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Abstract. The Enhanced Video Coding (EVC) workgroup of the Mov-
ing Picture, Audio and Data Coding by Artificial Intelligence (MPAI)
organization aims at enhancing traditional video codecs by improving or
replacing traditional encoding tools with AI-based counterparts. In this
work, we explore enhancing MPEG Essential Video Coding (EVC) intra
prediction with a learnable predictor: we recast the problem as a hole
inpainting task that we tackle via masked convolutions. Our experiments
in standard test conditions show BD-rate reductions in excess of 6% over
the EVC baseline profile reference with some sequences in excess of 12%.

Keywords: EVC · intra prediction · learnable video coding.

1 Introduction

Video content accounts for over 70% of Internet traffic volume [4], hence the
interest in efficient video coding technologies. Recently, the trend has been lever-
aging recent advances in artificial intelligence and deep learning to improve the
efficiency of video codecs and two distinct approaches have emerged. The first
approach aims at integrating or replacing selected encoding tools of traditional
codecs with learnable equivalents. The second approach aims at designing from
scratch novel codecs with an end-to-end totally deep learning based architec-
ture. The EVC project of the MPAI community 5 falls in the former category
and aims at improving the efficiency of existing video codecs by at least 25%
of BD-Rate. The MPEG-5 Essential Video Coding (EVC) [3, 16] baseline profile
has been chosen as reference as it relies on encoding tools that are at least 20
years mature, yet it shows compression efficiency comparable to H.265/HEVC
[18].
5 https://mpai.community/standards/mpai-evc/about-mpai-evc/
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The MPAI EVC project is currently studying a number of encoding tools
based on deep learning, and this paper describes the ongoing activities on the
intra prediction tool. Modern video codecs exploit the spatial correlation in
pictures predicting each block to be encoded from a previously encoded area
(predictor) of the same picture. The rationale behind intra prediction is that
encoding the difference (the residual) between the block pixels and the one
associated with its predictor is more efficient than encoding the block pixels
themselves. Namely, the closer the predictor pixels are to the block ones, the
fewer the bits to encode the residual and so the encoding rate. In MPEG-5
EVC, intra prediction consists in a set of 5 predefined linear functions where the
mode yielding the best Rate-Distortion (RD) tradeoff is selected. However, not
all contents (e.g., complex textures) can accurately be predicted by simple linear
models, and in such cases the efficiency of intra prediction drops.

In this work we aim to improve intra prediction as specified by MPEG-5 EVC
with a learnable predictor. We address the problem of predicting a block given its
context as an image inpainting problem. Recently, deep convolutional generative
neural networks have shown to outperform existing image inpainting methods
thanks to their ability to learn highly non linear functions. Namely, masked
convolutional neural networks have been recently proposed for image inpainting
exploiting the a priori information on missing pixels that are weighted out from
the context used to recover the missing image area. The method we propose
relies on masked convolutions to generate the block predictor starting from the
decoded context available at the receiver. In detail, we replaced the MPEG-5
EVC predictor mode 0 (i.e., the DC prediction) with a novel predictor that is
computed by a masked convolutional autoencoder for each block to be encoded.
Our encoding experiments in standard test conditions show Bjøntegaard Delta
Rate (BD-Rate) reductions in excess of 6% over the MPEG-5 EVC Baseline
Profile.

2 Background

This section first provides a primer to video coding, next reviews the state of
the art in learnable intra-picture prediction.

2.1 Introduction to Video Coding

Existing video coding standards rely on a clever combination of hand-designed
encoding tools, each bringing its own contribution to the overall codec perfor-
mance as shown in Figure 1. In state of the art video coding standards such as
the H.265/HEVC or MPEG-5 EVC, the image is first recursively subdivided in
blocks (Coding Units - CUs) of decreasing size, e.g. 64× 64 down to 4× 4 in the
MPEG-5 EVC standard. Next, for each coding unit multiple encoding modes
are evaluated by an algorithm aimed at finding the best RD tradeoff for a given
Quantization Parameter (QP). Better RD tradeoffs can be achieved by predicting
the coding unit from neighboring data within the same picture (intra-prediction)
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Fig. 1: Architecture of a traditional hybrid video codec with the main coding
tools: this work deals with enhancing the intra tool with a learnable predictor.

or from previously encoded pictures if available (inter-prediction). Intra-frame
prediction leverages the spatial correlation within the same picture generating
a predictor for the CU to be encoded by extrapolating pixel values from a pre-
viously encoded neighborhood. The predicted block is then subtracted from the
original block, producing a residual block that is transformed via discrete cosine
transform, allowing low-pass filtering in the transformed domain by discarding
and/or attenuating the coefficients in the high frequency values. The rationale
behind intra prediction is that encoding the residual requires fewer bits than en-
coding the original block. The better the predictor, i.e. the closer to the block to
be encoded, the lower the residual rate and the higher the coding efficiency. The
MPEG-5 EVC Baseline profile includes 5 intra prediction modes: DC, horizon-
tal, vertical and two diagonal modes for each CU. The encoder selects the intra
mode that minimizes the residual rate, which may be then put into competition
with other modes. Coefficient decimation and the subsequent quantization is the
lossy part of the compression process that reduces the high frequency rate while
keeping the resulting artifacts bearable to the human observer. The resulting
signal is entropy encoded, via for example, arithmetic coded, which is a lossless
form of compression. Within the encoder, a decoding part is implemented and
the signal is reconstructed through a dequantization and inverse transformation
step. By adding the predicted signal, the input data is reconstructed. Filters,
such as a deblocking filter and a sample adaptive offset filter are used to im-
prove the visual quality. The reconstructed picture is stored for future reference
in a reference picture buffer to allow exploiting the similarities between two pic-
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tures. At the decoder side, the signaled predictor is generated from the decoded
context and then the residual is decoded, added to the predictor, recovering the
encoded block.

2.2 Learning-based intra prediction

It is not surprising that the recent advances in deep generative models, such
as auto-encoders and generative adversarial networks have stimulated research
towards applying these tools to image and video compression [1, 19, 15]. Auto-
encoder architectures [7, 10], in particular, are especially effective to obtain
compressed latent representations, by forcing the output to reproduce the in-
put image through an information bottleneck whose dimensionality is much
smaller than the original input space. Image compression methods based on
auto-encoders have been shown to yield coding gains compared to legacy image
codecs such as JPEG and JPEG 2000, and competitive results with more recent
image compression algorithms such as BPG [2, 19, 20].

The work in [6] is one of the earliest proposing using a set of Neural Networks
(NNs) for generating an intra prediction. Namely, they show that while for small
sized blocks a fully connected NN gives best results, convolutional networks
yield better predictors for large blocks with complex textures. Their experiments
integrating a learnable predictor into H.265/HEVC show PSNR gains above 5%
in some cases, depending on the content type and how the predictor is integrated
into the codec. The authors attribute such gains to the improved ability to
correctly predict complex textures.

The same authors propose an iterative approach to training a NN for intra
prediction in [5]. First, a NN is trained on blocks and context extracted from a
real partitioning of pictures as produced by the reference codec. Next, the NN is
refined over the output of the same codec, yet this time the output includes the
learnable intra predictor trained during the previous step. It is shown that this
train-and-refine approach boosts further the performance of the learnable intra
predictor with BD-rate reduction in excess of 4% BD-rate with H.265/HEVC
and close to 2% for H.266/VVC.

The work in [9] tackles the same problem yet with a different approach
that relies on recurrent NNs. Namely, they propose a recurrent architecture
with three different spatial recurrent units that progressively generate predic-
tor pixels by passing information exploiting the already encoded context. Beside
MSE, they train their model keeping into account the Sum of Absolute Trans-
formed Difference (SATD) as a proxy of the rate. They experimentally show that
their approach yields bit rate reductions in excess of 2.5% when integrated into
H.265/HEVC.

In [8], a NN that has multiple prediction modes and that co-adapts during
training to minimize a loss function is proposed. The proposed loss function
reflects the properties of the residual quantization of the typical hybrid video
coding architecture by applying the ℓ1-norm and a sigmoid-function to the pre-
diction residual in the DCT domain. Furthermore, they reduce the complexity



A Learnable EVC Intra Predictor using Masked Convolutions 5

by pruning the resulting predictors in the frequency domain and by quantiz-
ing the network weights and utilizing fixed point arithmetic, thus allowing for a
hardware-friendly implementation.

In [22], a slightly different approach is proposed, where a NN is used to
refine the standard H.265/HEVC intra prediction modes rather than replacing
them. Such approach builds upon a convolutional autoencoder that is trained to
recover a missing area of an image by inpainting the masked pixels corresponding
to the block to be predicted. The authors in [22] experimentally show that their
approach reduces up to 25% the mean square error of the H.265/HEVC intra
predictor without additional signalling in the bitstream.

So far, no one has yet evaluated a learnable predictor within the MPEG-5
EVC codec. To the best of our knowledge, this is the first work evaluating to
which extent a learnable intra predictor can affect the efficiency of a royalty free
codec.

3 Proposed Method

In this section, we first describe the architecture of the NN we use to gener-
ate an intra predictor from a decoded context and next we detail the training
procedure. Indeed, generating an intra prediction given the previously decoded
context is conceptually equivalent to inpainting an image region given the avail-
able neighbor pixels. Therefore, we recast intra picture prediction as an image
inpainting problem, building upon the existing body of research on the topic.
GS: Recently, image inpaiting models adopted mechanisms of attention or trasform-
ers to capute long-range dependencies [11, 21, 23]. However, these models requires
a large number of parameters and in some cases a minimum input size [11]. Since
we have to work with small crops, however, we preferred to adopt a simpler con-
volutional network while keeping the number of parameters under control.

3.1 Network Architecture

Fig. 2: Architecture and procedure for training the convolutional autoencoder
used to generate a learnable intra predictor. In this example, a 32×32 prediction
is generated from a 64×64 context.
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Figure 2 shows the architecture of the convolutional autoencoder we propose
to generate a predictor from a decoded context. For the sake of simplicity, we
exemplify the case of a 32×32 predictor generated from a 64×64 context, how-
ever similar considerations hold for the other CU sizes supported by MPEG-5
EVC (16×16, 8×8, 4×4 CUs). The autoencoder receives as input a 64×64 patch
representing the encoded context also available at the decoder (D0, D1, D2)
and outputs a 32×32 patch P corresponding to the intra predictor. The design
is inspired by the context encoders for hole filling [14], yet with a number of
significant differences and improvements tailored towards this task.

Concerning the encoder, it relies on masked convolutions where the convolu-
tion operator is constrained to valid input pixels (first layer) or features (follow-
ing layers) [12]. In a nutshell, with masked convolutional layers learned filters
operate only on pixels (or features) of the input image (or a feature map) that
are not masked. For each convolutional layer, both a feature map and a binary
mask are generated so that multiple masked layers can be stacked together.

Second, we stack pairs of masked convolutional layers with 3× 3 filters and
leaky ReLUs where the the filters of the first layer of the pair has 1 unit stride,
whereas the second layer of the pair has stride of two and takes care of feature
map downsampling replacing the pooling operator. We experimentally verified
that this architecture reduces the number of learnable parameters as well as both
the loss at training time and the intra-predictor rate at coding time.

Third, rather than projecting the input image on a 1 × 1 latent space, we
project it on a vector of feature maps sized 4× 4 by dropping one convolutional
layer. Again, we experimentally verified that this setup yields both lower losses
at training time and better efficiency at encoding time. We attribute such im-
provements to a spatial-semantic depth tradeoff that is more appropriate for the
purpose of our task. This result is in line with recent learnable video codecs such
as [1, 2], where the latent space encoded as bitstream is actually a serialization
of a variable number of 4× 4 feature maps.

The encoder is thus composed by 4 blocks of masked convolutions where
each block is composed of two stacked masked convolutional layers as detailed
in Figure 2. The output of the encoder is finally a collection of 512 feature maps
sized 4× 4 in the [−1, 1] range.

Concerning the decoder, it is composed by a stack of 4 deconvolutional layers
of size 4× 4. Each deconvolutional layer doubles the resolution of feature maps
in input, reversing the spatial subsampling performed at the encoder. Each de-
convolutional layer is followed by a leaky ReLU activation, except the last that
is followed by a hyperbolic tangent. The autoencoder output is finally a 64× 64
image from where we crop the 32×32 intra predictor P in the figure where pixel
values are in the [−1, 1] range. We experimentally verified that while generating
a 64×64 image for the purpose of cropping a patch is not strictly necessary, that
improves both loss and encoder efficiency. Moreover, with a single network topol-
ogy we can cope with CUs of different size (in our case, 16x16, 8x8 and 4x4)
simply changing the crop operator geometry at the network output. Overall,
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the autoencoder counts about 6M parameters, where about 4M are for learning
convolutional filters and 2M for learning the convolution masks.

3.2 Training

The autoencoder is trained by minimizing the error between the predictor P and
the original patch O on a dataset of about 1000 images of different resolution
and content type randomly sampled from the AROD dataset [17]. While these
images are JPEG compressed, they are very high quality, and so they cannot
be told from uncompressed images. We found that training the autoencoder on
high quality images is of pivotal importance, even when the trained autoencoder
receives in input a context encoded at high QPs. We also found out that training
on larger datasets such Imagenet, Vimeo or BVI-DVC did not provide significant
advances despite longer training times.

From each image, a 64×64 patch is cropped at a random position. The patch
is then randomly flipped horizontally and vertically, followed by a 90 degrees
random rotation. Our experiments showed that this form of augmentation is
key to prevent the network from overfitting on the training data. The bottom
right 32×32 corner of the patch represents the original CU to recover, whereas
the rest of the patch represents the (D0, D1, D2) context. Prior to training, we
prepare an appropriate binary mask that is provided in input to the first masked
convolutional layer together with the context. The autoencoder is trained with
SGD with a learning rate of 0.01 and over batches of 64 patches.
Ideally, the autoencoder shall be trained to minimize the linear combination of
the rate and distortion terms corresponding to the operating point selected by
the MPEG-5 EVC encoder [1, 2]. However, for the sake of simplicity, we follow
the approach used in other similar works such as [6] where the network is trained
at minimizing the reconstruction loss only. In the original context encoder [14],
the network is trained to minimize a linear combination of L2 loss (i.e., the
mean square error) and an adversarial term. The adversarial term was shown
to produce sharper and more visually pleasant results than a L2 loss alone.
However, we found that the adversarial term yields artifacts that albeit visually
pleasant do not help reducing the residual rate. Most important, we found out
that minimizing the L1 loss (i.e., the absolute error) yields smaller residuals and
thus lower rates. We hypothesize that the L2 term gives much more weight to a
few training samples that yield a high loss value yet do not represent the average
case for the MPEG-5 EVC encoder.

3.3 Integration into the MPEG-5 EVC encoder

Once the autoencoder has been trained, it is interfaced with the MPEG-5 EVC
encoder as follows. First, an external networked server process is started. The
server loads the trained autoencoder into the GPU memory, sets up an UDP
socket in listening mode and awaits for incoming messages. The EVC encoder is
modified so that when an intra predictor has to be generated, the corresponding
context D1, D2, D3 is extracted from the currently encoded frame and is sent
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to the server above over an UDP socket. The server inputs such context to the
trained autoencoder and returns the 32×32 output P , i.e. the learned predic-
tor, to the encoder again via the UDP socket. The UDP socket scheme allows
one to easily experiment with different neural network frameworks (PyTorch,
TensorFlow, Keras, etc.) without modifying the encoder, thus simplifying the
experiments. Finally, the MPEG-5 EVC encoder replaces the predictor with the
autoencoder generated predictor and the encoding proceeds as usual, i.e., by
putting the learned predictor in competition with other encoding modes.

Following the approach of [6], we consider two different approaches to inte-
grate the trained autoencoder output within the MPEG-5 EVC intra prediction
scheme.
The first approach consists in replacing the DC predictor (mode 0) with our
learnable predictor for a total of 5 prediction modes. In [6] it is proposed to
replace with the H.265/HEVC intra mode that is less likely to be selected due to
the contextual intra mode signaling scheme H.265/HEVC employes. Conversely,
in MPEG-5 EVC intra modes are simply signaled with variable length codes,
so it is key that most probable modes are assigned shorted codes. Under the
hypothesis that our learnable predictor is going to be picked by the RDO algo-
rithm at least as frequently as the DC mode, we replaced the DC predictor with
our learnable predictor.
The second approach consists in adding a sixth intra prediction mode for our
learnable predictor aside the five MPEG-5 EVC intra modes. For the same rea-
sons as above, we map our predictor to mode 0, whereas the DC predictor
becomes mode 1, and so forth.
We point out that both the schemes above yield a completely decodable bit-
stream without the need for any side information under the reasonable assump-
tion that the MPEG-5 EVC decoder has available the same autoencoder used
by the encoder. Moreover, while the first approach is standard compliant as we
do not change the bitstream, the latter only requires a simple modification at
the decoder to parse the bitstream.

4 Experimental Results

4.1 Setup

We experiment encoding the first frame of the JVET CTC sequences at QP
values in [22, 27, 32, 37, 42] as recommended by MPEG for their experiments
with the NNVC reference software [13]. Our learnable intra predictor is applied
to CUs of size 32×32, 16×16, 8×8 and 4×4; only CUs 64×64 do not enjoy our
learnable predictor as our experiments showed no appreciable marginal gains.

As a preliminary experiment, we visually inspect the generated predictors for
four different contexts in Figure 3. The learnable predictor is able to inpaint the
missing area of context with plausible predictions. With respect to the standard
MPEG-5 EVC DC predictor, the learnable predictor yields better residual rates.

Table 1 shows the results of the encoding when our learnable predictor re-
places the DC mode. The experiments report average BD-Rate improvements
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Context

Predicted

Cost NN: 4279
Cost DC: 4913

Context

Predicted

Cost NN: 6540
Cost DC: 7224

Context

Predicted

Cost NN: 8005
Cost DC: 8503

Context

Predicted

Cost NN: 5416
Cost DC: 6496

Fig. 3: Examples of 64×64 decoded context and 32×32 learnable predictor; the
learnable predictor is capable of accounting also for complex texture patterns
beyond simple linear interpolation. The reported “Cost” is the number of bits
required to encode the residual.

in excess of 6% and BD-PSNR improvements in excess of 0.5 dB for some se-
quences. The experiments show gains especially for sequences with spatial res-
olution above 720p: a plausible explanation may stem from the fact that most
of the training images are above 600 pixels in height. We hypothesise that the
addition of smaller images to the training set would boost the performance on
video clips belonging to Classes C and D. The lowest performance is achieved for
screen content (Class F), a non-unexpected result if we consider that text areas
are more difficult to predict and our training set contains no computer screen im-
ages. A visual inspection of the decoded sequences shows no perceivable artefacts
despite the learned intra predictor.

To gain a better understanding of these results, we performed a statistical
analysis of the logs of the modified MPEG-5 EVC encoder for all the sequences
in the table above. Table 2 shows the percentage of selection of each intra mode
for Class A JVET sequences. With the reference MPEG-5 EVC encoder (left),
the DC mode is selected about 51% of the times over the other 4 modes. When
the DC predictor is replaced with our learnable predictor (center), this number
increases to 62%, showing the advantage of a learnable predictor. That is, the
intra mode indexed with code 0 is more likely to be signaled in the bitstream, and
since it has the shortest code associated, the cost of intra signaling is reduced.
Similarly, the residual rate for the learnable predictor was on average 9% lower
than the equivalent rate of the EVC DC predictor. That is, replacing the DC
predictor with our learnable predictor yields both lower residual and signaling
rates if it is allocated mode 0, which explains the gains in Table 1.
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Class Sequence BD-Rate BD PSNR

Class A
3840x2160
60/50 fps
10 bpp

Campfire -2.96 0.11
CatRobot -7.6 0.23

DaylightRoad2 -8.03 0.2
FoodMarket4 -10.09 0.23
ParkRunning3 -1.94 0.13

Tango2 -7.96 0.13
Average -6.43 0.17

Class B
1920x1080
60/50 fps
10/8 bpp

BQTerrace -5.44 0.38
BasketballDrive -9.73 0.27

Cactus -6.87 0.29
MarketPlace -5.69 0.21
RitualDance -11.85 0.67
Average -7.92 0.36

Class C
832x480
60/50/30 fps
8 bpp

BQMall -5.39 0.36
BasketballDrill -7.52 0.41

PartyScene -2.99 0.26
RaceHorsesC -6.03 0.45

Average -5.48 0.37

Class D
416x240
60/50/30 fps
8 bpp

BQSquare -2.06 0.19
BasketballPass -4.20 0.27
BlowingBubbles -4.06 0.28
RaceHorsesD -5.21 0.42

Average -3.88 0.32
Class E
1280x720
60 fps
8 bpp

FourPeople -12.82 0.83
Johnny -12.50 0.58

KristenAndSara -11.11 0.64
Average -12.14 0.68

Class F
Screen content
60 fps
8 bpp

ArenaOfValor -5.14 0.33
BasketballDrillText -6.09 0.35

SlideEditing -1.17 0.18
SlideShow -1.44 0.18
Average -3.46 0.24

Grand Average -6.55 0.36
Table 1: BD-Rate and BD-PSNR for MPEG5-EVC baseline profile integrated
with our learnable intra predictor with respect to standard MPEG5-EVC base-
line profile.

However, the analysis of the logs also revealed that the residual of the learn-
able predictor was lower than the residual of the DC predictor only in 53% of
the cases. That is, in a significant number of cases the DC predictor is still a
better predictor than the learnable predictor and replacing this latter with the
learnable predictor is suboptimal in terms of residual costs. For this reason, we
added a sixth mode for our learnable predictor, encoded as mode 0, whereas
the DC predictor was mapped to mode 1, and so on. In this scenario, the learn-
able predictor is put into competition with the 5 standard EVC intra prediction
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modes. We repeated the encodings and found that the overall BD-Rate and BD-
PSNR improved only by 0.01 with respect to the numbers in Table 1. When the
learnable predictor is put in competition with the other 5 modes (Table 2, right),
it is selected only 56% of the times. We hypothesize that the 6-modes signaling
rate leads to lower residual rates. However, the extra rate required for signaling
the 6th mode counterbalances these gains, making this scheme less competitive
than DC replacement in practice.

Table 2: Percentage of intra modes selection for JVET Class A sequences. Left:
5 modes, reference. Center: 5 modes, proposed. Right: 6 modes, proposed.
Mode %

- -
0 DC 51.0
1 H 22.0
2 V 20.0
3 D1 4.7
4 D2 2.5

Mode %
- -

0 NN 62.0
1 H 19.0
2 V 14.0
3 D1 3.1
4 D2 1.6

Mode %
0 NN 56.0
1 DC 25.0
2 H 9.7
3 V 6.1
4 D1 1.8
5 D2 1.4

5 Conclusions and Future Works

We designed, trained and evaluated a learnable intra-picture predictor for a video
codec compliant with the royalty free MPEG-5 EVC standard. Our experiments
on standard test sequences show average BD-Rate gains in excess of 6% by
replacing the standard DC predictor with our learnable predictor. When put into
competition with the DC mode as an additional intra mode, our predictor still
exhibits lower residual cost, however without appreciable gains in RD terms: we
hypothesize that this is due to the increased signaling costs. Current endeavours
of the MPAI EVC working group include enhancing the inloop filter with a
learnable approach and resorting to a upsampling scheme outside the encoding
loop.
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