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Abstract—To effectively manage and utilize the massive
amount of visual data generated by the surging number of
videos, decision-making systems must predict and reason about
future outcomes. This paper proposes a novel online approach for
video prediction that enables continual learning in the presence
of new data, as periodic training of neural networks may not
be practical. We utilize all predictions, including intermediate
computations obtained during the inference process, to improve
the performance of video prediction. To achieve this, we in-
corporate a weighting scheme in the loss that accounts for all
the predictions during the learning process. Additionally, we
leverage semantic segmentation to assess the performance of
extrapolated frames by focusing on the position of the objects in
the scene. Our approach stands out from state-of-the-art methods
as it uses intermediate predictions, which are available due to
the iterative nature of forecasting future frames. Our method
improves the offline counterpart for the same network by 1.45
dB for predicting five steps in the future.

Index Terms—Extrapolation, video prediction, online learning,
metric, segmentation

I. INTRODUCTION

The human capacity to forecast future events and adapt
present behavior accordingly is a well-established phe-
nomenon in cognitive psychology and behavioral sciences [1].
As such, expecting the same for systems is key for under-
standing about the world that surrounds us. The applications of
video prediction range from assisting in medical diagnosis [2],
for autonomous driving to help the car to anticipate and react
to potential hazards on the road [3] to low-latency video trans-
mission [4]. Being a self-supervised task, the understanding
only comes from the data itself, preventing the need for data
labeling efforts.

Online deep learning methods have been presented as a
way to scale with the stream of data [5]. It has been studied
more specifically in various fields of computed vision, from
classification [6] to semantic segmentation [7]. In the presented
work of Zhang et al. [8], the authors apply online learning
to video depth estimation that would normally require labeled
data for the network to be updated but they devise a technique
to be able to do so in a self-supervised way. Video prediction
networks also benefit from the online learning paradigm,
which encourage to present a novel methodology that can
apply to all such networks.

To enhance the accuracy of video prediction for distant fu-
ture sequences, we utilize intermediate frames in the prediction

process. These intermediate frames are saved and combined
with new ground truth images as they are received to update
the model based on a weighting of all predictions in the loss
computation. Overall, our method improves the performance
of video prediction, particularly for longer temporal horizons,
resulting in more accurate predictions of future frames in a
video sequence.

Furthermore, we present a method for evaluating video
prediction algorithms at the object level. We accomplish this
by borrowing from the field of semantic segmentation and
creating a pseudo label segmented image from the ground
truth, which we then compare to extrapolated frames. As a
result, we focus on the objects in the scenes and their locations
rather than the entire scene.

II. RELATED WORK

In the typical setup of evaluation of deep learning architec-
tures, the model weights are typically learned on the training
set, the hyperparameters are fine-tuned on the validation set,
and the pre-trained weights are used on the test set. This
is the batch-learning strategy, where the system learns the
model only once. Before being deployed, the model is pre-
trained offline, and afterward, it is frozen. Online learning
techniques differ in that they continuously update and improve
a model’s performance as new data becomes available. The
model is trained on a stream of data, with each new obser-
vation providing an opportunity for the model to learn and
adapt in real-time. Interest in online learning has emerged for
classification tasks [9], formally introduced in [10]. Existing
video extrapolation methods [11] only considered the batch
learning paradigm. Our target use case, on the other hand, has
a critical distinction that allows us to progress toward a more
effective framework. More precisely, for any image predicted
by the extrapolator, its ground truth (the actual image) will
arrive and allow a refinement of the neural network. This
idea naturally leads us toward the on-line learning paradigm.
The approach we propose in this paper is based on online
learning [12] and allows the system to learn the model on the
fly which means keeping learning even after being deployed
as new data arrives.

Since video prediction is a self-supervised task [13], there
is no need for human annotation as the information is already



present in the data. Zhang et al. [8] apply online adapta-
tion to to consider the task of depth estimation as a self-
supervised task in a self-supervised manner not to require
depth data explicitly and adapt to evolving data streams.
Later, the concept was developed for online monocular depth
estimation [14]. Online learning has been shown to improve
streaming policies [15]. Our work is connected to these
studies as they employ video depth estimation in an online
environment, similar to our objective of developing video
extrapolation networks that function with online streams of
video sequences.

III. ONLINE VIDEO PREDICTION SCHEME

In certain applications, such as compensating for latency
through extrapolation [4], it is essential to have the ability
to make predictions at a specific horizon in the future. The
horizon h is defined as the number of frames we want to
predict in the future. As it is well known in the literature, the
larger h, the more difficult it is to get a reliable prediction. To
address the decrease in prediction accuracy when dealing with
large values of h, a frequently employed approach involves the
iterative application of the prediction network. This entails
making predictions for future frames within a shorter time
horizon, and subsequently using these predictions as input to
the prediction network to extrapolate frames farther away in
time [11]. This iteration process can be exploited in online
learning by defining a loss function that employs a weighted
mean of the errors of each intermediate prediction. In an
online setting, it means that as soon as a new frame from
the sequence arrives, multiple forward passes coming from all
approximations of the new images will occur.

Figure 1 presents the proposed scheme for online video
prediction. To predict the sequence stream ahead of h frames,
we start from the pre-trained weights resulting from the
training process. By storing past predictions of Îhn , i.e., the
predicted frames of the ground truth frame I at time step n
using horizon h, we use them later when the ground truth
arrives to update the prediction network. The input frames
from the video prediction network, namely the context frames,
can be either true (available) frames, or predicted frames from
the iterative process. At each time step, the video extrapolation
network F , which would be fixed in an offline learning
scenario, is updated. We denote as Fn the updated model at
time n. By following the depicted process, the extrapolated
frames for In can be obtained as follows (assuming as an
example that F takes 2 context frames as input):

Î1n = Fn−1(In−1, In−2) (1)

Î2n = Fn−2 (Fn−2(In−2, In−3), In−2) (2)

Î3n = Fn−3

(
Fn−3 (Fn−3(In−3, In−4), In−3) , Î

1
n−2

)
(3)

More in general, when we recursively re-circulate the last
predicted output back as input h times in order to predict h
steps in the future, frame n is predicted h times: at time n−1,
n−2, . . . , n−h. We can define a new overall loss L∗ that takes

time
n-3 n-2 n-1

horizon

Fig. 1: Prediction of 3 steps in the future. The vertical axis
represents how far we want to predict in the future and the
horizontal one represents the stream of data arriving. Ground
truth frames are depicted in gray and predicted frames in blue.
The ground truth frames allow to get the predicted sequence
3 steps in the future Î3n, Î3n+1, Î3n+2. All the intermediate
computed frames will be used to update the network as ground
truth arrives.

advantage on one hand of all these intermediate predictions,
and on the other of the availability ground truth frames:

L∗ =

h∑
i=1

λi L
(
Îin; In

)
, (4)

where λ refers to the weight assigned to each of the different
predictions. The loss L∗ is a weighted sum of all the per-
frame losses L

(
Îin; In

)
over the horizon h where L

(
Îin; In

)
is often a mean squared error, but other relevant loss metrics
can be used. At the arrival of new ground truth frame, the
network will update itself with the loss with the formulation
in Equation 4.

IV. SEMANTIC SEGMENTATION BASED METRIC

PSNR has been criticized for not being a good objective
fidelity metric [16]. Regardless, it is still widely popular and
used to compare different frames from videos. It relies on
every pixel of the reference frame and compares it to a
target frame. Using methods from the semantic segmentation
field [17], we may further verify the accuracy of the pixels at
the object level in the scene. Semantic segmentation involves
assigning per-pixel predictions of object categories to an
image, providing a comprehensive description of the scene
that includes information about the object category, location,
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Fig. 2: Semantic segmentation based metric for video predic-
tion.

and shape. By applying semantic segmentation to the images
in question, we can observe the positions of the objects and
confirm the observations made earlier. We elaborate on the
method to evaluate the extrapolation methods using semantic
segmentation. We demonstrate a method to evaluate the ex-
trapolation methods using a semantic segmentation on Figure 2
scheme. The received frames I are fed to a semantic segmenta-
tion network to generate pseudo labels (since the ground truth
is not provided) for segmentation Ĩseg , and compared to the
segmentation maps Îseg computed on the extrapolated images
Î . For this evaluation, we choose DeepLabv3+ [18] pre-trained
on Cityscapes, having Resnet-101 as backbone. The adopted
evaluation metric is the Intersection-Over-Union, denoted as
IoU: this is a method to quantify the overlap between the target
segmentation mask and our prediction segmentation output
over the union of both quantities.

V. EXPERIMENTS AND DISCUSSION

In the following experiments, we analyze the effect of the
proposed online video prediction technique and evaluate them
using common metrics and the segmentation-based metric
introduced in this work.

A. Datasets

We train the learning-based extrapolation methods, MC-
Net [19] and SDCNet [20] on the Caltech Pedestrian dataset
[21], collected from a vehicle driving through regular traffic in
an urban environment. The dataset consists of around 10 hours
of dashcam footage with 65 different video sequences captured
at 30 fps. We additionally use sequences from the Kitti [22]
and DriveSeg [23] manual scene for evaluation purposes which
are both datasets taken the same way as Caltech pedestrian
from a moving vehicle. We use the sequence #14 from Kitti
consisting of 320 frames and the first 500 frames of DriveSeg.
Regarding the optical flow-based method FlowNet2 [24], we
only make use of the pre-trained weights on MPI-Sintel which
is an optical flow data set derived from the film Sintel [25].

(a) Extrapolated frame with SDCNet

(b) Segmentation of the extrapolated frame

(c) Segmentation of the true image

Fig. 3: Segmentation outputs for predicting one step in the
future. Image taken from the Kitti dataset.

B. Choice of video prediction networks

As discussed in [26], video prediction methods can be
motion-based, pixel-based, or fusion-based. Motion-based
methods focus on the motion in the image which could be
done with the optical flow information. Pixel-based methods
generate the entirety of the pixels from scratch and finally,
fusion-based methods combine both motion and pixel-based
methods. We choose a technique from each class, starting with
FlowNet2 [24] for predicting optical flow. Combined with a
warping that moves the pixels according to the optical flow,
an estimate of the next image can be obtained. MCNet [19]
uses long short-term memory modules from image differences
to generate a new frame. SDCNet [20] uses both optical
flows and convolutional kernels from the pixels to generate
the extrapolated frame. We perform offline experiments that
correspond to having the weights of the neural network being
frozen at validation as well as online experiments on SDCNet,
with weights learning during validation.

We also include a simple frame-copy extrapolation, dubbed
CopyLast. This method just copies the last available frame.
Although it is not a real extrapolation method, it is often
used as a reference. In particular, for understanding the visual
quality of the prediction: if the predicted image is not better
than CopyLast, it means that we are introducing large artifacts.



PSNR ↑ SSIM ↑ VMAF ↑
Approach h=1 h=3 h=5 h=1 h=3 h=5 h=1 h=3 h=5

CopyLast 21.25 18.87 17.96 0.50 0.42 0.40 16.12 9.33 8.05
MCNet 23.19 20.66 19.36 0.60 0.52 0.49 19.84 8.91 6.47

FlowNet2 + warp 24.92 21.44 20.03 0.73 0.53 0.48 32.55 10.89 7.04
SDCNet offline 25.38 23.18 22.06 0.76 0.68 0.65 39.59 24.51 18.37

SDCNet online (ours) 26.53 24.07 22.73 0.83 0.75 0.71 51.27 32.86 24.55

(a) Quantitative results on Kitti scene 014

PSNR ↑ SSIM ↑ VMAF ↑
Approach h=1 h=3 h=5 h=1 h=3 h=5 h=1 h=3 h=5

CopyLast 27.65 23.64 22.21 0.72 0.54 0.45 47.34 29.22 22.49
MCNet 28.84 25.20 22.68 0.89 0.74 0.61 61.05 40.78 27.70

FlowNet2 + warp 31.82 27.00 24.72 0.92 0.79 0.65 71.77 42.26 26.86
SDCNet offline 34.23 29.93 28.21 0.95 0.88 0.83 80.44 56.91 45.23

SDCNet online (ours) 35.89 31.71 29.66 0.98 0.93 0.89 87.58 69.48 57.64

(b) Quantitative results on DriveSeg

TABLE I: Comparison of the proposed online method with other extrapolation methods

C. Experimental results

In Table I we observe the PSNR in the YCbCr color
space [27], SSIM [28], and VMAF [29], as they are widely
used objective metrics. The reference extrapolated video is
compared to the original input sequences. CopyLast serves
as a simple baseline that uses the last available frame and
corresponds to not anticipating the future while FlowNet2
combined with a warping allows predicting the future frames.
For every extrapolation horizon, the weights are reinitialized
from the pre-trained weights. The weights assigned to the λ
are chosen so that λi = 1∀i, signifying that each of the parts
of the sum given in the equation 4 has equal importance. The
online proposed method applied to SDCNet outperforms the
same network in offline mode by 0.89 dB in Kitti and 1.78
dB in DriveSeg at horizon h = 3, meaning predicting three
steps in the future, which results in a latency compensation of
100 ms.

D. Ablation study

We perform multiple experiments to validate our proposed
online approach for video prediction. To do so, we compare
our proposed method, which we call “Uniform” due to the
equal importance to every predictions. “First only” corre-
sponds to considering the first prediction only and “Last only”
only the last prediction. Table II shows that our approach out-
performs the competing approaches, and proves the proposed
approach of considering every prediction is beneficial to the
network. At h = 1, the methods behave the same due to
having a single weighting term, therefore we do not report
these results as these can be found in Table I.

E. Discussion about segmentation

In Table III, we report the intersection over union (IoU) of
the class “car”, which is predominant in the chosen sequences.
In the Kitti scene, the IoU seems to follow the same trend

PSNR ↑
Weighting λi h=2 h=3 h=4 h=5

First only 24.95 23.99 23.27 22.66
Last Only 24.91 23.89 23.09 22.46
Uniform 25.05 24.07 23.37 22.73

(a) Kitti scene

PSNR ↑
Weighting λi h=2 h=3 h=4 h=5

First only 33.24 31.59 30.46 29.57
Last Only 33.20 31.38 30.12 29.21
Uniform 33.32 31.71 30.58 29.66

(b) DriveSeg

TABLE II: Ablation study on the weighting in the online
scheme

as the PSNR and demonstrates that the online adaptation
brings an increase in performance. Concerning DriveSeg, the
IoU from both methods are very close, which contradicts the
PSNR results of the online outperforming CopyLast. Upon
further examination, it was discovered that in the Kitti dataset,
the moving cars are spaced further apart from each other
compared to the DriveSeg dataset where the cars are closely
grouped together. The image in Figure 3 displays an issue
caused by extrapolation at the back of the car, resulting in the
segmentation network incorrectly categorizing this artifact as
a car.

VI. CONCLUSION

This paper introduces an online learning algorithm for video
prediction. We exploit every prediction to improve the video
extrapolation network and not just the resulting frames of
the desired horizon. This comes at the price of additional
complexity by making use of intermediate and unused pre-



IoU car ↑
Approach h=1 h=2 h=3 h=4 h=5

CopyLast 0.50 0.29 0.19 0.16 0.17
MCNet 0.38 0.20 0.14 0.09 0.18

FlowNet2 + warp 0.70 0.53 0.40 0.30 0.22
SDCNet offline 0.69 0.56 0.45 0.34 0.23

Ours 0.72 0.58 0.55 0.48 0.29

(a) IoU for Kitti scene 14

IoU car ↑
Approach h=1 h=2 h=3 h=4 h=5

CopyLast 0.87 0.83 0.80 0.78 0.75
MCNet 0.80 0.72 0.67 0.64 0.58

FlowNet2 + warp 0.86 0.83 0.79 0.76 0.73
SDCNet offline 0.86 0.80 0.73 0.73 0.69

Ours 0.88 0.84 0.81 0.78 0.76

(b) IoU for DriveSeg

TABLE III: Intersection over Union comparison between
CopyLast and extrapolation methods over Kitti and DriveSeg
for the car class.

dicted frames but with an increase in quality as demonstrated
by the experiments. The segmentation-oriented quality metric
focusing on the object rather than every pixel also seems
promising and may stimulate further work towards enforcing
shape consistency of objects in difficult environments.
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