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Abstract

This chapter presents a parameter-based frequency-domain approach for
the analysis and control of linear time-invariant dynamical systems described
by delay-differential equations involving a single pointwise delay. More pre-
cisely, the link between the maximal allowable multiplicity of the characteristic
roots and the spectral abscissa of the dynamical system is exploited to define
appropriate stabilizing controllers. The ideas are explicitly illustrated on a
class of second-order dynamical systems where a complete parametric char-
acterization of the multiplicity-induced-dominancy is provided using certified
algorithms from the computer algebra system Maple.
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1 Introduction
One of the most intuitive ideas pertaining to the control of the dynamical behavior of
the linear time-invariant (LTI) system is to place the corresponding closed-loop poles in
some desirable location in the complex plane; the method is called pole placement (e.g., [2]
and the references therein). The pole placement method relies on two ingredients (i) the
perfect knowledge of the state variables; (ii) some appropriate controllability assumptions
on the system, that is, the possibility to steer a dynamical system from an arbitrary
initial state to an arbitrary final state via an apropos set of admissible control laws. If
the said method is easy to understand and to apply in the control of finite-dimensional
LTI systems, its extension to systems described by delay-differential equations (DDEs)
seems to be more involved. More precisely, two issues need to be addressed. First, the
introduction of a suitable notion of controllability for delay systems, and, second, the in-
depth comprehension of the location of the poles of the closed-loop system in terms of the
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controller’s parameters, even in all generality, such a question remains open. Yet, several
partial results exit; among them, systems with single or multiple constant delays (see for
instance [44]); systems with cross-talking delays [37]. For more applications of spectral
methods see [24,36,39,40,46,47].

For a pole placement to be effective, two robustness requirements are mandatory;
the first one is with respect to parametric uncertainties, while the second one is with
respect to the digitization purposes. Several pole placement paradigms for the control
of LTI delay systems exist, each of which has its advantages and its drawbacks, see for
instance [16,27,33,35].

A more recent pole placement analytical paradigm having the advantage of furnishing
reduced complexity controllers [3] while guaranteeing a close monitoring of the spectrum
migration with respect to parametric changes [32] is called partial pole placement. It ensues
from an observation of the effect of multiple spectral values on the stability of DDEs, a
property called multiplicity-induced-dominancy (MID) in [12,29]. Indeed, some works have
shown that, for some classes of time-delay systems, a real root of maximal multiplicity is
necessarily the rightmost root, a property we call generic multiplicity-induced-dominancy,
or GMID for short; when it is a multiple root of strictly intermediate over-order multi-
plicity, it is called intermediate multiplicity-induced-dominancy (IMID). This link between
maximal multiplicity and dominance of the spectral value is not new. In fact, it has
been suggested in [41] after the study of some simple, low-order cases, but without any
attempt to address the general case. To the best of the authors’ knowledge, very few
works have considered this question in more details until recently in publications such
as [8, 10, 12–14,29–31,42]. The latter studies consider only DDEs with a single delay and
show either the IMID or the GMID property for each system under consideration. For
instance, the IMID or GMID properties are shown to hold for retarded equations of order 1
in [14], which proves dominance by introducing a factorization of ∆ in terms of an integral
expression when it admits a root of maximal multiplicity 2; for retarded equations of order
2 with a delayed term of order zero in [13], using also the same factorization technique; or
for retarded equations of order 2 with a delayed term of order 1 in [12], where both the
IMID and the GMID properties are investigated, using Cauchy’s argument principle to
prove dominance of the multiple root. Most of these results are actually particular cases
of a more general result on the GMID property from [29] for generic retarded DDEs of
order n with a delayed “term” (polynomial) of order n − 1, which relies on ties between
quasipolynomials with a real root of maximal multiplicity and the Kummer confluent hy-
pergeometric function in terms of the location of the characteristic roots. Owing to this
link, the GMID property has been completely characterized in [10] and extended to neu-
tral DDEs of orders 1 and 2 in [8, 26, 30], as well as to the case of complex conjugate
roots of maximal multiplicity in [31]. Also, such an idea has been extended to assign an
appropriate number of negative roots rather than assigning a multiple root, allowing to a
property called Coexistant Real Roots Inducing Dominancy (CRRID), see for instance [6].

The fact that a spectral value achieves maximum multiplicity imposes algebraic con-
straints on each of the system’s “entries” (polynomial coefficients as well as the delay
parameter). An IMID-based approach is proposed in [4] operating the intimate represen-
tation of the quasipolynomial to provide conditions for one spectral value with an eligible
intermediate multiplicity. This makes it possible to split the system parameters into two
categories, some of them considered as model parameters (assumed to be fixed and known)
and the remaining ones considered as values to be adjusted. Such a classification opens
interesting perspectives in control design, such as the systematic tuning of the gains of
the well-known Proportional-Integral-Derivative (PID) controller, able to stabilize single-
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input/single-output plants including one delay in the input/output channel, as suggested
in [26].

In this chapter, we provide a tutorial on the use of the MID property in the partial
pole placement for parametric second-order systems by exploiting the delay as a control
parameter. These systems have the lowest order capable of exhibiting an oscillatory re-
sponse to a step input and provide standard models for the description of a wide range
of dynamical processes and, as such, represent a benchmark for the enhancement of the
understanding of phenomena appearing in physics, in biology and in engineering. It is
widely known that the nature of the corresponding characteristic roots is crucial in the
definition of the qualitative behavior of solutions of such systems not only in the open-loop
setting but also from a feedback control perspective. In open-loop, second-order systems
transfer functions admit two poles which are either both real-valued or form a pair of
complex conjugates. In each of such configurations, the MID property suggests an appro-
priate admissible multiplicity as well as a specific tuning as emphasized in [12]. Since the
ensuing study involves a lot of computation and is most easily accomplished either numer-
ically or with the aid of a certified symbolic algebra package, the parametric analysis we
present will be carried out using the certified RootFinding and Groebner packages of the
computer algebra system Maple.

The remaining of the chapter is organized as follows. Some preliminary results and
prerequisites are given in Section 2 where fundamental results of complex analysis as well
as some standard theoretical settings in elimination theory are provided. A parametric
characterization of the MID approach in second-order systems is carried out in Section 3.
Section 4 illustrates the delay effect for the oscillation damping of the standard oscillator.
Finally, Section 5 concludes the chapter.

2 Prerequisites
Consider the following class of quasipolynomial functions which correspond to a generic
time-delay system with real coefficients ai, bi for i = 1, 2 and a single delay τ > 0:

∆(s) = s2 + a1 s + a0 + (b1 s + b0) e−τ s (2.1)

Notice that the quasipolynomial function (2.1) is the characteristic equation of the par-
ticular case of the following time-delay system

ẋ(t) = A x(t) + B x(t − τ), (2.2)

where x(t) = (y(t), ẏ(t))T ∈ R2 is the state vector and A, B ∈ M2(R) are real-valued
matrices given by

A =
(

0 1
−a0 −a1

)
, B =

(
0 0

−b0 −b1

)
. (2.3)

The notation V T represents the transpose of V .

The next result plays an important role in the spectral theory of time-delay systems,
it enables the construction of an envelope curve around the zeros of the characteristic
equation, the details of its proof can be found in [34].

Proposition 2.1. Let s be a characteristic root of the system (2.2), then, it satisfies

|s| ≤ ∥A + B e−τs∥2. (2.4)
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Another fundamental property of complex analysis widely used in the stability analysis
of linear time-invariant dynamical systems is the argument principle; see for instance
[21,28].

2.1 The Stépán-Hassard approach
The argument principle establishes a correspondence between the number of zeros minus
the number of poles of a meromorphic function F in a simply connected domain D ⊂ C,
and a contour integral, on the boundary ∂D, of the function’s logarithmic derivative,
which is also the winding number of the curve ∂D.

Several stability methods derive from the argument principle such as the Nyquist
criterion and the Mikhaylov curve. The argument principle is also a classical standard
means to count the number of unstable roots, see for instance [1]. The said count may also
be obtained, in an easier and more elegant way, by the inspection of argument variation.
Actually, the combination of the qualitative behavior of both the real ℜ and the imaginary
ℑ parts (seen as real functions in the crossing frequency) of the quasipolynomial function,
allows a straightforward application of the Stépán-Hassard formula [22,45].

The main theorem from [22], which is inspired from [45], emphasizes the link between
the number of unstable spectral values card(N+) and the number of critical spectral values
card(N0), both taking into account the algebraic multiplicity.

Theorem 2.2 (Hassard, [22], pp. 223). Consider the linear delay-differential system

ẋ(t) =
L∑

l=1
Al x(t − τl), (2.5)

for which the corresponding characteristic equation is defined by the quasipolynomial func-
tion:

∆(s) = det
(

s I −
L∑

l=1
e−s τl Al

)
. (2.6)

Let ρ1, . . . , ρr be the positive roots of

R(y) = ℜ(in ∆(i y)), (2.7)

counting their algebraic multiplicities and ordered so that 0 < ρ1 ≤ . . . ≤ ρr. For each
j = 1, . . . , r such that ∆(i ρj) = 0, assume that the multiplicity of iρj as a zero of ∆(s)
is the same as the multiplicity of ρj as a root of R(y). Then card(N+) is given by the
formula:

card(N+) = n − card(N0)
2 + (−1)r

2 sgn I(µ)(0) +
r∑

j=1
(−1)j−1 sgn I(ρj), (2.8)

where µ designates the multiplicity of the zero spectral value of ∆(s) = 0 and

I(y) = ℑ(i−n∆(iy)). (2.9)

Furthermore, card(N+) is odd (respectively, even) if ∆(µ)(0) < 0 (∆(µ)(0) > 0). If
R(y) = 0 has no positive zeros, set r = 0 and omit the summation term in the expression
of card(N+). If s = 0 is not a root of the characteristic equation, set µ = 0 and interpret
I(0)(0) as I(0) and ∆(0)(0) as ∆(0).
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2.2 Special functions in control design
Quasipolynomials functions admitting multiple roots of maximal multiplicity can be fac-
torized in terms of a confluent hypergeometric function defined hereafter [38].

Definition 2.3. Let a, b ∈ C such that −b /∈ N, Kummer’s confluent hypergeometric
function is the entire function M(a, b, ·) : C → C defined for z ∈ C by the series

M(a, b, z) =
∞∑

k=0

(a)k

(b)k

zk

k! . (2.10)

where for α ∈ C and k ∈ N, (α)k is the Pochhammer symbol for the ascending factorial,
defined inductively as (α)0 = 1 and (α)k+1 = (α + k)(α)k, for k ∈ N.

The series in (2.10) converges for every z ∈ C and, as presented in [17,19,38], it satisfies
the Kummer differential equation

z
∂2M

∂z2 (a, b, z) + (b − z)∂M

∂z
(a, b, z) − aM(a, b, z) = 0. (2.11)

As discussed in [17, 19, 38], for every a, b, z ∈ C such that ℜ(b) > ℜ(a) > 0, Kummer
functions also admit the integral representation

M(a, b, z) = Γ(b)
Γ(a)Γ(b − a)

w 1

0
eztta−1(1 − t)b−a−1dt, (2.12)

where Γ denotes the Gamma function. This integral representation has been exploited
in [29] to characterize the spectrum of some DDEs.

Kummer functions satisfy some induction relations, often called contiguous relations,
see for instance [38]. In particular, the following relations are of interest.

Lemma 2.4 ( [38, p. 325]). Let a, b, z ∈ C with a ̸= b, z ̸= 0, and −b /∈ N. The following
relations hold:

M(a, b + 1, z) =−b (a + z) M(a, b, z) + a b M(a + 1, b, z)
z (a − b) ,

M(a + 1, b + 1, z) = − −b M(a + 1, b, z) + b M(a, b, z)
z

.

(2.13)

Kummer confluent hypergeometric functions have close links with Whittaker functions.
For k, l ∈ C with −2l /∈ N∗, the Whittaker function Mk,l is the function defined for z ∈ C
by

Mk,l(z) = e− z
2 z

1
2 +lM(1

2 + l − k, 1 + 2l, z), (2.14)

(see, e.g., [38]). Note that, if 1
2 + l is not an integer, the function Mk,l is a multi-valued

complex function with branch point at z = 0. The nontrivial roots of Mk,l coincide with
those of M(1

2 + l − k, 1 + 2l, ·) and Mk,l satisfies the Whittaker differential equation

φ′′(z) =
(

1
4 − k

z
+

l2 − 1
4

z2

)
φ(z). (2.15)

Since Mk,l is a nontrivial solution of the second-order linear differential equation (2.15),
any nontrivial root of Mk,l is necessarily simple.
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In [23], Hille studies the distribution of zeros of functions of a complex variable satis-
fying linear second-order homogeneous differential equations with variable coefficients, as
is the case for the degenerate Whittaker function Mk,l, which satisfies (2.15). Thanks to
an integral transformation defined there and called Green–Hille transformation, and some
further conditions on the behavior of the function, Hille showed how to discard regions in
the complex plane in order to preclude complex roots.

The following result, which is proved in [11] using the Green–Hille transformation
from [23], gives insights on the distribution of the nonasymptotic zeros of Kummer hyper-
geometric functions with real arguments a and b.

Proposition 2.5 ( [11]). Let a, b ∈ R be such that b ≥ 2.

(a) If b = 2a, then all nontrivial roots z of M(a, b, ·) are purely imaginary;

(b) If b > 2a (resp., b < 2a), then all nontrivial roots z of M(a, b, ·) satisfy ℜ(z) > 0
(resp., ℜ(z) < 0);

(c) If b ̸= 2a, then all nontrivial roots z of M(a, b, ·) satisfy

(b − 2a)2ℑ(z)2 − (4a(b − a) − 2b) ℜ(z)2 > 0. (2.16)

2.3 Background on Gröbner basis and elimination techniques
Gröbner basis provide a uniform computational technique for solving different problems
that can be interpreted in terms of polynomial equations in an algorithmic or computa-
tional way. A wide range of problems related to the qualitative analysis of dynamical
systems leads to systems of polynomial equations, see for instance [5, 9, 15, 43]. To fix
better the idea, let fi ∈ K[x1, . . . , xn] with K an arbitrary field, such that

f1(x1, . . . , xn) = 0, . . . , fm(x1, . . . , xn) = 0 (2.17)

To solve this system, Gröbner basis computations can be used by considering the ideal
⟨f1, . . . , fm⟩ ⊂ K[x1, . . . , xn]. In this section, we recall the basic facts about Gröbner basis,
and refer the reader to [18] for details.

Definition 2.6. A monomial in x1, . . . , xn is a product of the form

xα1
1 · xα2

2 . . . xαn
n , (2.18)

where all of the exponents α1, . . . , αn are nonnegative integers. The total degree of this
monomial is the sum α1 + . . . + αn.

A monomial ordering is a total order on monomials that is compatible with the product
and such that every nonempty set has a smallest element for the order. The leading term
of a polynomial is the greatest monomial appearing in this polynomial.

Definition 2.7. Let f be a polynomial in K[x1, . . . , xn].

(a) We call aα the coefficient of the monomial xα;

(b) If aα ̸= 0, then we call aα xα a term of f ;
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(c) The total degree of f , denoted deg(f), is the maximum |α| such that the coefficient
aα is nonzero.

A Gröbner basis of an ideal I for a given monomial ordering is a set G of generators
of I such that the leading terms of G generate the ideal of leading terms of polynomials
in I. A polynomial is reduced with respect to the Gröbner basis G when its leading
term is not a multiple of those of G. The basis is reduced if each element g ∈ G is
reduced with respect to G \ {g}. For a given monomial ordering, the reduced Gröbner
basis of a given set of polynomials exists and is unique, and can be computed using one’s
favorite general computer algebra system, like Maple, Magma or Singular. Several efficient
implementations of the Gröbner basis algorithm exist, here we use the FGb implementation
of F4 available in Maple [20]. The complexity of a Gröbner basis computation is well
known to be generically exponential in the number of variables, and in the worst case
doubly exponential in the number of variables. Moreover, a good choice of the monomial
ordering reduces the computational cost.

The graded reverse lexicographic order or grevlex for short also denoted tdeg ordering
is the most suited ordering for the computation of the (reduced) Gröbner basis. The
monomials are first ordered by degree, and the order between two monomials of the same
degree xα = xα1

1 · · · xαn
n and xβ = xβ1

1 · · · xβn
n is given by xα ≻ xβ when the last nonzero

element of (α1 − β1, . . . , αn − βn) is negative. Thus, among the monomials of degree d,
the order is

xd
1 ≻ xd−1

1 x2 ≻ xd−2
1 x2

2 ≻ · · · ≻ xd
2 ≻ xd−1

1 x3 ≻ xd−2
1 x2x3 ≻ xd−2

1 x2
3 ≻ · · · ≻ xd

n.

However, a Gröbner basis for the grevlex ordering may not be appropriate for the
computation of the solutions of the system (2.17). The most suited ordering for this
computation is the lexicographical ordering (or lex ordering for short). The monomials are
ordered by comparing the exponents of the variables in lexicographical order. Thus, any
monomial containing x1 is greater than any monomial containing only variables x2, . . . , xn.

Under some hypotheses (radical ideal with a finite number of solutions, and up to a
linear change of coordinates), the Gröbner Basis of an ideal ⟨f1, . . . , fm⟩ for the lex order
x1 > . . . > xn has the shape

{x1 − g1(xn), x2 − g2(xn), . . . , xn−1 − gn−1(xn−1), gn(xn)} , (2.19)

where the gi’s are univariate polynomials. In this case, the computation of the solutions of
the system follows easily. In the general case, the shape of the Gröbner basis for the lex
ordering is more complicated, but it is equivalent to several triangular systems for which
the computation of the solutions are straightforward.

An important point is that a Gröbner basis for the lex order is in general hard to
compute directly. Practically, it is faster to compute first a Gröbner basis for the grevlex
order, and then to make a change of ordering to the lex order.

Further, if one wants to compute all the polynomials in I, that do not depend on
the variables xi, . . . , xn, i.e., I ∩ K[x1, . . . , xi−1], an elimination procedure has to be
carried out. Geometrically speaking, this elimination of indeterminates corresponds to the
projection of the associated variety into [x1, . . . , x1]. This projection can be characterized
using a Gröbner basis of I for lex ordering often designating an elimination ordering.

The precise ordering we use to compute the Gröbner basis of the polynomial systems
occurring in this paper are grevlex or lexdeg ordering.

Finally, we use repeatedly the Radical Membership Theorem:
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Theorem 2.8 ( [18]). Let I = ⟨f1, . . . , fs⟩ be an ideal of K[x1, . . . , xn], then f belongs to√
I if, and only if, ⟨f1, . . . , fs, 1 − yf⟩ = ⟨1⟩ = K[x1, . . . , xn, y].

A finite set of polynomial equations ⟨f1, . . . , fm⟩ ⊂ K[x1, . . . , xn] is said to be incon-
sistent or unfeasible if, and only if, ⟨1⟩ is the corresponding reduced Gröbner basis.

In elimination methods, an efficient certified routine from the RootFinding[Parametric]
package of computer algebra system Maple is called the CellDecomposition, it was in-
troduced in Maple 15. This routine considers systems of parametric algebraic and semi-
algebraic equations and decomposes the parameter space into cells in which the original
system has a constant number of solutions, see for instance [25]. The command returns a
data structure that can be used for plotting the regions of the parameter space for which
the system has a given number of solutions, it can be used for extracting sample points in
the parameter space for which the system has a given number of solutions, as it can be used
for extracting boxes in the parameter space in which the system has a given number of
solutions. The input parametric polynomial system must satisfy the following properties:

(a) The number of equations is equal to or greater than the number of indeterminates
(parameters).

(b) At most finitely many complex solutions exist for almost all complex parameter values
(that is, the system is generically zero-dimensional).

(c) For almost all complex parameter values, there are no solutions of multiplicity greater
than 1 (that is, the system is generically radical); in particular, the input equations are
square-free.

3 Multiplicity-Induced-Dominancy approach
Several methods and techniques has been used to prove the validity of the MID property
such as, in the second-order case, the principle argument under the formalism of Stépán-
Hassard in [12] and the link with the distribution of hypergeometric functions’ zeros in the
GMID property in arbitrary order case in [10]. The next section provides a comprehensive
algorithm allowing to parametrically characterize both GMID and IMID properties.

3.1 MID methodology
The MID property consists of the conditions under which a given multiple root of a
quasipolynomial function is necessarily dominant. Notice that in the generic quasipoly-
nomial function case, the real root of maximal multiplicity is necessarily the dominant
(GMID), see for instance [7, 8] for first and second order time-delay equation. However,
multiple roots with intermediate admissible multiplicities may be dominant or not. Thanks
to this property, an ensued control strategy is proposed in [4, 12], which consists in as-
signing a root with an admissible multiplicity once appropriate conditions guaranteeing
its dominancy have been established.

The proof of the MID property consists of five steps. First, we establish conditions on
the parameters of the system guaranteeing the existence of a multiple root. Second, an
affine change of variable of the characteristic equation is performed in order to reduce the
said quasipolynomial to a normalized form; the desired multiple root becomes 0 and the
delay 1. Next, under the latter normalization, the characteristic equation may be easily
factorized in terms of an integral expression. Hence, we derive a bound on the imaginary
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(C): Conditions in
Frequencyparameters guaranteeing

Characteristic
equation: ∆(s)
Delay: τ > 0

Integrale
representation

∆̃(z) =
∫ 1
0 q(t)K(z, t)dt

∆
(m−1)(s0) = ... = ∆(s0) = 0

∆̃(z0) = 0

ℜ(z0) > 0, ℑ(z0) > 0

0 < ℑ(z0) < π

s0 : multiple Normalization

Scaling of the spectrum:

Normalization of the delay:

∆̃(z) = τ
n
∆̂( z

τ
)

∆̂(λ) = ∆(s− s0)

Under (C):

root root of multiplicity m: bound
Dominancy

Contradiction
argument

1 2 3 4 5

Diagram illustrating the proof methodology of the MID property for time-delay
differential equations.

part of the roots of the normalized quasipolynomial in the complex right half-plane. Lastly,
a certification of the dominance of the multiple root is demonstrated.

The MID methodology is fully detailed in [7] for the case of second order time-delay
equation.

3.2 Frequency bound technique

The fourth step in the MID methodology is to derive an appropriate bound on the imag-
inary part of roots of the normalized quasipolynomial in the complex right half-plane. In
the following, Algorithm 1 (see [7]) is a pseudo-code listing the instructions to be followed
to target a suitable frequency bound.

Algorithm 1: Estimation of a frequency bound for time-delay differential
equations with a single delay

Input: ∆̃(z) = P̃0(z) + P̃τ (z) e−z; // Normalized quasipolynomial
Input: maxOrd; // Maximal order
// Initialization

1 ord = 0; // ord: order of truncation of the Taylor expansion of e2 x;
2 dominance = false;
3 while (not dominance) and (ord ≤ maxOrd) do
4 Set F(x, ω) = |P̃τ (x + ι̇ω)|2 − |P̃0(x + ι̇ω)|2Tord(x);

// Tord(x): Taylor expansion of e2x of order = ord

5 Set H(x, Ω) = F(x,
√

Ω); // H is a polynomial
6 Set Ωk(x) as the k-th real root of H(x, ·);
7 if sup

x≥0
max

k
Ωk(x) ≤ π2 then

8 dominance = true;
9 ord = ord + 1;

Output: Frequency bound: If dominance is true, then |ω| ≤ π for every
root of ∆̃ with positive real part;
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3.3 A toy model
In this section, we present a case study (see [12, 29]). It corresponds to the model of
phenomena in the bio-sciences describing the dynamics of a vector-borne disease.

Consider a model based on a simple scalar delay differential equation with a positive
single delay τ . In its linearized version, the infected host population x(t) is governed by

ẋ(t) + a0 x(t) + a1 x(t − τ) = 0, (3.1)

where a1 > 0 is called the contact rate; it represents the contact number between infected
and uninfected populations. Assume that the infection of the host recovery proceeds expo-
nentially at a rate of −a0 > 0. The characteristic equation of (3.1) is the quasipolynomial
function of degree 2, defined by

∆(s) = s + a0 + a1 e−τ s. (3.2)

The characteristic equation (3.2) admits a real root s0 of maximal multiplicity 2 if, and
only if,

s0 = −a0 τ + 1
τ

, a1 = es0 τ

τ
. (3.3)

It was emphasized that s0 is the rightmost root, and that if s0 < 0 then the zero solution
of system (3.2) is asymptotically stable.

In order to prove that s0 is a dominant root of (3.2), we factorize the characteristic
equation ∆ under an integral representation as:

∆(s) = (s − s0)
(

1 −
w 1

0
e−τ (s−s0) t

)
d t (3.4)

which cannot be satisfied for any spectral value s with ℜ(s) > s0.
As a matter of fact, if s1 = x + ι̇ ω such that s1 ̸= 0 is a root of the factorized

quasipolynomial (3.4), then, s1 is a root of its second factor, i.e.,

1 −
w 1

0
e−τ (s1−s0) t = 0.

Hence, we obtain
1 =

w 1

0
e−τ (x−s0) t. (3.5)

But, e−τ (x−s0) t < 1 for x − s0 > 0 and t ∈ (0, 1) which leads to the dominancy of s0.

3.4 Parametric MID property in second-order systems
The control design method resulting from the MID property, which consists in forcing a
given quasipolynomial to have a root of a prescribed multiplicity, allows under appropriate
conditions to characterize the rightmost root. Indeed, this multiplicity constraint defines
a manifold in the parameter space enabling the tuning of the gains bk when the delay τ
is left free and guaranteeing the exponential stability of the closed-loop system solution.
The next theorem, which is based on the MID property, gives the explicit conditions on
the parameters’ values guaranteeing a targeted multiplicity. Recall that the multiplicity
of a given root of the generic quasipolynomial (2.1) is bounded by its degree; that is, 4
is the bound of multiplicity. However, forcing such a multiplicity must not constrain the
physical model’s parameters.
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Theorem 3.1 (GMID). Let ∆ be the generic quasipolynomial function in (2.1). The
following assertions hold:

(a) The multiplicity of a given spectral value s0 of the quasipolynomial function ∆ is
bounded by 4.

(b) The quasipolynomial function ∆ admits a real spectral value of maximal multiplicity
4 if, and only if, the following relations are satisfied

a0 = s02τ2+4 τ s0+6
τ2 ,

a1 = −2 τ s0+2
τ ,

b0 = 2 τ s0−3
τ2e−τ s0 ,

b1 = −2 1
τ e−τ s0 .

(3.6)

In addition, if relations (3.6) are satisfied, then s0 is necessarily a dominant root of ∆.

Proof. First, we write the generic quasipolynomial function (2.1) under the form

∆(s) = P0(s) + Pτ (s) e−τ s, (3.7)

where {
P0(s) = s2 + a1 s + a0,

Pτ (s) = b1 s + b0.
(3.8)

Normalization: Performing the translation and scaling of the spectrum by the following
change of variables ∆̂(z) = τ ∆( z

τ + s0) for z ∈ C, we get the following normalized
characteristic equation

∆̂(z) = z2 + α1 z + α0 + (β1z + β0) e−z

with relations (3.6) normalized as follows
α1 = (a1 + 2 s0) τ,

α0 =
(
a1s0 + s0

2 + a0
)

τ2,

β0 = (b1s0 + b0) τ2 e−τ s0 ,

β1 = b1 τ e−τ s0 .

(3.9)

Integral representation: The real root s0 is a root of multiplicity 4 of ∆ if, and only
if, 0 is a root of multiplicity 4 of ∆̂. As a matter of fact, since ∆̂ is a quasipolynomial
of degree 4, zero is a root of multiplicity 4 of ∆̂ if, and only if, ∆̂(0) = ∆̂′(0) = ∆̂′′(0) =
∆̂′′′(0) = 0. These identities yield a linear system whose unique solution is (α1, α0, β1, β0) =
(−4, 6, −2, −6). From relations (3.9), one concludes that s0 is a root of multiplicity 4
of ∆ if, and only if, relations (3.6) hold. Moreover, under the latter conditions, the
quasipolynomial ∆ reduces to

∆̂(z) = z2 − 4 z + 6 + (−2 z − 6) e−z (3.10)

Following [10] the normalized quasipolynomial ∆̂ can be written in terms of Kummer
hypergeometric functions as follows:

∆̂(z) = 1
12 z4 M(2, 5, −z).

11



Also, the quasipolynomial ∆̂ admits the following Fredholm integral representation

∆̂(z) =
w 1

0
q(t) K(z, t) dt

where
q(t) = t (t − 1)2 , and K(z, t) = z4e−t z,

which is easily verified via an integration by parts. Note that in our approach, the poly-
nomial q should keep a constant sign for t ∈ (0, 1), which is satisfied here.
Frequency bound: We write the quasipolynomial ∆̂ under the form

∆̂(z) = P̂0(z) + P̂1(z) e−z, (3.11)

with {
P̂0(z) = z2 − 4 z + 6,

P̂1(z) = −2 z − 6.
(3.12)

and assume that z = x + ι̇ω ∈ R+ + ι̇R+ is a root of ∆̂, so that ∆̂(z) = 0 if, and only if,

|P̂0(x + iω)|2 e2 x = |P̂1(x + iω)|2.

Considering a truncation of order 1 of the exponential term e2 x, the latter is lower bounded
by 1 + 2x. Next, define

F (x, ω) = |P̂1(x + iω)|2 − (1 + 2x) |P̂0(x + iω)|2

where F > 0 for any x > 0. The zeros of F are characterized by the first order polynomial

G(Ω, x) = − (1 + 2 x) Ω2 − 2 x2 (2 x − 7) Ω − 2 x5 + 15 x4 − 48 x3 + 72 x2,

where Ω = ω2. The polynomial function G admits for x ∈ (0, 3
2 + 3

√
2

2 ) two real roots:

Ω±(x) = x

1 + 2 x

(
−2 x2 ± 2

√
−8 x2 + 24 x + 18 + 7 x

)
(3.13)

where Ω+ denotes the greater solution at x which reaches a maximum value at x∗ ≈ 1, 93.
As a result, Ω+ is bounded by Ω∗ ≈ 7, 07 < π2. Thus, one obtains the desired frequency
bound, 0 < ω < π.
Dominancy: The proof of the dominance is based on a contradiction. To do so, assume
that there exists z = x+ ι̇ω ∈ R+ + ι̇R+ root of ∆̂. Using the fact that z is a non-zero root
of ∆̂, one may infer from the Fredholm integral representation, by taking the imaginary
part, that w 1

0
t (t − 1)2 sin(t ω) e−t x dt = 0.

Since ω < π from the previous step (Frequency bound), the function t 7→ t (t − 1)2 sin(t ω)
is strictly positive in (0, 1), which contradicts the above equality as required to end the
proof.

Theorem 3.2 (IMID: codimension 3). Let ∆ be the generic quasipolynomial function in
(2.1). The following assertions hold.

(a) If the parameters a0, a1 and τ are left free, then s0 is a real root of multiplicity 3 of
(2.1) if, and only if, s0 is a root of the elimination-produced polynomial

P(s) = τ2s2 + (a1τ + 4) τ s + τ2a0 + 2 τ a1 + 2. (3.14)
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(b) The root s0 of (2.1) has multiplicity 3 if, and only if, s0 is real and the system
parameters satisfy: 

b0 =
(
τ2a1s0 + 2 τ2a0 + 6 τ a1 + 10 τ s0 + 6

)
eτ s0

τ2 ,

b1 =(τ a1 + 2 τ s0 + 2) eτ s0

τ
.

(3.15)

(c) In addition, if the following conditions are satisfied:

(i) −2 (τ s0+1)
τ < a1 < −2 s0,

(ii) −8−(a1+2 s0)2τ2+(−8 a1−16 s0)τ
4 τ2 < a0 < −2+(−2 a1−4 s0)τ

τ2 (a1 ≤ 0)∨
(
0 < a1 ∧ s0 < −a1

2
)
,

then the assigned root s0 is necessarily a dominant root of ∆.

The proof of item (c) in Theorem 3.2 requires the following propositions dealing with
algebraic properties of polynomials.

Proposition 3.3 (Hurwitz and Real-rooted elimination-produced-polynomial). Let P be
the elimination-produced polynomial defined in (3.14), then P admits two negative roots if,
and only if,

(a) a1 < −2 s0,

(b) −8−(a1+2 s0)2τ2+(−8 a1−16 s0)τ
4 τ2 < a0 < −2+(−2 a1−4 s0)τ

τ2 (a1 ≤ 0)∨
(
0 < a1 ∧ λ0 < −a1

2
)

.

Proof. Consider the following new parametrization

σ = (a1 + 2 s0) τ, δ = a0 τ2, z = s0 τ. (3.16)

Under the above reparametrization, the elimination-produced polynomial P in (3.14) is
reduced to

P̃(z) = −z2 + (z + 2) σ + δ + 2. (3.17)

Using the Maple routine CellDecomposition of the RootFinding[Parametric] package,
considering that z < 0, we compute a set of polynomials whose zeros define a discriminant
variety of the parametric equation P̃(z) = 0 as well as a cylindrical algebraic decomposition
of the complementary of this discriminant variety, which yields six cells Ci, for i = 1, 2, ..., 6
(see Figure 3.1). For each cell, we have a sampling point strictly in the interior of the cell.
Only one cell is of interest that is C2 as shown in figure 3.1. A description of C2 in terms
of real roots is to be interpreted as follows: a point [δ, σ] in the parameter space belongs
to the cell C2 if, and only if,

σ < 0, and − σ2

4 − 2 σ − 2 < δ < −2 σ − 2, (3.18)

which concludes the announced result.

In the following, we proceed with the normalization and integral representation of the
characteristic equation ∆.
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Figure 3.1: (Left): A chart of the number of real zeros in the parameter space
(δ, σ). (Right): The cell C2 where there exist two negative roots for the elimination-
produced-polynomial P̃ (P̃ is real-rooted and has negative roots). The notation
(Ci, n) for i = 1, · · ·, 6, stands for the ith cell with n the corresponding number of
zeros in the cell satisfying some algebraic equations.

Proposition 3.4 (Normalization and Integral representation of the characteristic func-
tion). Let ∆ be the quasipolynomial function in 2.1, then the normalization of ∆ under
conditions (3.15) is given by

∆̃(z) = ((σ + 2) z + 2 σ + 2) e−z + z2 + σ z − 2 σ − 2, (3.19)

where the parameter σ depends on the original parameters a1, s0 and τ as defined in (3.16).
In addition, the quasipolynomial function ∆̃ may be represented under integral form as
follows:

∆̃(z) =
w 1

0
qσ(t) K(z, t) dt (3.20)

where
qσ(t) = (−σ − 1) t2 + σ t + 1, and K(z, t) = z3e−t z. (3.21)

In our approach, the sign constancy of the polynomial qσ defined previously for t ∈
(0, 1) is necessary. It is the purpose of the next proposition.

Proposition 3.5 (Constancy sign of qσ). Let qσ be the polynomial with respect to t defined
in (3.21). Then, qσ keeps a constant sign for t ∈ (0, 1) if, and only if,

a1 > −2
(

s0 + 1
τ

)
(3.22)

Proof. Note that qσ admits two real roots:

t1 = 1, and t2 = − (σ + 1)−1 . (3.23)

Therefore, qσ is of constant sign for t ∈ (0, 1), if the real root t2 satisfies either t2 ≤ 0 or
t2 > 1. We conclude that qσ is of constant sign for t ∈ (0, 1) if, and only if ,

σ > −2, (3.24)

which completes the proof.
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By the following proposition we characterize the region in the parameters’ space where
the elimination-produced-polynomial P is Hurwitz and real-rooted, and the integrand qσ

is of constant sign for t ∈ (0, 1).

Proposition 3.6 (Admissible region for a frequency bound). Let P be the elimination-
produced-polynomial P defined in (3.14), and qσ defined in (3.21). Then, P is Hurwitz,
real-rooted and qσ is of constant sign for t ∈ (0, 1) if, and only, if

(a) −2 (τ s0+1)
τ < a1 < −2 s0,

(b) −8−(a1+2 s0)2τ2+(−8 a1−16 s0)τ
4 τ2 < a0 < −2+(−2 a1−4 s0)τ

τ2 (a1 ≤ 0)∨
(
0 < a1 ∧ s0 < −a1

2
)
.

Proof. In a similar way as for the proof of Proposition 3.3, we use again the Maple routine
CellDecomposition with the addition, this time around, of the conditions of the constancy
of the sign of qσ in (3.24) to the vanishing of the elimination-produced-polynomial P̃(z) = 0,
as well as the negativity of the assigned root z < 0. Hence, we obtain nine cells only one
of which is of interest, that is, C5, as shown in figure 3.2. By exploiting its algebraic
characterization, we infer the announced result.

Figure 3.2: (Left): A chart of the number of real zeros in the parameter space (δ, σ)
where the constancy sign of qσ is satisfied for t ∈ (0, 1). (Right): The cell C5 where
there exist two negative roots for the elimination-produced-polynomial P (it is real
rooted and has negative roots). The notation (Ci, n) for i = 1, · · ·, 9, stands for
the ith cell with n the corresponding number of zeros in the cell satisfying some
semi-algebraic equations.

After characterizing the regions where qσ is of constant sign for t ∈ (0, 1) and P is
Hurwitz and real-rooted, we are able to establish a frequency bound on roots of ∆̃.

Proposition 3.7 (Frequency bound). Let ∆̃ be the quasipolynomial function given in
(3.19). If ∆̃ has a root s ∈ R+ + ι̇R+ and σ ∈ (−2, 0), then 0 < ℑ(s) < π.

Proof. Let z = x + iω ∈ R+ + iR+ be a root of

∆̃(z) = P̃0(z) + P̃1(z) e−z (3.25)
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with

P̃1(z) = (σ + 2) z + 2 σ + 2, (3.26)
P̃0(z) =z2 + σ z − 2 σ − 2, (3.27)

as defined in (3.19). The complex number z satisfies the following equality

|P̃0(x + iω)|2e2 x = |P̃1(x + iω)|2. (3.28)

Since e2 x > 1, the function

Fσ(x, ω) = |P̃1(x + iω)|2 − |P̃0(x + iω)|2 (3.29)

satisfies Fσ(x, ω) > 0. Moreover, the zeros of Fσ can be characterized by a polynomial of
degree 2 in Ω = ω2:

Gσ(Ω, x) = −Ω2 +
(
−2 σ x − 2 x2

)
Ω − x4 − 2 σ x3 + (8 σ + 8) x2 + 8 (σ + 1)2 x. (3.30)

In our approach, one needs to guarantee the positivity of Gσ, i.e., one has to investigate
conditions on the sign of the discriminant of Gσ which is defined by the following second
degree polynomial in x

Dσ(x) = 4
(
σ2 + 8 σ + 8

)
x2 + 32 (σ + 1)2 x. (3.31)

The latter discriminant satisfies the following.

• If σ ∈ (−4 + 2
√

2, 0), then Dσ > 0 for x ∈ (x0, ∞)

• If σ ∈ (−2, −4 − 2
√

2), then Dσ > 0 for x ∈ (0, x0)

where
x0 = − 8 (σ + 1)2

σ2 + 8 σ + 8 . (3.32)

In both cases above, Gσ admits the following two real roots

Ω±
σ (x) = −x2 − σ x ±

√
(σ2 + 8 σ + 8) x2 + (σ2 + 16 σ + 8) x (3.33)

where Ω+
σ denotes the greater solution which is upper bounded with respect to σ by

Ω+(x) = −x2 +
√

8 x2 + 8 x. (3.34)

The above function in (3.34) reaches a maximum value at x∗ ≈ 1.46. As a result, Ω+
σ

is bounded by Ω+(x∗) ≈ 3.23 < π2. Thus, one obtains the desired frequency bound
ω < π. Figure 3.3 shows how the parameter expression of Ω+

σ is bounded by Ω+(x∗) for
σ ∈ (−2, 0).

Proof. (Proof of Theorem 3.2) First, equation ∆(s) = 0, yields the elimination of the
exponential term as a rational function in s:

e−τ s = −P0(s)
Pτ (s) . (3.35)
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Figure 3.3: A three-dimensional plot corresponding to Ω+
σ , showing its maximum is

reached at the boundary of σ ∈ (−2, 0).

Next, to investigate potential roots with algebraic multiplicity 3, one substitutes the expo-
nential term as obtained in (3.35) in the ideal generated by the first and second derivatives
of ∆, that is, I2 =< ∂s∆, ∂2

s ∆ >. This leads to the investigation of the following variety
of two algebraic equations in 6 unknowns b0, b1, a0, a1, s, τ :

(
−s2τ + (−τ a1 + 2) s − τ a0 + a1

)
b0

+
(
−s3τ + (−τ a1 + 3) s2 + (−τ a0 + 2 a1) s + a0

)
b1 = 0,(

s2τ2 + sτ2a1 + τ2a0 + 2
)

b0

+
(
s3τ2 +

(
τ2a1 − 2 τ

)
s2 +

(
τ2a0 − 2 τ a1 + 2

)
s − 2 τ a0

)
b1 = 0.

(3.36)

The above system is a linear system in the unknowns b0 and b1. Using standard
elimination techniques, one obtains a solution that can be substituted in (3.35) which
yields the explicit values of the gain bk (k = 0, 1) allowing to tune the parameters as
provided in (3.15).

Now, assume that there exists s∗ ∈ C − R such that P(s∗) = 0 and the coefficients
bk(s∗, a1, τ) ∈ R (k = 0, 1). So that, one substitutes s∗ = x + i ω with x ̸= 0 and ω ̸= 0 in
the expressions of bk (k = 0, 1) and defines an ideal IR (where the index R stands for the
realness of the gains bk).

As suggested in the previous Section 2.3, one computes a Gröbner basis with respect
to the elimination order lex; eliminating the unknowns a1 and τ . Hence, a basis of 3
elements G = ⟨G1, G2, G3⟩ is incurred where

G1 = ω2,

G2 = 4 x2 + 4 xa1 + 3 a1
2 − 8 a0,

G3 = (−a1
2 + 4 a0)τ + 4 x + 2 a1.

The first element of the Gröbner basis G indicates that a solution of the multivariate
system exists only if ω = 0.
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In order to prove item (c), Propositions 3.6 gives the conditions on the systems’ parameters
a0 and a1. To conclude the dominance, we proceed by contradiction. To do so, assume
that there exist z = x + ι̇ ω ∈ R+ + ι̇R+ root of ∆̃, then using the fact that z is a non-zero
root of ∆̃, we infer from the integral representation of ∆̃, by taking the imaginary part,
that w 1

0

[
(−σ − 1) t2 + σ t + 1

]
sin(t ω) e−t x dt = 0. (3.37)

Since ω < π, following Proposition 3.7 the function t 7→
(
(−σ − 1) t2 + σ t + 1

)
sin(t ω)

is strictly positive in (0, 1), which contradicts the above equality as required to end the
proof.

Remark 3.8. From a control viewpoint, the controllers’ gains have to be real. What we
care about is related to the elimination-produced polynomial. In fact, the elimination-
produced polynomial should have at least one real-root but since it is of degree 2 then
only one case is of interest; the elimination-produced polynomial with two real roots. More
precisely, in the case of real-rooted elimination-produced polynomial, the corresponding
roots need to be negative to be admissible assignable roots for the initial quasipolynomial
∆.

Remark 3.9. Note that the quasipolynomial ∆ can be further written as a combination
of two Kummer functions as

∆̃(z) = z3
[1

3 (−1 − σ) M (1, 4, −z) + 1
2

(
σ + 1

2

)
M (1, 3, −z)

]
. (3.38)

Remark 3.10. Notice that an alternative proof relying on of the principle argument and
using the Stépán-Hassard approach can be found in [12]. It is of important note that s+
of Theorem 4.2 [12] corresponds to s0 in Theorem 3.2.

4 Damping oscillations
In this section, we consider the oscillation damping of the classical oscillator. To this aim,
consider the following control system

ẍ(t) + 2 ω ξ ẋ(t) + ω2x(t) = u(t) (4.1)

where x(t) is a real valued function, 0 < ξ < 1 and ω ∈ R+ are respectively the damping
factor and the natural frequency of the oscillator and u(t) is the delayed output of the
system. Under no control, the characteristic polynomial of this equation is:

∆0(s) = s2 + 2ξ ω s + ω2, (4.2)

and the corresponding spectral abscissa is given by

ρ0 = −ξ ω.

In particular, ρ0 < 0 and the system is exponentially stable. Choosing now a control:

u(t) = −α1 ẋ(t − τ) − α0 x(t − τ),

where α0, α1 ∈ R, then, the closed-loop equation yields:

∆(s) = s2 + 2ξ ω s + ω2 + (α1 s + α0) e−τ s.
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In order to place the characteristic roots, one may appropriately choose the coefficients
α0 and α1 which allow to obtain arbitrary values for the corresponding spectral abscissa,
and hence arbitrary exponential decay rates for the solutions. In particular, assigning a
negative dominant spectral value enables the oscillation quenching.

Theorem 3.1 ensures that the quasipolynomial function ∆ admits a real spectral value
of maximal multiplicity 4 if, and only if, the following relations are satisfied

ω =
√

s2
0τ2+4τs0+6

τ ,

ξ = − τs0+2√
s2

0τ2+4τs0+6
,

b0 = 2τs0−6
τ2e−τs0 ,

b1 = − 2
τ e−τs0 ,

(4.3)

and under which s0 is necessarily the dominant root of ∆. Interestingly, solving the first
two equalities in (4.3), yields the precise value of the assigned root s0 as well as the delay
which is seen as a control parameter. Indeed, one obtains:s0 = −

(√
2 ξ+2

√
−ξ2+1

)√
2 ω

2 ,

τ =
√

2√
−ξ2+1 ω

,
(4.4)

Obviously, the assigned root s0 given in (4.4) not only eliminates the closed-loop system
oscillations but also improves the corresponding decay rate.

As precised in [10], the GMID does not allow any degree of freedom in assigning s0.
In order to allow for some additional freedom when assigning s0, which is important from
robustness perspectives, one can relax such a constraint by forcing the root s0 to have a
multiplicity lower than the maximal.

Theorem 3.2 also asserts that s0 is a real root of multiplicity 3 of (2.1) if, and only if,
s0 is a root of the elimination-produced polynomial

P(s) = τ2s2 + (2ωτξ + 4) τs + ω2τ2 + 4ωτξ + 2. (4.5)

The root s0 of (2.1) has multiplicity 3 if, and only if, the control gains satisfy:
b0 =2 eτs0

(
3 + ω (ξs0 + ω) τ2 + (6ξω + 5s0) τ

)
τ2 ,

b1 =2 eτs0 (1 + (ξω + s0) τ)
τ

.

(4.6)

From Theorem (3.2), an effective admissible region for the frequency bound is described
by the following conditions on the two parameters ω and ξ

(a) − (τ s0+1)
τ ω < ξ < − ω

s0
, with s0 < − 1

τ ∨ s0 < −ω

(b)
√

−2−(ξω+s0)2τ2−(4ξω+4s0)τ
τ2 < ω <

√
−2(2ωτξ+2τs0+1)

τ2 , with

−2 −
√

2 − ωτξ

τ
< s0 <

−2 +
√

2 − ωτξ

τ
.

Remark 4.1. The obtained constraints on the root s0 represent a valuable information
on the assignment region.
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Figure 4.1: (Left): Spectrum distribution of ∆0 and ∆. (Right): Comparison
between the open-loop solution with u(t) = 0 and the closed-loop solution for
ξ = 0.2, ω = 6 and τ = 0.5.

5 Conclusion
This chapter provided a systematic study of the Multiplicity-Induced-Dominancy (MID)
property in parametric second-order retarded differential equations. The latter property
enables a delayed-control strategy allowing a proper assignment of the trivial solution’s
decay rate. Owing to the presented design-algorithm, the method can be easily extended
to higher-order systems such as in [29], to neutral systems such as in [7], or even to the
design of some classes of partial differential equations such as in [3,10]. Finally, to illustrate
its applicability, the damping of oscillations of the standard oscillator has been considered
and treated.

References
[1] L. V. Ahlfors. Complex Analysis. McGraw-Hill, 1979.

[2] K. A. Astrom and R. M. Murray. Feedback Systems: An Introduction for Scientists
and Engineers. Princeton Univ. P., 2009.

[3] J. Auriol, I. Boussaada, R. J. Shor, H. Mounier, and S.-I. Niculescu. Comparing
advanced control strategies to eliminate stick-slip oscillations in drillstrings. IEEE
Access, 10:10949–10969, 2022.

[4] T. Balogh, I. Boussaada, T. Insperger, and S.-I. Niculescu. Conditions for stabiliz-
ability of time-delay systems with real-rooted plant. International Journal of Robust
and Nonlinear Control, 2021.

[5] M. Bardet, I. Boussaada, A. Chouikha, and J.-M. Strelcyn. Isochronicity condi-
tions for some planar polynomial systems {II}. Bulletin des Sciences Mathématiques,
135(2):230 – 249, 2011.

20



[6] F. Bedouhene, I. Boussaada, and S.-I. Niculescu. Real spectral values coexistence
and their effect on the stability of time-delay systems: Vandermonde matrices and
exponential decay. Comptes Rendus. Mathématique, 358(9-10):1011–1032, 2020.

[7] A. Benarab, I. Boussaada, K. Trabelsi, and C. Bonnet. Multiplicity-induced-
dominancy property for second-order neutral differential equations with application
in oscillation damping. European journal of Control, page 100721, 2022.

[8] A. Benarab, I. Boussaada, K. Trabelsi, G. Mazanti, and C. Bonnet. The mid property
for a second-order neutral time-delay differential equation. In 2020 24th International
Conference on System Theory, Control and Computing (ICSTCC), pages 7–12. IEEE,
2020.

[9] I. Boussaada, A. Chouikha, and J.-M. Strelcyn. Isochronicity conditions for some
planar polynomial systems. Bulletin des Sciences Mathématiques, 135(1):89–112,
2011.

[10] I. Boussaada, G. Mazanti, and S.-I. Niculescu. The generic multiplicity-induced-
dominancy property from retarded to neutral delay-differential equations: When
delay-systems characteristics meet the zeros of kummer functions. To appear in:
Comptes Rendus Mathématique, 2021.

[11] I. Boussaada, G. Mazanti, and S.-I. Niculescu. Some remarks on the location of non-
asymptotic zeros of Whittaker and Kummer hypergeometric functions. Bull. Sci.
Math., 174:Paper No. 103093, 2022.

[12] I. Boussaada, S.-I. Niculescu, A. El Ati, R. Pérez-Ramos, and K. L. Trabelsi.
Multiplicity-induced-dominancy in parametric second-order delay differential equa-
tions: Analysis and application in control design. ESAIM: Control, Optimisation and
Calculus of Variations, 2019.

[13] I. Boussaada, S. Tliba, S.-I. Niculescu, H. U. Ünal, and T. Vyhlídal. Further remarks
on the effect of multiple spectral values on the dynamics of time-delay systems. ap-
plication to the control of a mechanical system. Linear Algebra and its Applications,
542:589–604, 2018.

[14] I. Boussaada, H. U. Unal, and S.-I. Niculescu. Multiplicity and stable varieties of time-
delay systems: A missing link. In 22nd International Symposium on Mathematical
Theory of Networks and Systems (MTNS), 2016.

[15] Y. M. Bouzidi, A. Quadrat, and F. Rouillier. Certified Non-conservative Tests for the
Structural Stability of Discrete Multidimensional Systems. Multidimensional Systems
and Signal Processing, 30(3):31, July 2019.

[16] D. Brethé and J. Loiseau. A result that could bear fruit for the control of delay-
differential systems. In Proc. 4th IEEE Mediterranean Symp. Control Automation,
pages 168–172, 1996.

[17] H. Buchholz. The confluent hypergeometric function with special emphasis on its
applications, volume 15 of Springer Tracts in Natural Philosophy. Springer-Verlag,
1969.

[18] D. Cox, J. Little, and D. O’Shea. Ideals, varieties, and algorithms. An introduction
to computational algebraic geometry and commutative algebra. Springer, 2007.

21



[19] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. Tricomi. Higher transcendental
functions. Vol. I. Robert E. Krieger Publishing Co., Inc., Melbourne, Fla., 1981.

[20] J.-C. Faugère. Fgb salsa software.

[21] G. Garreau. Real and complex analysis, 1987.

[22] B. Hassard. Counting roots of the characteristic equation for linear delay-differential
systems. Journal of Differential Equations, 136(2):222–235, 1997.

[23] E. Hille. Oscillation theorems in the complex domain. Trans. Am. Math. Soc,
23(4):350–385, 1922.

[24] T. Insperger, J. Milton, and G. Stepan. Semi-discretization and the time-delayed pda
feedback control of human balance. IFAC-PapersOnLine, 48(12):93–98, 2015.

[25] D. Lazard and F. Rouillier. Solving parametric polynomial systems. Journal of
Symbolic Computation, 42(6):636–667, 2007.

[26] D. Ma, I. Boussaada, J. Chen, C. Bonnet, S.-I. Niculescu, and J. Chen. Pid con-
trol design for first-order delay systems via mid pole placement: Performance vs.
robustness. Automatica, 137:110102, 2022.

[27] A. Manitius and A. Olbrot. Finite spectrum assignment problem for systems with
delays. IEEE Trans. Automat. Contrl, 24(4):541–552, 1979.

[28] M. Marden. Geometry of polynomials, number 3 in geometry of polynomials. Amer-
ican Mathematical Society, Providence, Rhode Island, USA, 1949.

[29] G. Mazanti, I. Boussaada, and S.-I. Niculescu. Multiplicity-induced-dominancy for
delay-differential equations of retarded type. Journal of Differential Equations,
286:84–118, 2021.

[30] G. Mazanti, I. Boussaada, S.-I. Niculescu, and Y. Chitour. Effects of roots of maximal
multiplicity on the stability of some classes of delay differential-algebraic systems:
The lossless propagation case. In Proceeding of 24th ISMTNS, IFAC-PapersOnLine,
Cambridge, UK, 2021.

[31] G. Mazanti, I. Boussaada, S.-I. Niculescu, and T. Vyhlídal. Spectral dominance of
complex roots for single-delay linear equations. In IFAC 2020 - 21st IFAC World
Congress, IFAC-PapersOnLine, Berlin, Germany, 2020. IFAC.

[32] W. Michiels, I. Boussaada, and S.-I. Niculescu. An explicit formula for the splitting
of multiple eigenvalues for nonlinear eigenvalue problems and connections with the
linearization for the delayeigenvalue problem. SIAM Journal on Matrix Analysis and
Applications, 38(2):599–620, 2017.

[33] W. Michiels, K. Engelborghs, P. Vansevenant, and D. Roose. Continuous pole place-
ment for delay equations. Automatica, 38(5):747–761, 2002.

[34] W. Michiels and S. Niculescu. Stability, control, and computation for time-delay
systems: An eigenvalue-based approach, volume 27 of Advances in Design and Control.
Soc. Ind. Appl. Math, Philadelphia, PA, second edition, 2014.

22



[35] S. Mondié and W. Michiels. Finite spectrum assignment of unstable time-delay sys-
tems with a safe implementation. IEEE Trans. Automat. Contrl, 48(12):2207–2212,
2003.

[36] S.-I. Niculescu. Delay effects on stability: a robust control approach, volume 269.
Springer Science & Business Media, 2001.

[37] N. Olgac, T. Vyhlidal, and R. Sipahi. Exact stability analysis of neutral systems with
cross-talking delays. IFAC Proceedings Volumes, 39(10):175–180, 2006.

[38] F. Olver, D. Lozier, R. Boisvert, and C. Clark, editors. NIST Handbook of Mathe-
matical Functions. U.S. Department of Commerce, National Institute of Standards
and Technology, Washington, DC; Cambridge University Press, Cambridge, 2010.

[39] G. Orosz, R. E. Wilson, and G. Stépán. Traffic jams: dynamics and control, 2010.

[40] D. Pilbauer, T. Vyhlidal, and N. Olgac. Delayed resonator with distributed delay in
acceleration feedback—design and experimental verification. IEEE/ASME Transac-
tions on Mechatronics, 21(4):2120–2131, 2016.

[41] E. Pinney. Ordinary difference-differential equations. Univ. California Press, 1958.

[42] A. Ramírez, S. Mondié, R. Garrido, and R. Sipahi. Design of proportional-integral-
retarded (PIR) controllers for second-order LTI systems. IEEE Trans. Automat.
Control, 61(6):1688–1693, 2016.

[43] V. Romanovski and D. Shafer. The center and cyclicity problems: a computational
algebra approach. Birkhäuser Boston Inc., Boston, MA, 2009.

[44] R. Sipahi, S.-I. Niculescu, C. T. Abdallah, W. Michiels, and K. Gu. Stability and
stabilization of systems with time delay. IEEE Control Systems Magazine, 31(1):38–
65, 2011.

[45] G. Stépán. Retarded dynamical systems: stability and characteristic functions. Pit-
man Research Notes in Mathematics Series. 1989.

[46] T. Vyhlidal, N. Olgac, and V. Kucera. Delayed resonator with acceleration feedback–
complete stability analysis by spectral methods and vibration absorber design. Jour-
nal of Sound and Vibration, 333(25):6781–6795, 2014.

[47] T. Vyhlidal, D. Pilbauer, B. Alikoç, and W. Michiels. Analysis and design aspects of
delayed resonator absorber with position, velocity or acceleration feedback. Journal
of Sound and Vibration, 459:114831, 2019.

23


	1 Introduction
	2 Prerequisites
	2.1 The Stépán-Hassard approach
	2.2 Special functions in control design
	2.3 Background on Gröbner basis and elimination techniques

	3 Multiplicity-Induced-Dominancy approach
	3.1 MID methodology
	3.2 Frequency bound technique
	3.3 A toy model
	3.4 Parametric MID property in second-order systems

	4 Damping oscillations
	5 Conclusion

