dρ−

ξ2
τ1

∫ 1

0
wwρ dρ.

Hence, we obtain

⟨A V,V⟩H = −
λ

2
(u2(L)−u2(0))−

ξ1
2τ1

(
z2(1)− z2(0)

)
−
ξ2

2τ1

(
w2(1)−w2(0)

)
.

As a consequence, the last equation becomes:

(4.6)
⟨A V,V⟩H =(

λ

2
+
ξ1

2τ1
)(αz(1)+βw(0)+γw(1))2+

(
−
λ

2
+
ξ2

2τ1

)
u2(L)

−
ξ1

2τ1
z2(1)−

ξ2
2τ1

w2(1).

To treat the first term in the preceding equation, Young’s inequality yields

(4.7)
⟨A V,V⟩H ≤

(
−
ξ1

2τ1
+3α2

(
λ

2
+
ξ1

2τ1

))
z2(1)+

(
−
λ

2
+
ξ2

2τ1
+3β2

(
λ

2
+
ξ1

2τ1

))
u2(L)

+

(
−
ξ2

2τ1
+3γ2

(
λ

2
+
ξ1

2τ1

))
w2(1).

According to condition (4.5), we have ⟨A V,V⟩H ≤ 0. Thus the operator A is well dissipative.
Now we want to show that the operator A is invertible. To do so, let us introduce the following. For F = ( f1, f2, f3)T ∈

H , let V = (u,z,w)T ∈D (A ) be a solution of A V = F, which gives:

(4.8) −λux = f1,−
1
τ1

zρ = f2,−
1
τ1

wρ = f3.

To find V = (u,z,w)T ∈D (A ) solution of system (4.8), we suppose that u is determined with the appropriate regularity.
Thus, from the last equalities in (4.8), z and w are given, respectively, by

(4.9)


z(ρ) = z(0)+

∫ ρ

0
f2(s)ds,

w(ρ) = u(L)+
∫ ρ

0
f3(s)ds, ρ ∈ (0,1).

As a result, knowing u, we may deduce z and w by (4.9). Therefore, using the preceding expression and assumption
(4.5), we get th expression of u

(4.10)
u(x) =−

1
λ

∫ x

0
f1(y)dy

+
1

1+α+β+γ

(
ατ1

∫ 1

0
f2(s)ds+γτ1

∫ 1

0
f3(s)ds+

γ−β

λ

∫ L

0
f1(y)dy

)
, x ∈ (0,L),

such that u ∈ H1(0,L) verifies (4.8). Thereby, we have found V = (u,z,w)T ∈D (A ) the unique solution of A V = F.
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The operator A generates a C0 semigroup of contractions etA on H . Hence, according to the Lumer-Phillips’ theorem
[16], there exists a unique solution V ∈C (R+;H ) of problem (4.4). This completes the proof of the theorem. □

4.2. Asymptotic behavior. In this section, we show that under condition (4.5), the semigroup etA decays exponentially
to the null steady state. To obtain this, our technique is based on a frequency domain method and combines a contradiction
argument with the multiplier technique to carry out a special analysis for the resolvent.

Theorem 4.2. Suppose that condition (4.5) holds. Then, there exist constants C,ω > 0 such that, for all V0 ∈ H , the
semigroup etA satisfies the following estimate

(4.11)
∥∥∥etA V0

∥∥∥
H
≤C e−ωt ∥V0∥H ,∀ t > 0.

Proof of Theorem 4.2. We use the frequency domain theorem for uniform stability from Huang-Prüss [12, 18] of a C0
semigroup of contractions on a Hilbert space. □

Lemma 4.3. A C0 semigroup etL of contractions on a Hilbert spaceH satisfies

||etLU0||H ≤C e−θt ||U0||H

for some constant C > 0 and for θ > 0 if and only if

(4.12) ρ(L) ⊃
{
iδ

∣∣∣ δ ∈R}
≡ iR,

and

(4.13) limsup
δ∈R,|δ|→∞

∥(iδI−L)−1∥L(H) <∞,

where ρ(L) denotes the resolvent set of the operator L.

Then we look at the point spectrum of A .

Lemma 4.4. The spectrum of A contains no point on the imaginary axis.

Proof. Since A has a compact resolvent, its spectrum σ(A ) only consists of eigenvalues of A . We shall show that the
equation

(4.14) A Z = iδZ

with Z = (u,z,w)T ∈D(A ) and δ ∈R admits only the trivial solution.
Equation (4.14) reads as

iδu+λux = 0, iδz+τ1−1zρ = 0, iδw+τ1−1wρ = 0.
By taking the inner product of (4.14) with Z and using the bound (4.7), we get w(0) = 0,w(1) = 0 and z(1) = 0. Thus, we
have z = 0,w = 0. Since u(0) = z(0), we also obtain u = 0. So, the only solution of (4.14) is the trivial one. □

Lemma 4.5. The resolvent operator of A satisfies the condition limsup
δ∈R,|δ|→∞

∥(iδI−L)−1∥L(H) <∞.

Proof. Suppose that the condition is false. By the Banach-Steinhaus Theorem, there exists a sequence of real numbers
δn→ +∞ and a sequence of vectors Zn = (un,zn,wn)t ∈D(A ) with ∥Zn∥H = 1 such that

(4.15) ||(iδnI−A )Zn||H → 0 as n→∞,

i.e., 

iδnun+λu′n ≡ fn→ 0 in L2(0,L),

iδnzn+
1
τ1
∂ρzn ≡ gn→ 0 in L2(0,1),

iδnwn+
1
τ1
∂ρwn ≡ hn→ 0 in L2(0,1).

Our goal is to derive from limit (4.15) that ||Zn||H converges to zero, to obtain a contradiction. First, notice that we have

(4.16) ||(iδnI−A )Zn||H ≥ |ℜ (⟨(iδnI−A )Zn,Zn⟩H ) |.

Then, by (4.7) and (4.15),

(4.17) zn(1)→ 0, wn(0)→ 0, wn(1)→ 0.
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Moreover, since Zn ∈D(A ), we have, by (4.17), zn(0) = un(0)→ 0. That entails

(4.18) un(x) = un(0)e−i δnλ x +
1
λ

∫ x

0
e−i δnλ τ1(x−y) fn(y)dy,

(4.19) zn(ρ) = zn(0)e−iδnτ1ρ+τ1

∫ ρ

0
e−iδnτ1(ρ−s) gn(s)ds,

(4.20) wn(ρ) = wn(1)e−iδnτ1(ρ−1)−τ1

∫ 1

ρ
e−iδnτ1(ρ−s) hn(s)ds.

According to (4.17), we get the implication that

un→ 0 in L2(0,L), zn→ 0 in L2(0,1), wn→ 0 in L2(0,1)

which contradicts ∥Zn∥H = 1, thereby terminating the proof. □

4.3. Prescribed stabilization of the transport equation. Let (α,β,γ) satisfy (4.5) and u0 ∈ L2(0,L). The Laplace trans-
form applied to problem (4.1) yields

sv+λvx = u0, x ∈ (0,L),ℜs > 0, v(0)+αv(0)e−sτ1 +βv(L)+γv(L)e−sτ1 = 0.

So that v(x) = − (β+γe−sτ1 )e−
sx
λ

λQ(s;τ1, Lλ )

∫ L
0 e−

s
λ (L−y)u0(y)dy+ 1

λ

∫ x
0 e−

s
λ (x−y)u0(y)dy, ∀ x ∈ (0,L),

where Q(s;τ1, L
λ ) = 1+αe−τ1 s+βe−

L
λ s+γe−

(
τ1+

L
λ

)
s as defined in (2.2).

Thanks to the above results and to the lemmas presented in Section 2, the proof of the following theorem, which gives
a certified decay rate’s lower bound for the closed-loop system’s solution, is immediate.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5
0

2

4

6

8

10

12

Figure 1. ρ̂ given by expression (2.11) as a function of τ = 2τ1/τ2.

Theorem 4.6. Consider the output feedback stabilization of the wave equation in (4.1) with an arbitrary positive feedback-
delay τ1 > 0 and transport delay τ2 = L/λ then the following assertions hold:
• If τ1 = kτ2 where k is an integer equal to (respectively greater than) one, then the control parameter tuning prescribed
in system (2.6) (respectively (2.7)) enables the assignment of the solution’s exponential decay rate to an arbitrary −s0.
• If τ1 , kτ2, then the control parameter tuning prescribed in system (2.7) enables a closed-loop solution decaying
exponentially faster than −s0−2 ρ̂(2τ1/τ2)/τ2, where ρ̂ is defined by expression (2.11).
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Proof. By applying the Laplace transform in the frequency domain to the aforementioned output feedback stabilization,
we obtain the characteristic quasipolynomial function (2.2). Next, using the normalization (2.8), we end up with expres-
sion (2.9). The first assertion is a direct consequence of Lemmas 2.2 and 2.3. The last assertion follows from Lemma 2.7
and is illustrated by Figure 1. □

Figure 1 shows the locus of ρ̂ given by (2.11) (the proposed upper-bound on the real parts of the zeros of the quasipoly-
nomial Q̂) as a function of the delay τ = 2τ1 λ/L.

Thanks to the linear change of variables (2.8), an appropriate pair (s0, τ) in the filled gray region, providing an upper-
bound on the spectral abscissa of the quasipolynomial Q given in (2.2) may be selected. As asserted in Theorem 4.6, the
desired decay rate towards the steady state equilibrium is greater than −s0−2 ρ̂(2τ1/τ2)/τ2.

5. Conclusion

This paper discusses the spectral abscissa of linear time-invariant dynamical systems represented by continuous-time
delay-difference equations with interfering delays by exploiting the valuable benefits of the multiplicity manifolds and in
particular the well established MID property for quasipolynomials. It proposes an autoregressive control design enabling
the closed-loop system’s solution to obey a prescribed decay rate, opening perspectives in the control of partial differential
equations such as in [1, 6]. In particular, the proposed methodology is illustrated through the the boundary control of the
transport equation.
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4. I. Boussaada, S-I. Niculescu, A. El-Ati, R. Pérez-Ramos, and K. Trabelsi, Multiplicity-induced-dominancy in parametric second-order delay differ-
ential equations: analysis and application in control design, ESAIM Control Optim. Calc. Var. 26 (2020), Paper No. 57, 34. MR 4147584

5. I. Boussaada and S.I. Niculescu, Characterizing the codimension of zero singularities for time-delay systems, Acta Appl. Math. 145 (2016), no. 1,
47–88.

6. Islam Boussaada, Guilherme Mazanti, and Silviu-Iulian Niculescu, The generic multiplicity-induced-dominancy property from retarded to neutral
delay-differential equations: When delay-systems characteristics meet the zeros of kummer functions, C. R. Math. Acad. Sci. Paris (2022).

7. J.M. Coron and S.O. Tamasoiu, Feedback stabilization for a scalar conservation law with PID boundary control, Chin. Ann. Math., B 36 (2015),
no. 5, 763–776.

8. S. Fueyo, G. Mazanti, I. Boussaada, Y. Chitour, and S-I. Niculescu, On the pole placement of scalar linear delay systems with two delays, IMA J.
Math. Control Inform 40 (2023), no. 1, 81–105.

9. Jack K. Hale and Sjoerd M. Verduyn Lunel, Introduction to functional-differential equations, Applied Mathematical Sciences, vol. 99, Springer-
Verlag, New York, 1993. MR 1243878

10. D. Henry, Linear autonomous neutral functional differential equations, Jour. of Diff. Equ. 15 (1974), no. 1, 106–128.
11. E. Hille, Oscillation theorems in the complex domain, Trans. Am. Math. Soc 23 (1922), no. 4, 350–385.
12. F. Huang, Characteristic conditions for exponential stability of linear dynamical systems in hilbert spaces, Ann. of Diff. Eqs. 1 (1985), 43–56.
13. G. Mazanti, I. Boussaada, and S-I. Niculescu, Multiplicity-induced-dominancy for delay-differential equations of retarded type, J. Differ. Equ. 286

(2021), 84–118.
14. W. Michiels, I. Boussaada, and S.I. Niculescu, An explicit formula for the splitting of multiple eigenvalues for nonlinear eigenvalue problems and

connections with the linearization for the delay eigenvalue problem, SIAM Journal on Matrix Analysis and Applications 38 (2017), no. 2, 599–620.
15. W. Michiels and S-I. Niculescu, Stability and stabilization of time-delay systems: An eigenvalue-based approach, Advances in Design and Control,

vol. 12, Soc. Ind. Appl. Math, Philadelphia, PA, 2007.
16. A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag,

New York, 1983 (english).
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