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Abstract: Ensuring the safety of rail networks requires precise detection of a train’s position on a
track section. This is achieved using a “track circuit” system, in which the wheel–rail electrical contact
is the key to maintaining the system’s reliability. However, any degradation of this contact can lead to
a track circuit malfunction known as “deshunting”, creating a serious safety risk for the rail network
and for passengers. This paper presents a refined approach to this concern by implementing a
laboratory-scale test bench. The main objective is to reproduce the wheel–rail electrical contact under
controlled conditions to better understand the various aspects of this contact. The criteria governing
the dimensioning of the test bench at reduced scale are based primarily on mechanical considerations.
In this study, a series of tests were carried out to investigate the behavior of the electrical resistance
as a function of various parameters such as load, current and time. An original homemade salt
spray system was designed and used for obtaining controlled rail oxidation. Our preliminary results
highlight the impact of these factors on the electrical resistance, providing valuable insights for future
advances in rail safety technology.

Keywords: health monitoring; failure; deshunting; track circuit; wheel–rail electrical contact;
oxidation; test bench

1. Introduction

The accurate localization of trains on railway tracks is crucial for ensuring the safety
of railways. This is achieved through a technical device called the “track circuit”, which
provides real-time information about the presence of the train within a specific track section.
When a train enters this zone, its wheels and axle create a short circuit between the two rails,
indicating the occupancy of the zone. The signaling systems can be activated accordingly.
Maintaining a high-quality wheel–rail contact is therefore a major issue for ensuring the
reliability of the track circuit system and hence track safety. If this contact is affected by
a third body of natural or artificial origin present in the interface, train detection can be
jeopardized for a certain period, leading to the phenomenon known as “deshunting” where
the train’s presence is no longer detected. Despite the implementation of various devices to
prevent [1] or reduce the occurrence of deshunting, many instances are still being detected
every year.

The significant impact that deshunting events can have on railway management and
on the occurrence of potentially dangerous situations, such as level crossing failures and
rail accidents, has forced researchers to focus their attention on studying the behavior of
the wheel–rail electrical contact interface. The wheel–rail contact is a very complex and
multiphysical subject. In [2,3], the detection and impact of the mechanical deterioration of

Appl. Sci. 2023, 13, 10253. https://doi.org/10.3390/app131810253 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131810253
https://doi.org/10.3390/app131810253
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3565-4090
https://doi.org/10.3390/app131810253
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131810253?type=check_update&version=2


Appl. Sci. 2023, 13, 10253 2 of 18

the wheel rail was studied. The composition of the third body present at the wheel–rail in-
terface may be complex, since it can include both external contaminants (dead leaves, frost,
sand, oil. . .) and oxides formed naturally on surfaces [4]. Regarding oxides, composition
was investigated using in situ X-ray diffraction. On the rail head, iron oxide, particu-
larly in the form of FeOOH and Fe3O4, is the most dominant species [5]. Furthermore,
Nakahara et al. provide a surface analysis by examining the concentration of oxide near the
contact surface and the composition of both oxide and hydroxide [6]. In [7], the mechanical
and electrical aspects of the third body (oxide layer) formed in the wheel–rail contact
interface are examined through tribological, morphological and microscopic analyses. The
study investigates the electrical conductivity, heterogeneity, continuity and compactness of
the third body under both good and poor shunting conditions. Additionally, Fukuda et al.
establish that several factors, including normal load, current intensity, oxide layer thickness
and traffic frequency, can jointly influence the contact resistance [8]. A better understanding
of wheel–rail electrical contact was also obtained through studies that were carried out on
a 1/4 -scale test rig and on-site using an instrumented regional train [9,10]. These studies
highlighted the non-linear U − I characteristics, which are strongly dependent on the
presence of oxide at the contact interface. These results show that scaled-down tests are in
fact significantly representative compared to full-scale tests, demonstrating the relevance
of performing such experiments. However, conducting tests at full-scale or even 1/4 -scale
can be both cumbersome and costly, becoming an obstacle to rapid progress in this area
of research.

The aim of this work is to develop a laboratory-scale rolling contact test bench that
reduces the complexity and cost associated with conducting these experiments while
faithfully reproducing wheel–rail electrical contact on a reduced scale. By analyzing various
aspects of contact under reproducible conditions (controlled speed, load and oxidation
state), we seek to improve our knowledge of the deshunting phenomenon. This paper
focuses on the study of the influence of oxidation since it is one of the major causes of
deshunting. The first performed tests to validate the bench consisted of investigating
the resistance behavior in relation to different parameters such as load, current and time.
Furthermore, the ease of developing controlled surface degradation protocols makes it
easier to assess their impact on contact resistance. Overall, our work offers new perspectives
and possibilities for improving railway systems.

2. Bench Conception
2.1. General Principle

The developed setup, presented in Figure 1, consists of a reduced-scale wheel running
on a 1 m full-scale rail. An electrical actuator applies a normal force on the wheel axis
inducing a pressure on the contact area equivalent to that produced by a real loaded train.
The linear motion axis allows the wheel carriage to move along the rail at a controlled,
scaled-down speed.
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The bench was designed in order to be the most representative as possible of the
devices most likely to be involved in deshunting problems. Electrically, the aim was to
simulate the most extensively used track circuit on the French rail network (FRN).

The sizing of the reduced scale wheel (hereinafter referred to as the roller), the load
applied and the speed of the displacement were estimated as explained in Section 2.2.

Our major concern was to reproduce the physical behavior of the contact interface.
Consequently, we had to carefully study the impact of the downscaling on the dimensions
of the setup.

2.2. Dimensioning Methodology

Mechanical laws were considered when scaling the test bench to be the most represen-
tative of the full-scale behavior of the wheel–rail contact.

The test bench was designed following three criteria:

1. Same aspect ratio of the contact surface at both scales.
2. Same average contact pressure at both scales.
3. Same fraction of contact surface renewed at both scales during a track circuit

signal period.

2.2.1. Choice of the Roller

The shape of the roller was chosen to ensure that the contact surface between the
wheel and the rail was geometrically similar at both scales. To estimate the wheel–rail
contact surface, we relied on Hertz’s theory, which is a widely-used reference, although we
were aware that its assumptions would only be partially satisfied. Hertz’s theory assumes:

• Perfectly elastic and homogeneous bodies in contact with isotropic mechanical properties.
• Smooth contact surfaces.
• Semi-infinite bodies with contact dimensions very small compared to body dimensions

and radii of curvature.

According to Hertz’s theory [11], the contact surface forms an ellipse. The surface and
semi-axes (a, b) are given by the following expressions:
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E and v: Young’s modulus and Poisson’s ratio of the steel.
A and B: combined longitudinal and transverse curvatures.
m and n: tabulated coefficients dependent on A and B [12].

Consequently, the first criterion means maintaining the same a/b ratio between the
long and short axes of the elliptical contact surface on both scales.

Equation (1) leads to: (m
n

)
scale1

=
(m

n

)
reduced scale

(2)

It is important to note that at full scale, the wheel can be assimilated to a cylinder
when it is in contact with the rail (Figure 2, top). Considering that the curvature radius of
the head of the rail Rc rail is unchanged and the scaling ratio of the wheel, the shape of the
contact surface in the transverse direction would have been a rectangle.

To satisfy the first criterion, the rolling face of the wheel was chosen to be toroidal, as
pictured in Figure 2, at the bottom.
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The transverse radius of curvature RT roller allows us to adjust the shape of the contact
surface while maintaining the desired a/b ratio. Using Equation (2) and [12], the following
relation can be derived:

RT roller =
1

1
RL roller

(
1+(m

n )scale1
1−(m

n )scale1

)
− 1

RT rail

(3)

For design purposes, the final longitudinal radius RL roller value was 30 mm. This
value allows for several full revolutions of the roller along the 1 m rail on the bench. The
corresponding transverse radius RT roller = 15.4 mm allowing us to maintain the a/b ratio
was determined using (3).

2.2.2. Choice of Force Actuator

According to the second criterion, the choice of the force actuator was made to maintain
the same average contact pressure at both scales (denoted respectively as Pscale 1 and
Preduced scale):

Pscale 1 = Preduced scale (4)

Knowing the normal forces per wheel of a full-scale train and its size, and using Hertz’
Equation (1), we calculated the normal force to be applied at the reduced scale using the
following equation:

FN reduced scale = Pscale 1 ∗ Scontact reduced scale (5)

An abacus was developed to determine the appropriate normal force required on the
reduced scale for a given roller radius to maintain the same average pressure applied as
at full scale. Considering the trains that are the most subject to deshunting, the full scale
load per wheel ranges from 55 kN to 105 kN, resulting in a 235 N to 430 N range at reduced
scale for a roller with RL roller = 30 mm and RT roller = 15.4 mm. Table 1 gives a comparison
of the scaled parameters versus the real case resulting from the previous dimensioning.
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Table 1. Comparison of the scaled contact with the real life one for the considered railcar and
rail profile.

Scale 1 Reduced Scale

RL 420 mm 30 mm

RT ∞ 15.4 mm

Normal force 76.9 kN 392 N

Contact surface 85.1 mm2 0.43 mm2

a 6.6 mm 0.47 mm

b 4 mm 0.29 mm

Average pressure 903 MPa 903 MPa

2.2.3. Speed Scaling

Considering the third criterion, the speed v of the wheel carriage was chosen to
maintain the same fraction of renewed contact area (denoted Arelative renewed contact) during
a track circuit signal period ∆t at both scales. The calculation of this relative area is
developed in Appendix A. It is expressed as:

Arelative renewed contact(t0 + ∆t) = 1− 2
π arctan

( a
b tan(α)

)
+ 4S

πab

where α = arctan

 2b
√

1− v2∆t2

4a2

v∆t


and S = 1

2 v·b·∆t
√

1− v2∆t2

4a2

(6)

The extreme case of this criterion corresponds to the minimum displacement speed at
which the contact ellipse will be completely renewed within a track circuit signal period ∆t.
In this case, the contact interface comprises a “new” oxide layer at each current alternation.
The minimum speed required to obtain a fully renewed contact ellipse is denoted by v2a. It
can be calculated using the following equation:

v2a = 2 ∗ a ∗ fcdv (7)

where fcdv is the frequency of the track circuit considered in our study (2.3 kHz).
Considering the example shown in Table 1, one can find that v2a scale1 = 30.56 m/s

and v2a reduced scale = 2.31 m/s, illustrating a 13.2 factor on the speed. This result is very
important and convenient since it allows us to work at a reduced speed on the bench while
reproducing the conditions of higher real-life speeds.

2.3. Four-Point Electrical Measurements

The measurement of the wheel–rail electrical contact resistance was performed us-
ing the four-point method, as shown in Figure 3b, which illustrates the principle of this
technique applied to the test bench. Figure 3a shows a photograph of the concrete imple-
mentation, where two copper thread brushes were used to inject current from a source into
the contact, while two other brushes (placed closest to the contact) were used to measure
the contact voltage. The current flowing through the contact was evaluated by measuring
the voltage Vs across a well-known shunt resistance Rs.

2.4. Surfaces Preparation
2.4.1. Reference Surfaces

To approach the conditions required by Hertz’s theory, where surfaces are assumed
to be perfectly smooth, efforts were made to improve the roughness of both the wheel
and rail surfaces. In order to obtain a smoother surface, the wheel was polished using
different grades of polishing paper. An evaluation of the overall surface quality (surface
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defects) was performed using binocular observation, as shown in Figure 4. Additionally, a
profilometer was then employed to measure the surface roughness. Based on more than
30 measurements, we found that the average and peak-to-peak roughness values were
Ra = 0.4 µm and Rt = 4.5 µm, respectively.
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As for the rail, the same polishing process was applied. However, given the complexity
of assessing rail surface quality with binocular or profilometer observations, considering its
size, a roughness tester from Mitutoyo (“SurfTest SJ301” model) was used. This device can
evaluate arithmetic roughness (Ra) and other parameters associated with surface profile
parameters. Based on more than 30 measurements within an arbitrary rail zone, the
roughness values obtained were Ra = 0.8 µm for average roughness and Rt = 8.2 µm for
peak-to-peak roughness.

Following this work, six distinct reference zones, shown in Figure 5, were delimited
on the wheel where the visual aspect was observed and the roughness measured before
and after the experiments, presented in Section 3.

2.4.2. Oxidation Protocol

To achieve severe, accelerated and controlled oxidation of the rails, we employed a
homemade salt spray system. The principle of this system consists of spraying a saline
solution with a NaCl concentration of 0.6 mol/L, similar to seawater, into a testing chamber,
creating a favorable environment for oxidation. The saline solution is applied on the rail
using misting nozzles and a watering programmer. The duration of misting and drying
is adjusted according to the desired oxide thickness. After each oxidation process, the
thickness of the oxide layer was measured using a probe from Fischer (“Deltascope FMP30”
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model). This equipment operates on the principle of magnetic induction and is adapted
to rough surfaces, with a precision of approximately ±0.2 µm for oxide thicknesses of up
to 100 µm.
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Figure 6 shows a preliminary oxidation performed on one rail using this system,
resulting in severe oxidation and creating a case with a heavily oxidized zone showcas-
ing an extreme example of an abandoned track. The average oxide thickness, based on
more than 30 measurements, is 57 µm and has a standard deviation of 17 µm. This oxide
thickness exceeds what is typically observed on low-traffic tracks, where oxide thickness
varies from 1 to 2 µm on the rail tread and 5 to 6 µm on the peripheral zone. For the
first try, the oxide thickness was intentionally exaggerated since it was difficult to eval-
uate its influence. Consequently, we aimed at realizing severe rust conditions to ensure
deshunting occurrences.
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3. Results

The tests presented in Sections 3.1–3.3 were carried out under static conditions (no
rolling) and with direct current, using a Keithley 2400 sourcemeter in four-probe mode to
inject current and measure contact resistance.

3.1. Dependence of the Resistance on the Applied Force

This section focuses on the effect of applied force on the contact resistance. In Hertz’s
theory, the contact resistance as a function of force is predicted to follow a power-law
behavior Rc ∼ F−

1
3 .

The contact resistance was evaluated with a constant DC current of 0.1 A. The applied
load was progressively increased from 30 N to 430 N (maximum force as explained in
Section 2.2.2), then decreased to 30 N.

Initially the tests were conducted on three zones under normal conditions, in ambient
air. In Figure 7, we present the Rc − F characteristics obtained from one of these zones.
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These force tests conducted in ambient air reveal unexpected contact resistance behav-
iors far from those predicted by Hertz. At lower forces (<230 N), the resistance decreases
very slowly, following a power-law Rc ∼ F−0.09. Beyond 230 N, the resistance exhibits a
much more pronounced decrease, following a power-law Rc ∼ F−1.24 with an exponent
greater than one. When decreasing the force from 430 N to 30 N the resistance follows a
Rc ∼ F−0.47 power-law. These observations may reflect the extreme difficulty of obtaining
perfectly smooth, clean surfaces on both wheel and rail. Surface roughness, contamination
and possible oxidation make it impossible to achieve ideal Hertz’s conditions.

To address these unexpected results and evaluate the potential impact of oxidation on
the contact resistance, the test was replicated on three other zones using a nitrogen jet to
create a controlled environment. In Figure 8, we present the Rc − F characteristics obtained
from one zone with nitrogen exposure. When increasing the force from 30 N to 230 N, the
resistance closely follows a power-law Rc ∼ F−0.31, thus approaching the Hertzian law.
This indicates that the application of the nitrogen jet effectively eliminated some external
factors and thus allowed for approaching Hertz conditions in this force range. However,
beyond 230 N, the resistance evolution again deviates as for the ambient air experiment,
following a greater power-law, Rc ∼ F−2. When decreasing the force from 430 N to 30 N,
the resistance follows a Rc ∼ F−0.76 power-law.

This change in resistance behavior for forces beyond 230 N can be attributed to the
occurrence of permanent deformation (plasticity of asperities). A similar behavior was
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observed in a previous study [14], which focused on a single electrical contact between
two grains of copper powder subjected to a mechanical pressure P in the plastic regime.
In this study, it was found that the resistance demonstrated a power-law dependence on
the force, with an exponent greater than one. This peculiar behavior was attributed to the
presence of microchannels at the contact area between the two grains, characterized by
wide-ranging conductances.
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During the return phase (decreasing force), for both air and nitrogen conditions,
the resistance follows a different path, which can be explained by the persistent asperity
flattening [15].

3.2. Dependence of the Resistance on the Applied Current

The main objective of this experiment was to explore the impact of the applied current
on contact resistance. To this end, contact resistance measurements were carried out on
different areas of the rail under static conditions. Increasing and decreasing currents were
applied, from 100 mA to 1 A and vice versa, with 100 mA steps every 60 s. The evolution
of the applied current intensity is shown in Figure 9. The contact voltage was measured
every second.
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These tests were conducted on both a clean and oxidized contact area
(oxide thickness = 57 µm).

3.2.1. Clean Contact: Rc(I)
For a clean contact, Figure 10 shows the variation in current and voltage over time.

The corresponding U-I characteristic is shown in Figure 11. It presents a linear-ohmic
and reversible behavior. In this case, the increasing and decreasing U-I characteristics are
perfectly superposable on each other. Rc(I ) was evaluated at 10 mΩ, which is consistent
with a contact on bare metal.
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3.2.2. Oxidized Contact: Rc(I)
Figure 12 shows the evolution of the current imposed on the contact (similar to the

previous case) as a function of time, and the corresponding evolution of the contact voltage
in the case of an oxidized surface. Figures 13 and 14 show the evolution of the contact
resistance and the U − I characteristics, respectively, during this experiment.
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For an oxidized contact, the results reveal very different behavior compared to the
one observed on the clean contact. Initially, as the current flows, a rapid evolution of the
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contact occurs, observed as sudden drops in contact resistance with steps of increasing
current. This can be observed at the beginning of the curves in Figures 12 and 13: up
to 300 s and indicating a transition to a less insulating state. This behavior could be the
result of an improved contact due to the flattening of surface asperities under the effect
of mechanical stress and the heating generated by the current. As the current continues
to increase, the contact resistance gradually stabilizes, indicating a slower evolution of
the contact, as shown in Figure 14 after current increase from 0.6 A to 1 A. As the current
decreases, U − I characteristics become more linear, and the resistance tends to stabilize at
a lower level (approximately 9.8 mΩ) than its previous values. This behavior is similar to
that of a clean contact, as shown Figures 10 and 11, where the voltage is proportional to the
current. Overall, the results indicate progressive changes in contact resistance, underlining
the influence of current on the electrical properties of an oxidized contact.

3.3. Evolution of the Contact Resistance at Constant Current over a Long Period

The objective of this test was to observe the evolution of the contact resistance over
time under static conditions while applying a constant current. To this end, we chose the
maximum value of 1 A imposed during previous tests, the force applied to the contact
always being 400 N.

To approximate a moderate rust condition, the oxide thickness on the rail was adjusted
to around 20µm with a standard deviation of 5.9µm. Figure 15 shows the evolution of the
contact resistance for a total current injection time of 80 min. The experimental approach
consisted of four distinct phases:

• Phase 1: 1 A applied for 10 min. The current injection and the measurements were inter-
rupted for a few minutes to see if the contact would return to its initial electrical state.

• Phase 2: 1 A applied for 40 min.
• Phase 3: 10 mA applied for 10 min.
• Phase 4: 1 A applied for 20 min.

During phase 1, a significant initial increase then decrease in resistance was observed,
followed by a gradual decrease. After the interruption of the current, the resistance in
phase 2 continued to decrease progressively starting from a contact resistance value close
to the one reached at the end of phase 1. The third phase showed a slight increase in the
contact resistance with an almost constant value. Finally, in phase 4, a gradual decrease in
resistance was observed, reaching the same value as at the end of the second phase.

Considered jointly with the results presented in Section 3.2.2, the sudden drop in
contact resistance at the beginning of the first phase may be interpreted as an irreversible
change in the surface condition of the contact zone caused by mechanical and thermal
effects. We assume that the start of phase 1 mainly reflects the melting of the peak asperities.
Once flattened, the mechanical and thermal effects are spread over a wider and wider
surface, which slows down the process. Thus, the progressive decrease of the contact
resistance during the end of phase 1 and phases 2 and 4 could be explained by a slow
continuation of the flattening of surface asperities, associated with an increase in oxide
conductivity due to the rise in temperature (induced by the current). During phase 3,
the current was decreased, resulting in a reduced heating effect. Therefore, the observed
resistance increase could be interpreted as the presence of a semiconducting oxide layer at
the interface.

3.4. Measurements during Rolling Contact on Rusted Rail

In this section, we present preliminary measurements on a wheel–rail rolling contact
under a normal load of 400 N and an AC supply current with a frequency signal of 2.3 kHz
and 0.1 A peak to peak. These parameters are based on an actual track circuit configuration
used on the FRN, as explained in Section 2.1. The rail is the one rusted according to the
protocol described above. The rolling contact was displaced at a constant speed of 1 cm/s.

Figure 16 illustrates the voltage drop across the wheel–rail contact and a known shunt
resistance (the latter giving the image of the current). The voltage signal at the rusted
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contact exhibits a series of transient state with elevated contact resistance, characterized
by frequent peaks. The phases of high-resistance transients could in real life give rise to
deshunting occurrences.
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Figure 15. (Top) Evolution of the contact resistance of an oxidized wheel–rail contact during 4 phases:
(Phase 1) injecting a current of 1 A for 10 min, (Phase 2) injecting a current of 1 A for 40 min, (Phase 3)
injecting a current of 0.01 A for 10 min, (Phase 4) injecting a current of 1 A for 10 min. Between
phase 1 and phase 2, current and measurement are interrupted during a few minutes (grey zone).
(Bottom) zoom on phase 1.
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Figure 16. Voltage drop evolution across (−) the wheel–rail rolling contact and (−) a known shunt
resistance (6.8 Ω) during rolling contact under 400 N normal load on rusted rail.
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Figure 17 shows a closer examination of the voltage signals across the wheel–rail
contact and the shunt resistance, revealing distinct behaviors. The left side of the figure
presents a case of high contact resistance, resulting in significant signal deformation and
non-linearity. Conversely, the right side of the figure corresponds to a healthier contact
with lower resistance, where signals present more linear behavior.
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The high contact resistance and nonlinear behaviors of Figures 16 and 17 match
the results previously observed in [10] with a 1/4 down-scaled test bench and a train on
a real line. Consequently, the designed bench can be considered representative of the
phenomenon at full scale.

To gain further insight into this complex phenomenon of rolling contact behavior,
future studies are envisaged. These studies will continue to focus on understanding and
characterizing rolling contact behavior as a function of various parameters such as current
intensity, frequency, oxide thickness and displacement speed.

4. Conclusions

In this study, we designed a scaled-down rolling contact test bench that is able to mimic
the wheel rail electrical contact of a train at the laboratory scale. The design was based
on mechanical considerations, and the criteria applied on the test bench can effectively
reproduce wheel–rail electrical contact. The bench was coupled with an original homemade
salt spray system designed for obtaining controlled rail oxidation. Through a series of
carefully controlled tests, including variations in load and oxidation state, we validated that
the electrical behaviors observed were coherent with the observations from previous works.
In a second trial, the behavior of the wheel–rail contact in static and rolling conditions was
studied in order to better understand the deshunting phenomenon.

In static conditions, the influence of contact force and current intensity was successively
investigated. With regard to force, contact loading-unloading tests were carried out with
previously polished surfaces and a DC current of 0.1 A. The resistance vs. force curves,
plotted in log scale, show different patterns for loading and unloading: as force increases,
resistance first decreases slightly, then more markedly; on return, resistance increases with
an intermediate slope. We assume that this behavior, which is in most cases far from the
Hertzian contact model, reflects the influence of the surface roughness remaining after
polishing (measured peak-peak values of around 4 µm on the roller and 8 µm on the rail),
with plastic deformation of asperities occurring between 200 and 300 N. With regard to
current intensity, we compared non-oxidized and oxidized rail surfaces for a given wheel
state and a contact force of 400 N, with the current being increased and then decreased in
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steps between 0.1 and 1 A. In the case of “clean contact”, the U(I) characteristics are found
to be linear and reversible. In the case of an “oxidized contact”, the initial resistance is
much higher, and the increase in current is accompanied by several sudden decreases in
resistance, reflecting an irreversible evolution that we interpret as the flattening of asperities
softened by heating due to high local current densities. Long-term observations of the
evolution of contact resistance at 1 A current seem to corroborate this explanation. On
return, as the current decreases, the U(I) characteristics are almost linear, with a much
smaller slope (resistance). This set of results in static shows that the experimental bench we
have built allows to study how wheel–rail contact resistance may be affected by mechanical,
thermal, chemical or electrochemical phenomena.

In rolling conditions, the very first feasibility tests, carried out under real-life condi-
tions except speed (slower), revealed alternating zones of shunting and deshunting, with
different possible deformations of the contact voltage signal compared to the sinusoidal
imposed current signal for the latter. Such behaviors were observed in previous studies
both on a reduced-scale laboratory bench and in 1:1 railway tests.

For further study, we intend to deepen our investigations by focusing on dynamic and
AC tests in order to reproduce a wider variety of real-life railway situations and explore
more fully the influence of key parameters on the deshunting phenomenon.
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Appendix A

Appendix A.1. Area of an Elliptical Sector

Consider an ellipse with semi-axes (a, b) and let dα be an elementary sector of this
ellipse (Figure A1). We define it by the equation:

x2(α)
a2 + y2(α)

b2 = 1

R2
(

cos2(α)
a2 + sin2(α)

b2

)
= 1

We approximate the area dA of the elliptical sector, defined by an angle dα, by consid-
ering it equivalent to the area of a circular sector with radius R(α), under the assumption
that dα is small. Thus, dA = 1

2 R(α)2dα.
Then, we found that the area of an elliptical sector between angles α1 and α2 is:

A = 1
2

∫ α1
α2

1
cos2(α)

a2 +
sin2(α)

b2

dα

A = 1
2

∫ α1
α2

1
cos2(α)

a2

(
1+ a2tan2(α)

b2

)dα

A = 1
2

∫ α1
α2

a2

cos2(α)
· 1

1+( a
b tan(α))

2 dα
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Let u = a
b tan(α) and u′ = a

b
1

cos2(α)
:

A =
1
2

∫ α1

α2

ab
a

b cos2(α)
· 1

1 +
( a

b tan(α)
)2 dα

Which leads to:

A =

[
ab
2

arctan
( a

b
tan(α)

)]α1

α2
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Appendix A.2. Calculation of Arelative renewed contact

Figure A2 illustrates the elliptical wheel–rail contact surface at instant t0 and t0 + ∆t
when the train is running at speed v. Depending on v, there may be overlapping between
these two ellipses. Let Arenewed contact(t0 + ∆t) be the renewed contact surface during ∆t.

The calculation of Arenewed contact(t0 + ∆t) as a function of the displacement speed v is
presented hereafter. Let O and O′ be the centers of the two contact ellipses at instants t0
and t0 + ∆t, respectively. Also, let M be the intersection point of these two ellipses.
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The area of the ONM triangle, denoted S, can be expressed as:

S =
1
2
·xM·yM

With:

M

{
xM = 1

2 v∆t

yM = b
√

1− v2dt2

4a2

Then:

S =
1
2

v·b·∆t

√
1− v2∆t2

4a2

Which leads to the expression of α, the angle between [ON] and [OM]:

α = arctan

2b
√

1− v2∆t2

4a2

v∆t


The renewed contact surface Arenewed contact after a track circuit signal period ∆t

(hatched sur f ace) is:

1
2

Arenewed contact(t0 + ∆t) =
πab

4
+[A]

π
2
α − ([Arenewed contact]

α

0 − 2S
)

Based on the calculation of the area of an elliptical sector in the Section 1 of the appendix:

Arenewed contact(t0 + ∆t) = πab− 2ab·arctan
( a

b
tan(α)

)
+ 4S

And the relative renewed surface is given by:

Arelative renewed contact(t0 + ∆t) =
Arenewed contact (t0 + ∆t)

πab

Then:

Arelative renewed contact(t0 + ∆t) = 1− 2
π

arctan
( a

b
tan(α)

)
+

4S
πab
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