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Some Remarks on the Pendulum Stabilization.
Multiple Delays & Decay Rate Assignment

Amira Remadna1, Islam Boussaada2,3, Fazia Bedouhene4, Silviu-Iulian Niculescu2, Azzedine Benchettah1

Abstract—A series of recent works have highlighted the interest
of multiplicity varieties in the characterization of the exponen-
tial decay rate for the solution of linear dynamical systems
represented by delayed differential equations. In fact, it has
been shown in the case of a single delay that a sufficiently
high multiplicity spectral value tends to be dominant, in what
is now known as the multiplicity-induced-dominance property
(MID). Despite the many existing results in such a configuration,
only a few concern the case of multiple delays. Through this
work, we propose a first characterization of the MID property
for second-order systems controlled by a two-delay ”block”. As
an application of the results obtained, we consider the problem
of stabilization of the classical pendulum with exclusive access to
the delayed position.

Index Terms—Delay; exponential stability; multiplicity-
induced-dominancy (MID).

I. INTRODUCTION

Delays are usually used in modeling a large variety of nat-
ural phenomena, from transport and propagation phenomena,
signal transmission in communication networks to population
dynamics. Further examples can be found in [1]–[5] and the
references therein. As mentioned in [6], many methods and
tools have been suggested in the literature to address the
stability problems (see, e.g., [7]–[10]).

In the particular case of time-invariant (LTI) delay sys-
tems (DDE), an interesting and unexpected property, called
multiplicity-induced-dominancy (MID) which, to the knowl-
edge of the authors, has not been sufficiently explored in
the literature. Specifically, the MID property simply means
that the characteristic root of maximal multiplicity is none
other than the spectral abscissa1 of the dynamic system.
As indicated in [11], [12], this property opens up a rather
interesting perspective from a control point of view by the so-
called partial placement of the poles method which ensures the
location of the remaining roots on the left with respect to the
dominant characteristic root in the complex plane. The [13]
reference contains many discussions of existing methods for
characterizing multiple roots, including also the MID property.
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1A more in-depth discussion of the spectral abscissa can be found in [3].

The case of the maximal allowed multiplicity2 of a char-
acteristic root, defined as the generic MID property, has been
examined in [11], [12] for LTI DDEs including a single delay
in their models, where a full characterization of such property
is given, based on some analytical properties of Kummer and
Whittaker confluent hypergeometric functions, which prove to
be a powerful tool for the factorization of the corresponding
characteristic functions as well as the spectrum location of the
non-asymptotic zeros. The work [14] extends and completes
the previous ones in the sense that it deals the stabilizing effect
of the delay parameter coupled when considering the question
of the coexistence of the maximum number of distinct real
spectral values.

It should be emphasized that although the method has shown
its effectiveness, it has certain shortcomings, in particular,
that it cannot be applied systematically to the case of spec-
tral values with intermediate multiplicity, which represents
a disadvantage of the method. Nevertheless, as discussed in
[15], such shortcomings can be overcome using arguments that
exploit the structure of the system, the MID property is also
valid for spectral values with intermediate multiplicities. Other
different arguments have been proposed in [16] for certain
classes of unstable systems using tuning PID controller. How-
ever, extending the methods in [15], [16] to a more general
framework is not a trivial matter. Recently, in [17], a new
technique is introduced based on crossing imaginary roots.
Such a technique allows to conclude that the MID property
holds for scalar delay-differential equations with two delays.
Besides the fact that many real-world systems naturally have
more than one delay, an important incentive for investigating
the stability and stabilization of multi-delay systems is the
fact that additional delays can enhance stability conditions,
as seen, for example in [17]. Notice, that on beyond of the
characterization of the MID property, the contribution [17]
provides a method based on the continuous dependency of the
spectrum on parameters variation, which can be generalized
for investigating the MID property for higher order systems
with two-delays.

The purpose of this paper is to address the MID property
for a second-order DDE including two delays in the model.
More precisely, the contribution of the paper is threefold. First,
we provide necessary and sufficient conditions guaranteeing
the existence of a spectral value with maximal multiplicity.
Second, we recall the steps of the approach described in
[17]. The resulting algorithm, which essentially exploits the

2i.e., which corresponds to the degree of the quasi-polynomial



analytical properties of the root branches of the normalized
quasipolynomial and the behavior of the latter when the two
delays are close, will be applied to deduce the MID property
for the spectral value with maximal multiplicity. Finally, in
order to illustrate the potential of the proposed approach in
application, we consider the problem of the stabilization of
the classical pendulum with an exclusive access to delayed
position.

The remaining paper is organized as follows. Section II
includes some important definitions and facts about quasipoly-
nomials and presents the methodology used in the MID
property investigation. In Section III, the control problem of
stabilization of the classical pendulum with a prescribed decay
rate is considered. Section IV is devoted to the statement as
well as the proof of the main result. Section V is a direct
application of the MID property in the design of delayed pro-
portional controller able in stabilizing the classical pendulum
with a prescribed decay rate. The notations are standard.

II. PREREQUISITES AND PROBLEM STATEMENT

Definition II.1. 1) A quasipolynomial, Q, is a complex
valued function Q : C → C of the form

Q(s) =
m∑
j=0

Pj(s)e
τjs, (1)

where m is a non-negative integer, s ∈ C, and for i, j ∈
{0, . . . ,m}, τi > 0, τi ̸= τj for i ̸= j, Pj : C −→ C is a
nonzero polynomial of degree d(Pj) = dj ≥ 0.

2) The degree of the quasi-polynomial Q is defined as the

integer D = m+

m∑
j=0

dj .

3) Let S∆ = {s ∈ C | ∆(s) = 0} be the set of spectral
values of ∆. s0 ∈ S∆ is said to be dominant root of ∆
if every s ∈ S∆, with s ̸= s0, satisfies ℜ(s) < ℜ(s0).

A. MID property & two delays. An algorithm on a case study

To the best of the authors’ knowledge, the first example
exhibiting the MID property in multiple delay case has been
reported in [18] where the stabilization of the inverted pendu-
lum has been considered using two delays proportional signals.
A recent result [17], considers the scalar DDE:

y′(t) + a0y(t)− a1y(t− τ1)− a2y(t− τ2) = 0, (2)

whose characteristic quasipolynomial is the function ∆ : C →
C defined, for s ∈ C, by

∆(s) = s+ a0 − a1e
−sτ1 − a2e

−sτ2 . (3)

with a degree equal to D = 3. Notice, that on beyond of
the characterization of the MID property for equation (2), the
contribution [17] provides a method based on the continuous
dependency of the spectrum on parameters variation, which
can be generalized for investigating the MID property for
higher order systems with two-delays.

From [17, Corollary 2.2] this implies that a root s0 of ∆
with multiplicity 3 has maximal multiplicity. In this section,

we aim to describe the MID methodology that provides a
choice of s0, a1, and a2 ensuring that the quasipolynomial
∆(·) satisfies the MID property, in which case we also
have the exact expression of the spectral abscissa. Without
loss of generality, we can assume that 0 < τ1 < τ2. Let
λ = τ1

τ2
∈ (0, 1).

Here we recall the steps of the approach described in [17]
which is based on the continuous dependency of the spectrum
with respect to parameters changes and can be summarized
as follows. Ones the parameters’ values guaranteeing the
existence of a spectral value with the maximal multiplicity are
established, one studies the limiting parameters values. More
precisely, one needs first to show the MID property to holds for
λ = 0 as well as λ = 1. Next, it suffices to prove the uniform
boundedness of the spectral value branch in all compact sets of
the interval (0, 1). Finally, one carries out the spectral value
branch tendency. If this latter is of constant sign, thanks to
the continuous dependency of the spectrum on parameters’s
variation, this allows to conclude the MID property to hold
for any λ ∈ [0, 1].

Before describing the steps of the algorithm in question, let
us first recall the definition of a branch of roots.

Definition II.2 ( [17]). Let Q(·, λ), λ ∈ (0, 1), be a family
of quasipolynomials. A branch of roots of Q is a function
s : I → C defined on an open interval I ⊂ (0, 1), such that
s(λ) is a root of Q(·, λ) for every λ ∈ I .

Algorithm Description

Step 1: Forcing multiplicity
Choice of the real numbers s0, a1 and a2 ensuring the

existence of a spectral value s0 with maximal multiplicity.
This latter is given by:

s0 = −a0 −
1

τ1
− 1

τ2
, a1 =

−τ2e
s0τ1

τ1(τ2 − τ1)
, a2 =

τ1e
s0τ2

τ2(τ2 − τ1)
.

(4)

Step 2: Normalization of the quasipolynomil Q
Define the normatized quasipolynomial Q(·, λ) : C → C by

Q(s, λ) = τ2∆(s0 +
s

τ2
)

for s ∈ C, and express this quantity as a function of s and
λ = τ1/τ2, as follows:

Q(s, λ) = s− λ+ 1

λ
− λ

1− λ
e−s +

1

λ(1− λ)
e−λs. (5)

Step 3: The MID property holds in the limiting λ values
This step consists in evaluating the quasipolynomial in the

limiting values of the parameter λ and to check the MID to
holds at these values. As a matter of fact,

lim
λ→1

Q(s, λ) = (s+ 2) e−s + s− 2

where it has been shown in [19] that the MID is verified thanks
to the integral representation of the resulting quasipolynomial



in terms of Kummer hypergeometric function, see also [12].
Next,

lim
λ→0

Q(s, λ)/λ =
s2

2
− s+ 1− e−s

where the MID has been shown in [20].

Step 4: Existence of an analytic branch s : I ⊂ (0, 1) −→ C
Let s0 be of root of Q(., λ), with ℜ(s0) ≥ 0 and s0 ̸= 0.

Let s : I −→ C be an analytic branch of roots of Q, such that
s0 ∈ I and s(λ0) = s0. Compute

s′(λ0) = −∂λQ̃(s(λ0), λ0)

∂sQ̃(s(λ0), λ0)
(6)

where

Q̃(s, λ) = λ(1−λ)Q(s, λ) = λ(1−λ)s−1+λ2−λ2e−s+e−λs.
(7)

for every s ∈ C and λ ∈ (0, 1). The numerator and
denominator of (6) are given by:

∂sQ̃(s, λ) = λ(1− λ) + λ2e−s − λe−λs, (8)

∂λQ̃(s, λ) = (1− 2λ)s+ 2λ− 2λe−s − se−λs. (9)

Step 5: Boundedness of the analytic function s

Let K be a compact subset of (0, 1). Let α = inf{ℜ(s(λ)) |
λ ∈ I}, λmin = infK, and λmax = supK. Use Q(s(λ), λ) =
0 together with (5) to obtain, for every λ ∈ I ∩K.

|s(λ)| ≤ λmin + 1

λmin
+

λmaxe
−α

1− λmax
+

eλmax|α|

λmin(1− λmax)
.

The latter quantity only depends on K and α.

Step 6: Constance of the spectral value tendency
Let s : I → C be an analytic branch of roots of Q and

λ0 ∈ I be such that ℜ(s(λ0)) = 0 and s(λ0) ̸= 0. Then

ℜ(s′(λ0)) > 0. (10)

In the contrary case, let ω = ℑ(s(λ0)), and note that s(λ0) is a
simple root of Q(., λ0), thus by taking the real and imaginary
parts, we have that Q(iω, λ0) = 0 if and only if

cos(λ0ω)− λ2
0 cos(ω) + λ2

0 − 1 = 0, (11a)

sin(λ0ω)− λ2
0 sin(ω) + λ2

0ω − λ0ω = 0. (11b)

1) From (6) and (11) one gets:

sign (ℜ(s(λ0))) = sign(H(ω, λ0)), (12)

where

H(ω, λ0) = −R1(ω, λ0)R2(ω, λ0)− I1(ω, λ0)I2(ω, λ0)

= 2λ3
0(1− λ0)(ω cos(ω/2)− 2 sin(ω/2))2.

and 
I1(ω, λ0) = ℑ(∂sQ̃(iω, λ0))

I2(ω, λ0) = ℑ(∂λQ̃(iω, λ0))

R1(ω, λ0) = ℜ(∂sQ̃(iω, λ0))

R2(ω, λ0) = ℜ(∂λQ̃(iω, λ0))

(13)

and thus H(ω, λ0) = 0 iff

2(λ0 + 1)(1− cos(ω))− (1− λ0)ω
2 − 2 sin(ω)ωλ0 = 0

(14)
2) Solve (14) with respect to λ, and show that λ = 1.

III. CONTROLLING OSCILLATIONS USING DELAYS

A. Control and optimization problem

Consider the delay-differential equation

y′′(t) + a1y
′(t) + a0 = u(t) (15)

where u is the unknown control. Assume that the system (15)
is unstable in the uncontrolled case, namely when u((t) = 0.
Our goal is to build an appropriate delayed state feedback
controller of the form

u(t) = −b1y(t− τ1)− b2y(t− τ2) (16)

guaranteeing the stability of system (15) in closed-loop:

y′′(t) + a1y
′(t) + a0 + b1y(t− τ1) + b2y(t− τ2) = 0. (17)

The characteristic quasi-polynomial function corresponding
to the closed-loop system is described as follows:

∆(s) = s2 + a1s+ a0 + b1e
−sτ1 + b2e

−sτ2 = 0 (18)

From [17, Corollary 2.2], we deduce that a root s0 of ∆
with multiplicity 4 has maximal multiplicity. The following
theorem, which constitutes the main result of this paper,
characterizes the values of s0, a1, b2 and b2 guaranteeing that
the quasipolynomial ∆(·) satisfies the multiplicity-induced-
dominancy property, in which case the exact expression of
the spectral abscissa is also obtained.

Using the following change of variables λ =
τ1
τ2

∈ (0, 1)

one obtains the corresponding normalized characteristic func-
tion

Q2(s, λ) := τ22∆(s0 +
s

τ2
)

= s2 + α1s+ α0 + β1e
−λs + β2e

−s (19)

where

α1 = τ2(2s0 + a1), α0 = τ22 (s
2
0 + a1s0 + a0) (20a)

β1 = τ22 b1e
−s0τ1 , β2 = τ22 b2e

−s0τ2 . (20b)

Note that the mapping

S(∆) −→ S(Q2); s 7−→ τ22 (s− s0) (21)

is a bijection from roots of ∆ to roots of Q2(., λ), for
every λ ∈ (0, 1), preserving their multiplicities and the MID
property (see [17]).



IV. STATEMENT OF THE MAIN RESULT

In this section, we present the main result of the paper,
which consists in designing a feedback law (16) with two
delays, for system (15).

Theorem IV.1. Let a0, a1, b1, b2 and s0 be real numbers and
τ1, τ2 be positive real numbers with τ1 ̸= τ2. The closed-
loop system (17) admits s0 as a spectral value with maximal
multiplicity 4 if and only if

s0 = −1

2
a1 −

1

τ1
− 1

τ2

a0 =
s20τ

2
1 τ

2
2 + 2s0τ1τ

2
2 + 2s0τ

2
1 τ2 + 2τ22 + 2τ21 + 2τ1τ2

τ22 τ
2
1

b1 = − 2es0τ1τ2
τ21 (τ2 − τ1)

b2 =
2es0τ2τ1

τ22 (τ2 − τ1)
.

(22)
Furthermore, in that case, s0 is the spectral abscissa of system
(17) and the MID property holds.

A. Proof of Theorem IV.1

The proof of the theorem will follow the steps of the
methodology outlined above.

Step 1: Forcing multiplicity
The calculation of the coefficients given by (22) is obtained

by solving an algebraic system of four equations with four
variables s0, a0, b1 and b0 when τ1, τ2 , a1 are fixed.

Step 2: Normalization of the quasi-polynomial Q2

Under (20) and (22), the quasi-polynomial Q2 from (19)
reads:

Q2(s, λ) = s2 − 2(λ+ 1)

λ
s+

2(λ2 + λ+ 1)

λ2

− 2

λ2(1− λ)
e−λs +

2λ

1− λ
e−s (23)

Step 3: The MID property holds in the limiting λ values
This step consists in evaluating the quasipolynomial in the

limiting values of the parameter λ and to check the MID to
holds at these values. In our case,

Q1(s) := lim
λ→1

Q(s, λ) = (−2 s− 6) e−s + s2 − 4 s+ 6

where it has been shown in [12] that the MID is verified since
the obtained quasipolynomial, Q1 shares its zeros with an
appropriate Kummer hypergeometric function, see also [21].
Next,

Q0(s) := lim
λ→0

Q(s, λ)/λ =
s3

3
− s2 + 2 s− 2 + 2 e−s

where the MID has been shown in [12] for Q0.

Step 4: Existence of an analytic branch s : I ⊂ (0, 1) −→ C
Consider Q̃2 : C × (0, 1) → C defined by Q̃2(s, λ) =

λ2(1− λ)Q(s, λ), namely

Q̃2(s, λ) = λ2(1− λ)s2 − 2λ(1− λ2)s+ 2− 2λ3

+ 2λ3e−s − 2e−λs (24)

The existence of the above mentioned branch of roots s,
satisfying s(λ0) = s0, and

s′(λ0) = −∂λQ̃2(s(λ0), λ0)

∂sQ̃2(s(λ0), λ0)
(25)

is an immediate consequence of the simplicity of the nontrivial
root s and the implicit function theorem for analytic functions
(see, e.g., [22, Theorem 2.1.2]).

Step 5: Boundedness of the analytic function s

Let α = inf{ℜ(s(λ)) | λ ∈ I}, λmin = infK, and λmax =
supK. Then, using the fact that Q2(s(λ), λ) = 0 we get, for
every λ ∈ I ∩K,

s(λ) ≤
(
2(λmin + 1)

λmin
| α | +2(λ2

min + λmin + 1)

λmin

+
2eλmax|α|

λ2
min(1− λmax)

+
2λmax

1− λmax
e−α

) 1
2

The latter quantity only depends on K and α, and thus
provides a bound s.

Step 6: Constance of the spectral value tendency
Let us show that any analytic branch of roots of Q2 and

any λ0 ∈ I satisfying ℜ(s(λ0)) = 0 and s(λ0) ̸= 0, have the
property

ℜ(s′(λ0)) > 0. (26)

Let ω = ℑ(s(λ0)). Note that s(λ0) is a simple root of
Q2(., λ0). We have in particular Q2(iω, λ0) = 0. This later
is equivalent to

λ2
0ω

2 − λ3
0ω

2 − 2 + 2λ3
0 + 2 cos(λ0ω)− 2λ3

0 cos(ω) = 0 (27a)

2λ3
0 sin(ω)− 2 sin(λ0ω) + 2λ0ω − 2λ3

0ω = 0 (27b)

Let Q̃2 be defined as in (24). Let’s exploit the numerator and
the denominator in (25).

• Computation of ∂sQ̃2(iω, λ0). For s = iω, λ = λ0, one
obtains from (24) that

∂sQ̃2(iω, λ0) = 2λ2
0(1− λ0)iω − 2λ0(1− λ2

0)

+ 2λ0(cos(λ0ω)− i sin(λ0ω))

− 2λ3
0(cos(ω)− i sin(ω)) (28)

Putting R1(ω, λ0) := ℜ(∂sQ̃2(iω, λ0)) and using (27a),
we compute

R1(ω, λ0) = −λ3
0(1− λ0)(2 cos(ω) + ω2 − 2) (29)

In the same way, setting I1(ω, λ0) = ℑ(∂sQ̃2(iω, λ0))
and using (27b), we have

I1(ω, λ0) = −2λ3
0(1− λ0)(ω − sin(ω)) (30)



• Computation of ∂λQ̃2(iω, λ0). For s = iω, λ = λ0,

∂λQ̃2(iω, λ0) = (3λ2
0 − 2λ0)ω

2 + (6λ2
0 − 2)iω − 6λ2

0

+2iω(cos(λ0ω)−i sin(λ0ω))+6λ2
0(cos(ω)−i sin(ω))

(31)

Setting R2(ω, λ0) = ℜ(∂λQ̃2(iω, λ0)) and using (27b),
then

R2(ω, λ0) = −6λ2
0 + 6λ2

0 cos(ω) + 2ωλ3
0 sin(ω)

+ 3λ2
0ω

2 − 2λ3
0ω

2 (32)

Similarly, setting I2(ω, λ0) = ℑ(∂λQ̃2(iω, λ0)) and
using (27b), we have

I2(ω, λ0) = 6λ2
0(ω − sin(ω)) + 2λ3

0ω(cos(ω)− 1)

− λ2
0ω

3(1− λ0) (33)

• Evaluation of the sign of the real part of s′(λ0) Since

ℜ(s′(λ0)) =
R1(ω, λ0)R2(ω, λ0) + I1(ω, λ0)I2(ω, λ0)

−(R2
1(ω, λ0) + I21 (ω, λ0))

(34)
and taking into account (29), (30), (32), and (33), we

have

−R1(ω, λ0)R2(ω, λ0)− I1(ω, λ0)I2(ω, λ0)

= λ5
0(1− λ0)

(
−24ω sin(ω) + 12ω2 cos(ω) + 24

− 24 cos(ω) + ω4 + 2ω3 sin(ω)
)

(35)

The variations of the function ω 7→ (−24ω sin(ω) +
12ω2 cos(ω) + 24 − 24 cos(ω) + ω4 + 2ω3 sin(ω) give
that ℜ(s′(λ0)) ≥ 0. In order to prove that this inequality
is strict, simple computations lead to:

4ω2 − 8− 4λ2
0ω

2 cos(ω)(1− λ0) + 8 cos(ω) + λ0ω
4

− 2λ2
0ω

4 + 4λ2
0ω

2 + λ3
0ω

4 − 8λ3
0 cos(ω) + 8λ3

0

− 8λ0ω
2 + 8λ0ω sin(ω)− 8λ3

0ω sin(ω) = 0. (36)

Solving (36) with respect to λ0, we deduce that λ0 =
1 is the unique real solution of (36), which gives the
contradiction. Thus, (26) is proved.

The proof of Theorem IV.1 is achieved.

V. STABILIZING THE PENDULUM VIA DELAY ACTION

As an illustration of the main result of the present work, we
revisit the stabilization of the friction-free dynamical modeling
of the classical pendulum. The adopted model is studied in
[12] in the context of single delay MID-based stabilization
and, in the sequel, we keep the same notations. The controlled
classical pendulum is governed by the following second-order
differential equation

θ̈(t) +
g

L
sin(θ(t)) = u(t) (37)

where θ(t) stands for the angular displacement of the pendu-
lum at time t with respect to the stable equilibrium position, L
is the length of the pendulum, g is the gravitational accelera-
tion, and u(t) represents the control law, which stems from an

applied external torque. Our aim is to improve the exponential
decay rate of the open-loop stable equilibrium via the action
of the external torque u. This suggests first to linearize (37)
around the trivial equilibrium and get

θ̈(t) + a0 θ(t) = u(t), (38)

where a0 = g
L . Next assume that such a system is controlled

using a delayed Proportional controller of the form

u(t) = −b1 θ(t− τ1)− b2 θ(t− τ2), (39)

with (b1, b2) ∈ R2, which has the advantage of avoiding noises
due to differentiations. The local stability of the closed-loop
system is reduced to study the location of the spectrum of the
quasipolynomial

∆(s) = s2 + a0 + b1e
−τ1s + b2e

−τ2s, (40)

which is a quasipolynomial of degree 4. Here, the horizon-
tal control force will be exclusively referred to as position
feedback, exploiting multiple delayed measurements instead of
derivative terms, as has been already suggested in [18] where
the problem of stabilization of the inverted pendulum has been
considered but using other control strategy relying on spectral
projections on the center-manifold.

Since the delays τ1 and τ2 are control parameters, thanks to
Theorem IV, and in particular the expressions of s0 and a0,
it follows that the delays have to be chosen according to the
strategy below: first one has to select a delay τ1 satisfying

τ1 >

√
L

g
, (41)

then one substitutes the chosen value in the expression of τ2
given by

τ2 =
τ1√
g τ2

1−L
L

(42)

lastly, the controllers gains are then to be tuned such that:

b1 =
2τ2

τ21 (τ1 − τ2) e
τ1+τ2

τ2

, b2 = − 2τ1

τ22 e
τ1+τ2

τ1 (τ1 − τ2)
(43)

Notice that this tuning allows to the closed-loop characteristic
function to admit a spectral abscissa as the quadruple root

s0 = −τ1 + τ2
τ1τ2

, (44)

then, as illustrated in Figure 1, the exponential decay rate of
the closed-loop system is given by τ1+τ2

τ1τ2
.

VI. CONCLUSION AND PERSPECTIVES

The MID property for a second-order scalar equation with
two delays has been examined in this paper. Necessary and
sufficient conditions are provided for a spectral value to
have maximum multiplicity. In order to deduce the MID
property for the second-order system, we applied the per-
turbative approach described in [17], which exploits the ana-
lytical properties of the branches of roots of the normalized
quasipolynomial and the behavior of the latter when the two



Figure 1. Spectrum distribution of the closed-loop system (38)-(39) where
the delays are chosen such that τ1 satisfies the constraint (41) and τ2 satisfies
(42) and controller’s gains satisfy (43). The numerical values are taken as
follows: the ratio L/g = 1, the delays (τ1, τ2) = (5/4, 5/3). The spectral
abscissa is located at the quadruple root s0 = −7/5 derived from (44).

Figure 2. In blue (red), the time response of the closed-loop linear (non-
linear) system solution x(t) (solid) and x′(t) (dashed) (38)-(39), respectively
(37)-(39). The initial conditions are (x(0), x′(0)) = (1,−1/4) and the
numerical values are the same as in Figure 1.

delays are close. Finally, we illustrated the potential of the
proposed approach by considering the problem of stabilizing
the classical pendulum with an exclusive access to the delayed
position.
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