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Guaranteed Private Communication
with Secret Block Structure
Maxime Ferreira Da Costa, Jianxiu Li, and Urbashi Mitra

Abstract—A novel private communication framework is pro-
posed where privacy is induced by transmitting over channel
instances of linear inverse problems that are identifiable to the
legitimate receiver, but unidentifiable to an eavesdropper. The
gap in identifiability is created in the framework by leveraging
secret knowledge between the transmitter and the legitimate
receiver. Specifically, the case where the legitimate receiver
harnesses a secret block structure to decode a transmitted block-
sparse message from underdetermined linear measurements in
conditions where classical compressed sensing would provably fail
is examined. The applicability of the proposed scheme to practical
multiple access wireless communication systems is discussed. The
protocol’s privacy is studied under a single transmission, and
under multiple transmissions without refreshing the secret block
structure. It is shown that, under a specific scaling of the channel
dimensions and transmission parameters, the eavesdropper can
attempt to overhear the block structure from the fourth-order
moments of the channel output. Computation of a statistical lower
bound, suggests that the proposed fourth-order moment secret
block estimation strategy is near optimal. The performance of a
spectral clustering algorithm is studied to that end, defining scaling
laws on the lifespan of the secret key before the communication
is compromised. Finally, numerical experiments corroborating
the theoretical findings are conducted.

Index Terms—Private communication, inverse problems, struc-
tured compressed sensing, moment method.

I. INTRODUCTION

WHILE communication privacy is often ensured at
higher network layers [1]–[3], and can be achieved

via cryptographic means, there are new methods in physical
layer security [4], which can leverage the structural properties
of a communication channel to generate privacy. Physical
layer privacy can strengthen security in modern data exchange
protocols, such as next-generation wireless systems, the In-
ternet of Things, and satellite constellations. Physical layer
security offers numerous complementary guarantees to usual
cryptography: It can protect users’ identities, physical locations,
or even conceal the existence of a communication to an
eavesdropper; and can be implemented opportunistically over
wireless channels with no or little computational overhead.
There is interest in realizing the theoretical promises of physical
layer security in realistic systems [5].

Traditional physical layer privacy strategies involve the use
of artificial noise [6]–[9]. The noise can be either injected
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Figure 1. Communication model with secure channel.

into the nullspace of channel state information (CSI) and
mitigated by exploiting CSI, or directly injected noise into
the transmitted message and resolved by the legitimate receiver
side by exploiting a secret key [10], [11]. Other privacy schemes
involve random and adversarial beamforming design [12],
[13], or the injection of fake paths over geometric channels
to diminish the capability of an eavesdropper to distinguish
between true and fake paths and challenge the estimation of
CSI [14] by an eavesdropper.

The previously mentioned physical layer security schemes
induce privacy by performing a linear action on the transmitted
message that is statistically hard to invert without additional
knowledge. In a related fashion, the compressed sensing
framework [15] assumes a non-linear prior on the input message
and has been exploited as a means to ensure privacy [16]. If the
sensing matrix is kept secret to an eavesdropper, perfect secrecy
can be guaranteed in the information-theoretic sense [17]
under restrictive conditions [18]. Typical sensing matrices
are functions of the CSI. The computational secrecy of this
approach has also been investigated [19], [20], restricting Eve’s
ability to recover the encoded message via a polynomial time
algorithm.

Motivated by applications to multiple access wireless sys-
tems, we focus here, instead, on a novel model where the
sensing matrix (e.g. the channel matrix) is imposed by the
environment and is not under the control of the transmitter.
Privacy is achieved by sharing an additional structure on said
message with the legitimate receiver, easing the decoding of
the message [21]. From the eavesdropper’s perspective, the
decoding amounts to solving a bilinear inverse problem, which
is known to demand much more stringent assumptions to be
identifiable [22]–[27]. Thus, statistical hardness is exploited to
provide privacy.

A. Linear Inverse Problem Based Privacy

We consider the classical secret communication problem
with side information: A transmitter (Alice) wishes to privately
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transmit a vector x ∈ Rn to a legitimate receiver (Bob) over a
public channel. The noisy channel output y = f(x) +w, with
noise w being received by Bob and the eavesdropper (Eve). To
achieve privacy and prevent Eve from recovering the message
x, Alice and Bob may communicate a low information rate
signal over a secure channel inaccessible to Eve.

In the proposed setting, the effect of the channel is assumed
to be linear and modeled by a “fat” matrix A ∈ Rm×n, with
m < n so that y = Ax + w, where w is white Gaussian
noise w ∼ N (0, σ2Im). The matrix A is imposed by the
environment and is assumed to be known by Bob and Eve. For
the purposes of our analysis, we will assume A to satisfy certain
incoherence properties, which are detailed in the sequel. Finally,
we assume that Eve is aware of the communication protocol
established by Alice. The overall communication model is
depicted in Fig. 1.

To ensure privacy, Alice, who designs the message x and the
side information, must ensure two properties. First, Bob must
be able to provably recover x from the observation y via the
side information from the secure channel. Second, Eve cannot
provably recover x without knowing the side information. Thus,
Alice is left to design an inverse problem that is identifiable
to Bob, but unidentifiable to Eve. These goals can typically be
jointly achieved by imposing an additional structure on x, and
by privately sharing this structure over the secure channel. For
practicality, this structure must be comprised of a small number
of bits, and reusable over multiple transmissions. Building onto
our prior work [28], we propose that Alice shares with Bob a
secret block structure, and encodes her message in the form of a
block-sparse signal whose support follows this secret structure.
Harnessing a block-sparse prior to recover signals through
underdetermined linear measurements has been extensively
shown to allow exact recovery in conditions where classical
compressed sensing would provably fail [21], [29]–[31]. We
exploit this result to propose a novel private communication
framework where secrecy is achieved by transmitting instances
of an unidentifiable compressed sensing problem over a public
channel. Furthermore, if the secret block structure is reused for
multiple transmissions, we show that Eve can eavesdrop on the
block structure by a spectral clustering technique applied on
fourth-order empirical moments of the probability distribution
at the channel output, and the trade-off between key-reuse and
secrecy is discussed. Spectral clustering has been considered
with significant success as a fast and robust method to recover
low-dimensional structures in high-dimensional datasets. It
has been applied, for instance, to recovering partitions and
cliques in high-dimensional graphs [32], and in the context of
supervised classification in machine learning [33].

The proposed signaling scheme is motivated by its applica-
bility to modern multi-user wireless communication protocols.
As an example, we assume an uplink scenario with r many
transmitters sending within a symbol interval a message
uq ∈ Rd using a precoding scheme Sq ∈ Rn×d through a
linear channel Hq ∈ Rn×n that is imposed by the environment.
The received message at the base station classically reads
y =

∑r
q=1 HqSquq + w. When the channel users parsimo-

niously transmit at a given symbol interval, i.e. when a random
fraction of users remain inactive, the channel input can be

modeled with a group-sparse prior. If this prior is only known
by the legitimate base station (Bob), the relative identifiability
of block-sparse signals versus unstructured sparse signals can
be exploited to induce privacy against an eavesdropper. We
note two practical schemes where this framework is applicable:

1) In overloaded CDMA communications, the transmitters
rely on unique sequences {S1, · · · ,Sr}, known to the
base station, to spread the messages onto a larger dimen-
sion space before transmission [34], [35]. Sparse coded
multiple access schemes have been considered to improve
user detection when the system is overloaded [36], and
adapted coding sequences are proposed in [37], [38].
However, the privacy benefits of overloading have not
yet been considered in that context.

2) In massive MIMO communications, the number of identi-
fiable spatial streams is equal to the number of receive
antennas. If the transmitter has more antennas than the
receiver, she had intermittently activate sub-groups of
antennas according to a pattern shared with the receiver
and transmits on the active sub-groups at each symbol
interval, at the price of a reduced bit-rate. Such MIMO
systems have been considered to reduce implementation
cost [39] or improve spectral efficacy [40], [41].

B. Contributions and Paper Organization

We build upon our prior work [28] and present an improved
eavesdropping scheme based on fourth moments with full
proofs and numerical simulations. Computation of a statistical
lower bound suggests that the improved eavesdropping scheme
is asymptotically near-optimal. In Section II, we propose a
novel communication protocol that leverages the advantageous
recoverability of block-sparse signals to ensure privacy. We
provide the encoding and decoding strategies of Alice and Bob,
respectively. In our design, Alice transmits secretly to Bob a
block structure and uses this structure to encode her message,
which can be done at a very low transmission rate, while the
channel matrix A cannot be designed by Alice and is provided
by nature. To the authors’ knowledge, the proposed protocol is
the first linear inverse problem-based privacy method that does
not require the matrix A to be secretly shared. Furthermore,
Corollary 3 guarantees that Alice can adjust the block length
and the sparsity level of the message she transmits so that the
transmission is provably identifiable for Bob and unidentifiable
to Eve as the signal length increases. In Section III, we consider
the possibility of Eve recovering the secret block structure from
the observation of multiple snapshots of the observation {yℓ}
that Alice has generated with the same block structure B. We
show in Proposition 9 that, depending on Alice’s choice of the
block length and sparsity level, it is possible to extract B from
the fourth-order moments of the observation and propose an
eavesdropping algorithm to that end. We investigate the case
of a finite number of snapshots and derive an upper bound on
the rate at which Alice must generate a new B to prevent Eve
from deciphering Bob’s messages.

We present numerical results that validate our theoretical
findings in Section IV. In Section V, a conclusion is drawn,
and further research directions are discussed.
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C. Notations
Vectors of Rn and matrices of Rn1×n2 are denoted by

boldface letters a and capital boldface letters A, respectively.
The entry (i, j) of a matrix A is written as ai,j . The matrix
norms ∥M∥2, ∥M∥F, and ∥M∥max refer to the spectral norm,
the Frobenius norm, and the maximal absolute value of the
entries in M , respectively. Given a positive semi-definite matrix
M , we write λmin (M) and λr (M) as its smallest eigenvalue,
and rth-largest eigenvalue (with multiplicity), respectively. The
Hadamard product between two matrices M1 and M2 is
denoted as M1⊙M2. We write by In the identity matrix and
by Jn the all-one matrix in dimension n× n. Given a random
vector z ∈ Rn, we denote by Σz ∈ Rn×n its covariance
matrix. A block structure over Rn into r blocks is described
by a mapping B : [1, . . . , n] → [1, . . . , r], and is associated
with the indicator matrix of B ∈ Rn×n defined by

bi,j =

{
1 if B(i) = B(j);
0 if B(i) ̸= B(j). (1)

We denote by x[q] the subvector of x with entries xi ensuring
B(i) = q. The “block-ℓ0-norm” of a vector x is defined as
∥x∥B,0 =

∑r
q=1 1x[q] ̸=0 and counts the number blocks in x

that are not exactly equal to 0. For two functions f and g, we
use the Landau notation f = o(g) to denote that the ratio f(t)

g(t)
tends to 0 as t→∞.

II. PRIVACY WITH BLOCK SPARSITY

A. Alice’s encoding
In the proposed protocol, Alice constructs her message x

as follows. Given the knowledge of the channel dimension,
Alice initializes the communication by randomly selecting a
block structure B : [1, . . . , n] → [1, . . . , r]. Alice sends this
structure to Bob over the secret channel. We highlight that this
exchange only requires n log2(r) bits of information which is
significantly less than schemes relying on exchanging the entire
matrix A ∈ Rm×n (mn infinite precision numbers). Although
not required in practice, we assume for simplicity that the r
blocks have equal block size d, i.e. n = r ·d. Next, Alice selects
a probability of block activation p ∈

[
0, 1

2

]
, where p ≤ 1

2 is
assumed for convenience in the analysis, and encodes her
message in a block-sparse vector x. In the sequel, we assume
that x is distributed according to a block Bernouilli–Gaussian
distribution such that

x[q] =

{
0d w.p. 1− p

z[q] w.p. p,
(2)

where z[q] ∼ N (0d, Id) is a random i.i.d. standard Gaussian
vector of dimension d. A visualization of the block sparsity
encoding is provided in Figure 2.

B. Bob’s decoding
At the public channel output, Bob receives a vector y =

Ax+w, and leverages B that Alice securely sent to recover
the ground truth message x. To do so, Bob formulates the
block-compressed sensing problem:

x̂B = argmin
x∈Rn

∥x∥B,0 such that ∥y −Ax∥2 ≤ ϵ, (3)

block 3

block 1
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Figure 2. Example of block sparse encoding.

where ϵ > 0 is a parameter that scales proportionally with
the standard deviation of the noise ∥w∥2. Harnessing a block-
sparse prior in compressed sensing has been extensively shown
in the literature to enhance the identifiability of (3) and to
allow an exact reconstruction of the message with much fewer
measurements than classical compressed sensing [29], [31].
However, directly solving (3) remains NP-hard in the general
case, due to the combinatorics inherent to the minimization
of ∥x∥B,0. Thus, Bob computes, instead, an estimate of x̂B

using a polynomial time algorithm of his choice. Among the
many addressed algorithms proposed in the literature, Block
Matching Pursuit (Block MP) [42], Block Iterative Harding
Thresholding (Block IHT), Block Basis Pursuit (Block BP)
[43] or block-based CoSaMP [21], have been shown to have
provable performance guarantees.

In the sequel, we denote β = m
np as the redundancy parame-

ter, defined as the ratio between the number of measurements at
the channel output and the expected number of non-zero entries
in the block-sparse input vector x. We remark that β ≥ 1 is
obviously needed for successful decoding of the message. In
fact, asymptotic phase transitions for the success of greedy
algorithms to recover the block-sparse ground truth have been
studied in the literature [21]. Proposition 1 reinterprets this
result in terms of the parameter β, the block-length d, and the
transmission parameter p in the asymptotics n→∞.

Proposition 1 (Success of Bob’s decoding). Suppose that A
is a matrix with i.i.d. random Gaussian entries and assume a
noise-free environment w = 0. If

log

(
1

p

)
= o

(
d

log(d)

)
and β →∞ (4)

in the limit where n → ∞, then Bob can stably recover x
asymptotically almost surely.

Additionally, denoising bounds on the estimate of the input
vector x are provided in the presence of noise [21].

C. Privacy Guarantees under a Single Snapshot

If only one snapshot y is observed, it is impossible for
Eve to reliably infer B, which remains ambiguous even with
perfect knowledge of x. Therefore, from her perspective, the
best possible approach consists of attempting to recover x
without leveraging the existence of a latent block structure in
the message. This amounts to solving a classical compressed
sensing program

x̂E = argmin
x∈Rn

∥x∥0 such that ∥y −Ax∥2 ≤ ϵ. (5)
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Figure 3. Regions of (non)identifiability for Eve and Bob in the single snapshot
case for a block-length d = n log−δ(n) with δ > 0.

The identifiability condition x = x̂E of (5) is well-understood
to be related to the Restricted Isometry Property (RIP) of the
measurement operator [44]. In the case of a Gaussian matrix
A, the following proposition links the asymptotic failure of (5)
to a function of the model’s parameters, translating results in
[45] to our context.

Proposition 2 (Failure of Eve’s decoding [45]). Suppose that
A is a matrix with i.i.d. random Gaussian entries and assume
a noise-free environment w = 0. Then if

β = o

(
log

(
1

p

))
(6)

holds in the limit where n→∞, then the solution x̂E of (5)
is different from x with overwhelming probability.

Altogether, Propositions 1 and 2 suggest that, given the
dimensions m and n of A, Alice can select the parameters
β and d so that (4) and (6) are jointly satisfied, which is
summarised in the sequel,

Corollary 3 (Single snapshot privacy). If Alice selects a di-
verging redundancy parameter β →∞ with β = o

(
log
(

1
p

))
and log

(
1
p

)
= o

(
d

log(d)

)
, then the protocol is asymptotically

private to the exchange of a single message in the limit
n→ +∞.

As an example, if Alice allows the block length to grow
with the channel input n at a rate d ∼ n log−δ(n) for
some δ > 0 and scales p as log

(
1
p

)
= β log(n), then the

region log(n) ≪ β ≪ n log−δ−1(n) will be asymptotically
private. Fig. 3 depicts the three different communication regions
under this block-length assumption. This result suggests that
parameter intervals for the private regime are increasing with
the channel length. This highlights that the proposed communi-
cation protocol benefits from larger channel dimensions. Larger
channel dimensions can be realized in practice by selecting
longer spreading sequences in CDMA systems or increasing
the number of antennae in MIMO systems.

Fig. 4 shows the success rate of Bob and Eve to recover x
via the Block-BP and BP algorithms, respectively, for different
values of the ratio β. We see that as β gets small, the success
rates for both Bob and Eve diminish. This is intuitive as β = m

pn
measures the number of observations relative to the number
of active components. The lower the activity level, the fewer
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Figure 4. Success Rate of Bob and Eve to recover x for different values of β
in absence of noise. The parameters are set to m = 200, r = 20. The results
are averaged over 500 trials.

non-zero signals that are sent. However, it is also clear that
given m = 200, there is a sweet spot at β = 3.3, where Bob
achieves good performance while Eve does not.

III. EAVESDROPPING VIA HIGHER ORDER MOMENTS

A. Structure of the Moments

In effect, our results above are for a single-pad key, i.e.
a new block structure is created for each message to be
sent [18]. To reduce the usage of the secure channel, we
want to understand the reusability of B in transmitting several
independent signals {x1, . . . ,xL}. In this scenario, if Eve can
acquire multiple snapshots of observation {y1, . . . ,yL} given
by yℓ = Axℓ+wℓ, ℓ = 1, . . . , L, and under the knowledge of
the prior distribution (2) of x, she can attempt to gain statistical
information about B without having to reconstruct the messages
by studying the posterior distribution of y. In particular, we
observe that given our block signaling, the mean E[x] = 0N

and covariance Σx = pIn of x carry no information about the
block structure B. However, the even fourth-order moments
of x do provide information about the block structure, B, as
seen below:

Σx⊙x(i, j) = E[x2
ix

2
j ]− E[x2

i ]E[x
2
j ]

=


3p− p2 if i = j

p− p2 if B(i) = B(j) and i ̸= j

0 if B(i) ̸= B(j),
(7)

Additionally, as the odd fourth-order moments of x equal zero,
the terms in (7) are the moments of smallest order containing
information about the block structure B. As the number of
samples that is necessary to estimate moments increases with
their order, Eve can restrict herself to the study of the covariance
Σz of the vector z =

(
ATy

)
⊙
(
ATy

)
in attempt to eavesdrop

B from the observation of the channel output. Given this
observation, understanding the reusability of the block structure
is equivalent to understanding Eve’s capability to learn these
fourth moments.
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For notational convenience, let M = ATA and P = M ⊙
M . Moreover, we define the matrices EB, F , and G where
each component is given, respectively, by,

EB(i, j) =
∑
k

∑
k′ ̸=k

B(k′)=B(k)

mi,kmi,k′mj,kmj,k′ , (8a)

F (i, j) =
∑
k

∑
k′ ̸=k

mi,kmi,k′mj,kmj,k′ , (8b)

G(i, j) =
∑
k

∑
k′ ̸=k

ak,iak,jak′,iak′,j . (8c)

The next proposition, whose proof is presented in Appendix A,
gives an expression of the covariance Σv as a function of the
matrices EB, F , and of the block structure matrix B.

Proposition 4. Let z =
(
ATy

)
⊙
(
ATy

)
. If x is drawn

according to (2) then the covariance Σz of z is given by

Σz = p(1− p)PBP + 2pEB +C (9)

where the matrix C is given by

C = 2pP 2 + 2p2F + 2pσ2M2 ⊙M

+ 2σ4
(
(A⊙A)

T
(A⊙A) +G

)
(10)

Proposition 4 proposes an decomposition of the covariance
matrix Σz into two main terms:

1) The term p(1−p)PBP+2pEB, which captures properties
of the block structure B.

2) The term C which only depends on the block activation
probability p, on the channel A, and on the noise
power σ2.

In the sequel, we propose a strategy by which to exploit this
structure to learn B.

B. Reconstruction via Spectral Clustering
In this section, we propose a provable spectral clustering-

based algorithm for Eve to infer the block structure B from
observing a finite number of snapshots L. In our setting, the
block structure matrix B that Eve aims to recover has a rank
equal to the number of blocks r, which is assumed to be
much smaller than the ambient signal dimension n. As a result,
spectral clustering’s reliability can be anticipated for inferring
the low-dimensional block structure.

We first review Algorithm 1. This is a straightforward algo-
rithm that employs the matrix Y , whose columns {y1, . . . ,yL}
are sampled from the channel output, to determine an estimate
Σ̂z of the covariance matrix Σz in Equation (9). This equation
is consecutively “inverted”, yielding an estimator B̃ of the
indicator matrix B. As the r-leading eigenvectors of the
indicator matrix B identify exactly the block structure B,
an estimate B̂ of the true block structure B is constructed
by clustering the rows of the r leading eigenvectors of the
matrix B̃, following a K-means-type procedure described by
Algorithm 2.

The rest of this section is dedicated to the theoretical analysis
of the estimation procedure proposed by Algorithm 1. Under
incoherence assumptions on the channel matrix A, we first
assess Eve’s capability to eavesdrop B using Algorithm 2 when

Algorithm 1 Eavesdropping by Spectral Clustering
1: function MOMENTMETHOD(Y∈ Rm×L,A ∈ Rm×n, p, r)
2: Z ←

(
ATY

)
⊙
(
ATY

)
3: z ← pdiag

(
(ATA)

2
)
+ σ2 diag

(
ATA

)
4: γ ← 2(d−1)

m + (n−2)(d−1)
m2 with d = n

r

5: Σ̂z ← 1
L

∑L
ℓ=1 (zℓ − z) (zℓ − z)

T

6: K ← C + 2pγIn ▷ With C as in (10)
7: B̃ ← (p(1− p))

−1
P−1(Σ̂z −K)P−1

8: Ũ ← the r dominant eigenvectors of B̃
9: B̂ ← GREEDYKMEANS (Ũ , r)

10: return B̂
11: end function

she has access to infinitely many channel outputs yℓ, and thus
to the ground truth covariance matrix Σz . Then, we consider
the case where Eve observes a finite number of channel outputs.

Algorithm 2 Greedy implementation of K-means

1: function GREEDYKMEANS(Ũ ∈ Rn×r)
2: r̃ ← 0
3: for j = 1 . . . n do
4: if minq∈{1,...,r̃} ∥c̃q − ũj∥2 < 1√

2d
then

5: B̂(j) ← argminq ∥c̃q − ũj∥2
6: ▷ Assign jth entry to cluster with closest centroid
7: c̃q ← mean

{
ũq; q ≤ j and B̂(q) = B̂(j)

}
8: ▷ Update the centroid
9: else

10: r̃ ← r̃ + 1 ▷ Create a new cluster
11: c̃r̃ ← ũj ▷ Assign jth entry to new cluster
12: end if
13: end for
14: return B̂
15: end function

C. Conditions for exact clustering

Eve’s ability to estimate B̃ sufficiently close to the indicator
matrix B is a determining factor in her attempt to recover B.
When the spectral distance

∥∥∥B̃ −B
∥∥∥
2

is small enough, the

eigenvectors of B̃ will align with those of B, and the block
structure will become identifiable by spectral clustering. We
start the theoretical derivations by finding in Proposition 5, a
sufficient condition on

∥∥∥B̃ −B
∥∥∥
2

under which the K-means
clustering procedure described by Algorithm 2 returns the
exactly the secret block structure B.

Proposition 5 (Exact clustering). Assume B ∈ {0, 1}n×n is
the indicator matrix of a block structure B with d ≥ 2. Then,
for any B̃ ∈ Rn×n with

∥∥∥B̃ −B
∥∥∥
2
<

√
2d
8 , the output of

Algorithm 1 applied the matrix Ũ ∈ Rn×r that is composed
by the r leading eigenvector of B̃ exactly recovers the block
structure, i.e. B̂ = B.

Proof. First, it is easy to confirm from Equation (1) that
∥B∥2 = d. As both B and B̃ are Hermitian matrices, they have
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orthogonal bases of eigenvectors. We write U , Ũ ∈ Rn×r the
matrices whose columns are the eigenvectors corresponding
to the r leading eigenvalues of B and B̃, respectively. By
the Davis-Kahan eigenvector perturbation theorem [46], there
exists an orthogonal matrix O ∈ Rr×r such that

∥∥∥Ũ −UO
∥∥∥
F
≤

√
2
∥∥∥B̃ −B

∥∥∥
2

λr(B)−
∥∥∥B̃ −B

∥∥∥
2

=

√
2
∥∥∥B̃ −B

∥∥∥
2

d−
∥∥∥B̃ −B

∥∥∥
2

≤ 2

d

∥∥∥B̃ −B
∥∥∥
2
<

√
2

4
√
d
, (11)

where we used t
1−t ≤

√
2t when 0 ≤ t ≤ 1

4 in the second
inequality. Next, we denote by uj and ũj the jth columns of
the matrices UT and ŨT, respectively. From the expression (1)
of B, the vector uj indicates the block in which the jth element
belongs, more precisely we have

uj(q) =

{
1√
d

if B(j) = q

0 otherwise.
(12)

Suppose that B(j) = q and let cq = cB(j) = OTuj ,
which represent the rotated true centroid of the qth block.
Equation (11) implies that ∥ũj − cq∥2 <

√
2

4
√
d

. Therefore, this
also implies that the estimated centroid of the qth block c̃q
satisfies ∥c̃q − cq∥2 <

√
2

4
√
d

at each step of the algorithm. From
the triangle inequality, we have,

∥ũj − cq∥2 ≤ ∥ũj − c̃q∥2 + ∥c̃q − cq∥2 <
1√
2d

. (13)

By orthogonality of the eigenvectors uq and uq′ , we also have

that ∥cq′ − cq∥2 =
∥∥OT (uq′ − uq)

∥∥
2
=
√

2
d for any q ̸= q′.

Hence if q′ ̸= B(j) we may write

∥ũj − c̃q′∥2 = ∥ũj − cq + cq − c̃q′∥2
≥ ∥cq − c̃q′∥2 − ∥ũj − cq∥2

>

√
2

d
−
√
2

2
√
d
=

1√
2d

. (14)

Hence ∥ũj − c̃q∥2 < ∥ũj − c̃q′∥2 for any q ̸= q′, and
we conclude with (13) and (14) that at the jth iteration,
Algorithm 2 associate B̂(j) = B(j) = q if there was an
element in {1, . . . , j − 1} that is in the qth cluster, otherwise
associate j to a new cluster q. This results in B̂ = B at the
algorithm’s output.

D. Asymptotic vulnerability

In this subsection, we assume that Eve can sample infinitely
many channel output {yℓ} that have been produced with the
same secret block structure B, and wish to understand Eve’s
capability to recover B from Algorithm 1. Of particular interest,
Eve knows in this setting the probability distribution y, and
consequently has access to the ground truth covariance matrix
Σz given in (9). In the additional pessimistic hypothesis where

Eve knows the activation probability 1 p, the block length d,
the channel matrix A, and the statistics of the noise w, she
can compute the matrices P and C in Proposition 4, and the
constant γ defined in the fourth step of Algorithm 1. Hence,
she can formulate the estimate B̃ of the block structure B as

B̃ =
1

p(1− p)
P−1 (Σz − 2pγIn −C)P−1

= B + 2(1− p)
−1

P−1 (EB − γIn)P
−1, (15)

and achieves a spectral distance to the ground truth indicator
matrix∥∥∥B̃ −B

∥∥∥
2
= 2(1− p)

−1 ∥∥P−1 (EB − γIn)P
−1
∥∥
2
. (16)

The crux is to understand whenever (16) matches the sufficiency
criteria of Proposition 5 to access Eve’s perfect recovery B,
and the vulnerability of the proposed scheme.

To that end, we must note that the matrices EB,F , and
G introduced in (8) are summations of fourth-order moments
of the matrices M and A. Furthermore, even if the entries
of the matrix A are assumed to be drawn i.i.d., the products
considered in (8) are coupled, and the summations are over
dependent terms. As a result, additional statistical assumptions
on the distribution of the channel matrix A are needed to
control the estimate of the block structure B̃. For that reason,
we provide Definition 6, which introduces a new notion of
coherence relevant to our spectral clustering context.

Definition 6 (Coherence). For an m × n matrix A, we let
M = ATA and P = M ⊙M . Given two positive numbers
µ > 0 and ν > 0, a matrix A is said to be (µ, ν)-coherent if
and only if the following bounds holds:

1) First-order bounds:

∥A∥2 ≤
√

n

m
µ (17a)

∥A∥max ≤
√

n log(n)

m
µ (17b)

2) Second-order bound:

∥M∥max ≤ log(n)µ2 (17c)

3) Fourth-order bounds: For any block structure B over n
element with maximal block length d, and for (i, j) ∈
{1, . . . , n}2, the fourth order matrix EB satisfies

∥EB − γIn∥2 ≤ max

{
1

m2
,
n

m4

}
d
√
n log(n)µ8

(17d)
where γ = 2(d−1)

m2 + (n−2)(d−1)
m4 , and the fourth order

matrices F and G satisfy

∥F ∥2 ≤
n2

m2
log2(n)µ8 (17e)

∥G∥2 ≤
n

m
log(n)µ4; (17f)

The matrix P is invertible and

λmin(P ) ≥ ν−1. (17g)

1In more practical considerations, the transmission parameter p can be
estimated by Eve from the covariance Σy of the channel output as Σy = pM .
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The parameter µ is raised to different exponents in (17)
to maintain homogeneity across the different matrix norms.
Understanding when a matrix A is (µ, ν)-coherent is crucial
to apply our theoretical analysis of Algorithm 1. However,
finding coherence parameters when assuming the entries {ai,j}
of A to be drawn i.i.d. from a know prior distribution can
be particularly challenging as the quantities defined in (8) are
summations of fourth and eighth-order terms in the matrix A.
As a result, the terms in those summations are dependent, and
the usual incoherence bounds for matrix sensing [47], [48]
cannot be directly applied.

Nonetheless, an interesting class of matrix A to consider is
the one whose columns are drawn i.i.d. according to an unitary
and isotropic distribution. In that case, we have

E[P ] = In +
1

m
(Jn − In) . (18)

Under the additional assumption that the columns of A have
a bounded inner product, i.e. if there exists a small enough
ε > 0 such that

pi,j = |⟨ai,aj⟩|2 ≤
{
(1 + ε) if i = j
1
m (1 + ε) if i ̸= j

(19)

for all (i, j), then we can show that (µ, ν)-coherence holds
with high probability. Indeed, (17a) holds because of the
unitary isotropic assumption on A, (17b) is induced by the
bounded, hence sub-Gaussian concentration of the matrix
A (see e.g. [49]), (17c) is immediate from (19), and (17g)
occurs from ∥P − E[P ]∥2 < λmin(E[P ]) = 1−m−1 given a
small enough ε. Finally, Lemma 7 validates (17d) with high
probability, and its proof is provided in Appendix C-A. The
proofs of the two later bounds (17e) and (17f) are omitted for
brevity and can be re-derived by following analogous reasoning.

Lemma 7 (Concentration of EB). Suppose that the columns
of A are drawn i.i.d. according to a unitary isotropic random
distribution and that (19) holds for some ε > 0, then there exists
a constant µ > 0 such that (17d) is satisfied with probability
greater than 1− 2n−1.

The (µ, ν)-coherence assumption on the matrix A can be
exploited with p ≤ 1

2 to control the spectral distance (16) as∥∥∥B̃ −B
∥∥∥
2
= 2(1− p)

−1 ∥∥P−1 (EB − γIn)P
−1
∥∥
2

≤ 4
∥∥P−1

∥∥2
2
∥EB − γIn∥2

≤ 4max

{
1

m2
,
n

m4

}
d
√
n log(n)ν2µ8. (20)

A direct application of Proposition 5 with (20) yields the
following characterization of the asymptotic vulnerability of
the communication protocol proposed in Section II from an
eavesdropper attempting to learn the secret block structure B
via Algorithm 2.

Corollary 8 (Asymptotic vulnerability). Suppose that A is
(µ, ν)-coherent, then if

δ :=

√
2

16
ν−2µ−8 − 2max

{
1

m2
,
n

m4

}√
nd ≥ 0 (21)
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Figure 5. Projections of the clusters estimated by Algorithm 2 unto R3

for different numbers of snapshots and SNRs. Rows (from top to bottom):
L = 500, L = 750, L = 1500. Columns (from left to right): SNR =
−40dB, SNR = 0dB, SNR = 40dB. Other system parameters are n = 400,
m = 200, β = 2.5 and r = 5.

Eve can recover the block structure B by applying Algorithm 1
provided access to infinitely many samples of the channel
outputs {y1,y2, . . . }.

This result suggests that the communication protocol between
Alice and Bob proposed in Section II is compromised from
the knowledge of the ground truth covariance and to a channel
of large enough output dimension m with constant reuse of
the secret key. We call this regime asymptotic vulnerability.

E. Estimation with a Finite Number of Snapshots

In practice, Eve can access a limited number of snapshots
L before Alice terminates the communication or refreshes
the structure B. Consequently, the true covariance Σz al-
ways remains unknown to Eve. Instead, she can attempt to
estimate B from the empirical estimator of the covariance
given by Σ̂z = 1

L

∑L
ℓ=1 (zℓ − E[z]) (zℓ − E[z])

T
, where

E[z] = pdiag
(
M2

)
and diag(·) is the operator that stacks

the diagonal elements of a n×n matrix into an n-dimensional
vector. Proposition 9 provides recovery guarantees for Eve
under the proviso she accesses a large enough number of
snapshots L.

Proposition 9 (Estimation with Finite Numbers of Snapshots).
Let the quantity δ be as defined in (21) and suppose that δ > 0,
then there exist a constants C > 0 such that if L satisfies
√
L

log(L)
≥ δ−1 n

2

m2
log2(n)

√
d

·
(
1 +

2

7 log(n)

σ2

µ2
+

4βn

7m log(n)

σ4

µ4

)
, (22)

then the output B̂ of Algorithm 1 satisfies B̂ = B with
probability greater than 1− CL−1.

The proof of Proposition 9 is presented in Appendix B.



8

0 2000 4000 6000 8000 10000
10

-4

10
-3

10
-2

10
-1

10
0

P
ro

b
ab

il
it

y
 o

f 
E

rr
o

r

 = 1.5

 = 2

 = 3

Figure 6. Probability of failure of Algorithm 1 as a function of the number
of snapshots L for different communications rates β. Dashed lines represent
Hoeffding’s error rates pHoeff detailed in Section IV for the corresponding
values of β. Herein, we set n = 200, m = 100, r = 5, and SNR = 0dB.
Experiments are averaged over 105 trials.

IV. NUMERICAL SIMULATIONS

In this section, we validate the theoretical findings presented
in Section II-C and Section III through numerical simulations.
Herein, the block compressed sensing problem (3) and com-
pressed sensing problem (5) are solved using the block-basis
pursuit (Block-BP) and basis pursuit (BP) convex relaxation
with MATLAB and the SPGL1 package [50]. For a unitary
and isometric matrix A, the signal-to-noise ratio (SNR) at the

channel output is defined as SNR ≜
E[∥Ax∥2

2]
E[∥w∥2

2]
= pn2

σ2m2 . We
subsequently select A at random with independent Gaussian
entries ai,j ∼ N

(
0, 1

m

)
.

We start by considering the clustering capabilities of Algo-
rithm 1. Figure 5 shows the clusters returned by the subroutine
Algorithm 2 for different numbers of snapshots and different
SNRs, for the case where n = 400,m = 200 and β = 2.5 and
r = 5; that is due to the block structure, we have 5 clusters. It is
clear that the value of L (number of snapshots) impacts whether
we can identify the clusters and, thus, the block structure.
Additionally, high SNR values result in better identifiability of
the clusters, especially under a limited number of snapshots,
when the signal and the noise empirical covariances are not
yet decoupled.

Next, we evaluate the probability for Eve to recover the
correct block structure B from the output of Algorithm 1 as
a function of the number of observed snapshots, L, that she
has acquired without a refresh of the block structure. We
evaluate the empirical error rate of Algorithm 1, defined by
the fraction random problem instances where B̂ ≠ B. To
assess the secrecy of the proposed protocol, we compare this
empirical error rate with the error rate of a Hoeffding test
between the probability distribution Y of the channel output
produced by the true block structure B, and the probability
distribution Y ′ produced by another block structure B′. Given
the Kullback–Leibler divergence KL(Y,Y ′) between those
two distributions, Hoeffding’s error rate is given by pHoeff =

C exp
(
−LminY′

{
KL(Y,Y ′)

2
})

for some C > 0, where
the minimum is taken over all possible block structures B′ of
r-blocks of length d that is not equal to Y . Hoeffding’s error rate
is an asymptotic statistical lower bound on the error probability

200 300 400 500 600 700 800 900 1000

10
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Figure 7. BER as a function of the number of snapshots L for different
communication rates β. Herein, we set n = 400, m = 200, r = 20, and
SNR = 0dB. Experiments are averaged over 105 trials.
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Figure 8. BER as a function of SNR for different communication rates β.
Herein, we set n = 400, m = 200, r = 20, and L = 400. Experiments are
averaged over 105 trials.

for hypothesis testing [51]. As Y and Y ′ are Gaussian mixtures
in dimension m with 2r classes, calculating the KL-divergence
by a Monte Carlo method is computationally prohibitive, and
we evaluate instead its variational approximation [52]. The
findings are shown in Figure 6 suggest that larger values of β
increase Eve’s learning rate of the secret block structure, which
corroborates with the theoretical results of Proposition 9 as
σ2 ∝ pn2

m2 in fixed SNR settings. Additionally, for larger values
of β, we observe that Algorithm 1 achieves an error exponent
close to Hoeffding’s rate, indicating the near-optimally of the
proposed moment method to eavesdrop the block structure in
the asymptotic L→∞.

Finally, motivated by communication applications, we con-
sider the downlink of a massive MIMO system. We assume
Alice transmits parsimoniously messages encoded on a block-
sparse BPSK constellation to Bob, meaning that x is drawn
according to a block-Bernoulli probability distribution, i.e.
within an active block xi = ±1 with independent and equal
probability 1

2 , and xi = 0 within a non-active block. We
define the bit-error-rate (BER) as the ratio of entries that are
in the active support of Alice’s message (xi ̸= 0), and that are
incorrectly decoded by the receiver, i.e. x̂i ̸= xi. Assuming
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that Eve relies on its estimate B̂ of the block structure obtained
from the output of Algorithm 1, we empirically evaluate Bob’s
and Eve’s BERs as a function of the number of snapshots in
Figure 7, and as a function of the SNR in Figure 8. The figures
suggest that larger values of β ease both Bob’s and Eve’s
decoding. Eve can achieve the same BER as Bob if the secret
structure is reused sufficiently many times. Additionally, for a
fixed number of snapshots, Eve’s decoding is more impeded by
the noise than Bob’s, and the BER margin between Bob and
Eve increases with the redundancy parameter β. Hence, for
fixed channel dimensions, if Alice reduces her communication
rate with Bob by selecting a smaller block activation probability
p, she can harden Eve’s decoding. This observation shows the
trade-off between the communication rate Alice can achieve
and the secrecy against an eavesdropper the protocol can induce.
For the example considered, it is clear that for β = 10 and
L < 500 Eve cannot decode while Bob can.

V. CONCLUSIONS AND FUTURE WORK

In this article, we introduced a novel communication proto-
col with provable privacy guarantees. The proposed method
harnesses a secret block-sparse prior to recovering the initial
message from underdetermined linear measurements gathered
at the output of a fat channel matrix. As block sparsity allows
exact recovery in conditions where classical compressed sensing
would provably fail, we established the existence of a secure
transmission regime to a single snapshot between Alice and
Bob. We studied the privacy guarantees of this communication
protocol to multiple transmissions without refreshing the shared
secret and proposed an algorithm for an eavesdropper to learn
the block structure via the method of moments. The proposed
block structure estimator appears to be asymptotically near-
optimal. We validated the privacy benefits of this framework
through numerical experiments.

Possible extensions of this work include a comprehensive
study of the trade-off between the communication rate that
Alice and Bob can achieve and the lifespan of the secret block
structure. Additionally, the proposed scheme paves the way for
further linear inverse problem-based implementation of private
communication protocols over the physical layer.

APPENDIX A
PROOF OF PROPOSITION 4

Let u = Mx = ATAx and w̃ = ATw for convenience
purposes. Moreover let z =

(
ATy

)
⊙
(
ATy

)
. We have that

z = (ATy)⊙ (ATy) = (u+ w̃)⊙ (u+ w̃)

= u⊙ u+ 2u⊙ w̃ + w̃ ⊙ w̃. (23)

We aim to derive the expression of the covariance of z. First,
the independence between x and w implies the independence
between u and w̃. Additionally, the assumptions E[x] = 0
and E[w] = 0 imply that E[u] = 0 and E[w̃] = 0. This yields

Cov(u⊙ u, w̃ ⊙ w̃) = 0, (24a)
Cov(u⊙ u,u⊙ w̃) = 0, (24b)
Cov(u⊙ w̃, w̃ ⊙ w̃) = 0. (24c)

Hence the covariance matrix Σz = Cov(z, z) of the random
vector z reduces to

Σz = Σu⊙u + 2Σu⊙w̃ +Σw̃⊙w̃. (25)

We derive in the sequel the expression of each of the three
matrices on the right-hand side of (25).

a) Expression of Σu⊙u: By definition of the vector u,
we have for any i = 1, . . . , n that

ui =

n∑
k=1

xk ⟨ai,ak⟩ =
n∑

k=1

xkmi,k. (26)

Thus, denoting pi,k the (i, k)-th term of the matrix P = M ⊙
M , the expected value E[u2

i ] of the random variable u2
i is

given by

E[u2
i ] = E

[(
n∑

k=1

xkmi,k

)(
n∑

k′=1

xk′mi,k′

)]

=

n∑
k=1

n∑
k′=1

E[xkxk′ ]mi,kmi,k′

=

n∑
k=1

E[x2
k]m

2
i,k =

n∑
k=1

E[x2
k]pi,k. (27)

For readability, we drop the summation interval from 1 to n
in the following. A direct calculation of the expected value
E[u2

iu
2
j ] of the product u2

iu
2
j yields

E[u2
iu

2
j ]

=
∑
k1

∑
k′
1

∑
k2

∑
k′
2

E[xk1
xk′

1
xk2

xk′
2
]mi,k1

mi,k′
1
mj,k2

mj,k′
2

=
∑
k

∑
k′

E[x2
kx

2
k′ ]pi,kpj,k′

+ 2
∑
k

∑
k′ ̸=k

E[x2
kx

2
k′ ]mi,kmi,k′mj,kmj,k′ . (28)

Equations (27) and (28) immediately lead to an expression of
the generic term of the covariance matrix Σu⊙u of the form

Σu⊙u(i, j) = E[u2
iu

2
j ]− E[u2

i ]E[u
2
j ]

=
∑
k

∑
k′

(
E[x2

kx
2
k′ ]− E[x2

k]E[x
2
k′ ]
)
pi,kpj,k′

+ 2
∑
k

∑
k′ ̸=k

E[x2
kx

2
k′ ]mi,kmi,k′mj,kmj,k′

= pT
i Σx⊙xpj

+ 2
∑
k

∑
k′ ̸=k

E[x2
kx

2
k′ ]mi,kmi,k′mj,kmj,k′ . (29)

Next, the second sum on the right-hand side of expression
(29) can be reformulated as∑

k

∑
k′ ̸=k

E[x2
kx

2
k′ ]mi,kmi,k′mj,kmj,k′

=
∑
k

∑
k′ ̸=k

B(k′)=B(k)

E[x2
kx

2
k′ ]mi,kmi,k′mj,kmj,k′

+
∑
k

∑
k′ ̸=k

B(k′ )̸=B(k)

E[x2
kx

2
k′ ]mi,kmi,k′mj,kmj,k′
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= p
∑
k

∑
k′ ̸=k

B(k′)=B(k)

mi,kmi,k′mj,kmj,k′

+ p2
∑
k

∑
k′ ̸=k

B(k′ )̸=B(k)

mi,kmi,k′mj,kmj,k′

= pEB(i, j) + p2F (i, j). (30)

Given the fourth-order statistics (7) on the block Bernouilli-
Gaussian distribution of x, we have the matrix expression
Σx⊙x = 2pIn+p(1−p)B. Substituting the previous with (30)
into (29) yields the expression

Σu⊙u = PΣx⊙xP + 2pEB + 2p2F

= p(1− p)PBP + 2pEB + 2pP 2 + 2p2F . (31)

b) Expression of Σu⊙w̃: From the independence assump-
tion between x and w, the expectation reduces to

E[(u⊙ w̃)i] = E

[(∑
k

mi,kxk

)(∑
k′

ak′,iwk′

)]
=
∑
k

∑
k′

E[xk]E[wk′ ]mi,kak′,i = 0, (32)

and the correlation term is

E[(u⊙ w̃)i(u⊙ w̃)j ]

= E

(∑
ℓ1

mi,ℓ1xℓ1

)∑
k′
1

ak′
1,i
wℓ′1


(∑

ℓ2

mj,ℓ2xℓ2

)∑
ℓ′2

aℓ′2,jwℓ′2


=

(∑
k

E[x2
k]mi,kmj,k

)(∑
k′

E[w2
k′ ]ak′,iak′,j

)

= pσ2

(∑
k

mi,kmj,k

)(∑
k′

ak′,iak′,j

)

= pσ2

(∑
k

mi,kmj,k

)
mi,j (33)

and we use (32) and (33) to get

Σu⊙w̃ = pσ2M2 ⊙M . (34)

c) Expression of Σw̃⊙w̃: We follow analogous reasoning
than for the previous term. First, the expectation is given by

E[(w̃ ⊙ w̃)i] = E

[(∑
k

ak,iwk

)(∑
k′

ak′,iwk′

)]
=
∑
k

∑
k′

E[wkwk′ ]ak,iak′,i

=
∑
k

E[w2
k]a

2
k,i = σ2

∑
k

a2k,i. (35)

Hence, the generic covariance term is

E[(w̃ ⊙ w̃)i(w̃ ⊙ w̃)j ]− E[(w̃ ⊙ w̃)i]E[(w̃ ⊙ w̃)j ]

= E

(∑
k1

ak1,iwk1

)∑
k′
1

ak′
1,i
wk′

1



(∑
k2

ak2,jwk2

)∑
k′
2

ak′
2,j

wk′
2


=
∑
k

∑
k′

(
E[w2

kw
2
k′ ]− E[w2

k]E[w
2
k]
)
a2k,ia

2
k′,j

+ 2
∑
k

∑
k′ ̸=k

E[w2
kw

2
k′ ]ak,iak,jak′,iak′,j

=
∑
k

∑
k′

(
E[w2

kw
2
k′ ]− E[w2

k]E[w
2
k]
)
a2k,ia

2
k′,j

+ 2σ4
∑
k

∑
k′ ̸=k

ak,iak,jak′,iak′,j . (36)

Furthermore as w is an i.i.d. white Gaussian random vector
with variance σ2, we have that Σw⊙w = 2σ4Im. Hence, we
may write

Σw̃⊙w̃ = (A⊙A)
T
Σw⊙w (A⊙A) + 2σ4G

= 2σ4
(
(A⊙A)

T
(A⊙A) +G

)
. (37)

We achieve the desired statement by substituting (31), (34)
and (37) into (25).

APPENDIX B
PROOF OF PROPOSITION 9

We start the proof by noticing that from Proposition 4, the
indicator matrix B of the block structure matrix B is given by

B =
1

p(1− p)
P−1 (Σz − 2pEB −C)P−1, (38)

where C is defined in (10) and is independent of B. The
spectral distance

∥∥∥B̃ −B
∥∥∥
2

can be bounded with the triangle
inequality, the (µ, ν)-incoherence of the matrix A, and the
assumption p ≤ 1

2 as follows∥∥∥B̃ −B
∥∥∥
2

=
1

p(1− p)

∥∥∥P−1
(
Σ̂z −Σz + 2p(EB − γIn)

)
P−1

∥∥∥
2

≤
∥∥P−1

∥∥2
2

(
2p−1

∥∥∥Σ̂z −Σz

∥∥∥
2
+ 4 ∥EB − γIn∥2

)
≤ ν2

(
2p−1

∥∥∥Σ̂z −Σz

∥∥∥
2

+ 4max

{
1

m2
,
n

m4

}
d
√
n log(n)µ8

)
. (39)

We obtain from (39) and Proposition 5 that Algorithm 1 outputs
the true block structure if∥∥∥Σ̂z −Σz

∥∥∥
2

≤ p
√
dµ8

(√
2

16
ν−2µ−8 − 2max

{
1

m2
,
n

m4

}
d
√
n

)
≤ p
√
dµ8δ (40)

where the right-hand side of (40) is non-negative by the
assumption δ > 0. The estimated covariance error on the
left-hand side of (40) can be made arbitrarily small for a
sufficiently large number of snapshots L. Lemma 10 provides a
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high-probability bound on the error on the estimated covariance
error as L→∞ in terms of the problem parameters.

Lemma 10 (Covariance estimation). Under the hypothesis of
Proposition 9, there exist a constant C > 0 such that the event∥∥∥Σ̂z −Σz

∥∥∥
2
≤ log(L)√

L
β−1 n

m
log2(n)dµ8

·
(
1 +

2

7 log(n)

σ2

µ2
+

4βn

7m log(n)

σ4

µ4

)
(41)

holds with probability greater than 1− CL−1.

The proof of Lemma 10 is deferred to Appendix C-B for
readability. It suffices to replace the left-hand side of inequa-
tion (40) with the high probability bound given Lemma 10 to
yield the desired statement.

APPENDIX C
PROOF OF THE TECHNICAL LEMMAS

A. Proof of Lemma 7
We start by studying the expected value of the diagonal

terms of EB. We have that

EB(i, i) =
∑
k

∑
k′ ̸=k

B(k)=B(k′)

pi,kpi,k′ , (42)

and we write for each i = {1, . . . , n}

γi =
∑
k

∑
k′ ̸=k

B(k)=B(k′)

E[pi,k]E[pi,k′ ]. (43)

By the isotropy assumption on the matrix A, γi is constant for
different values of i, and we may write γ ≜ γ1 = · · · = γn.
Moreover, by (18), the right hand side of (43) is a summation
over n(d− 1) elements yielding

E[pi,k]E[pi,k′ ] =

{
1
m if k = i or k′ = i
1

m2 otherwise.
(44)

Counting the number of occurrences in each case, we have
γ = 2(d−1)

m + (n−2)(d−1)
m2 . Additionally, under the lemma’s

conditions, (42) and (43) imply

|EB(i, i)− γ| = |EB(i, i)− γi|

=

∣∣∣∣∣∣∣∣EB(i, i)−
∑
k

∑
k′ ̸=k

B(k)=B(k′)

E[pi,k]E[pi,k′ ]

∣∣∣∣∣∣∣∣
≤
∑
k

∑
k′ ̸=k

B(k)=B(k′)

|pi,kpi,k′ − E[pi,k]E[pi,k′ ]|

≤
∑
k

∑
k′ ̸=k

B(k)=B(k′)

|pi,k − E[pi,k]|E[pi,k′ ] (1 + ε)

= (1 + ε)
∑
k

|pi,k − E[pi,k]|

 ∑
k′ ̸=k

B(k)=B(k′)

E[pi,k′ ]


(45)

where we used in the second inequality the assumption
|pi,k′ − E[pi,k′ ]| ≤ E[pi,k′ ]ε. As a result, by the isometry
assumption, the terms of the summation in the right-hand side
of (45) are independent and bounded by (1 + ε) and (1+ε)

m2

when k = i and k ̸= i, respectively. Hence, the Chernoff bound
can be applied [53], and we have

P
{
|EB(i, i)− γ| ≤

(
1 +

d− 1

m2

√
2n log(n)

)
(1 + ε)

2

}
≥ 1− 2n−2. (46)

On the off-diagonal, because of the isotropy assumption,
the random variable mi,kmi,k′mj,kmj,k′ with i ̸= j has an
even distribution for all k and k′ whenever i ̸= j. Therefore
its expected value is null, that is E[mi,kmi,k′mj,kmj,k′ ] = 0.
Denote by EB the matrix with off-diagonal terms equal to
EB with diagonal entries EB(i, i) = 0 for all i ∈ {1, . . . , n}.
Relying on the symmetrization principle, we introduce the
Rademacher random variable ρi,j = sgn(EB(i, j)), where
sgn(·) denotes the signum function. We note that {ρi,j}i;j≥i+1

are pair-wise independent. Furthermore, we can decompose
the matrix EB as the sum

EB =

n∑
i=1

n∑
j=i+1

ρi,j |EB(i, j)|
(
eTi ej + eTj ei

)
. (47)

Next, we recall in Proposition 11 (see e.g. [49, Theorem
4.1.1]) a matrix norm concentration inequality for matrices
with Rademacher entries.

Proposition 11 (Sum of symmetric Rademacher matrix series).
Consider a fixed symmetric matrix B of dimension n. Let
{ρi,j}i;j≥i+1 be a finite sequence of independent Rachemacher
variables, and introduce the matrix Rademacher series

Z =

n∑
i=1

n∑
j=i+1

ρi,jbi,j
(
eTi ej + eTj ei

)
. (48)

Let v be the matrix variance statistic of the Rademacher sum
defined as v(Z) = maxj{∥bj∥22} then for all t > 0 we have

P{∥Z∥2 ≥ t} ≤ 2n exp

( −t2
2v(Z)

)
. (49)

To bound
∥∥EB

∥∥
2

using Proposition 11, we evaluate the
matrix variance v(EB) from the decomposition (47). It yields

v(EB) = max
j
{
∥∥EB,j

∥∥2
2
}

= max
j

{∑
i ̸=j

( ∑
k′ ̸=k

B(k)=B(k′)

|mi,kmi,k′mj,kmj,k′ |
)2}

= max
j

{∑
i ̸=j

( ∑
k′ ̸=k

B(k)=B(k′)

√
pi,kpi,k′pj,kpj,k′

)2}

≤ max
j

{∑
i ̸=j

( ∑
k′ ̸=k

B(k)=B(k′)

√
E[pi,k]E[pi,k′ ]E[pj,k]E[pj,k′ ]

)2}

· (1 + ε)
4 (50)



12

where the quantity to maximize in the last inequality is constant
across different values for j and can be evaluated for j = 1
without loss of generality. The inner summation in (50) is taken
over n(d− 1) terms, which are equal to 1

m2 when k ̸= i and
k′ ̸= i, and equal to 1

m when k = i or k′ = i. After counting
the occurrences, we may reduce (50) to

v(EB) ≤ 2nd2
(

1

m
+

n

m2

)2

(1 + ε)
4
. (51)

Applying the matrix concentration inequality of Proposition 11
with t = 2

√
n log(n)d

(
1

m2 + n
m4

)
(1 + ε)

2 induces

P
{∥∥EB

∥∥
2
≤ 2
√

2n log(n)d

(
1

m2
+

n

m4

)
(1 + ε)

2

}
≥ 1− 2n−1. (52)

We are now ready to achieve the desired statement. First,
by the triangle inequality, we have

∥EB − γIn∥2 ≤
∥∥EB

∥∥
2
+
∥∥EB −EB − γIn

∥∥
2

=
∥∥EB

∥∥
2
+max

i
|EB(i, i)− γ| . (53)

It suffices to substitute the probability bounds (46) and (52)
into (53) with the union bound to yield

∥EB − In∥2 ≤ 6
√
2n log(n)dmax

{
1

m2
,
n

m4

}
(1 + ε)

2

(54)
with probability greater than 1 − 4n−1. The statement of
Lemma 7 follows by selecting the incoherence parameter

µ =
(
6
√
2 (1 + ε)

2
) 1

8

.

B. Proof of Lemma 10

We seek to upper bound the quantity
∥∥∥Σ̂z −Σz

∥∥∥
2

with
overwhelming probability. We start the proof by recalling in
Proposition 12 the matrix Bernstein concentration inequality
in the case of covariance estimation [49].

Proposition 12 (Matrix Bernstein for covariance estima-
tion). Assume that there exist a constant C such that
∥zk − E[zk]∥2 ≤ C log(L) ∥Σz∥2 for all k = 1, . . . , L, we
have that

P
(∥∥∥Σ̂z −Σz

∥∥∥
2
≥ t
)

≤ 2n exp

 −Lt2/2
C log(L)

(
∥Σz∥22 + 2

3 ∥Σz∥2 t
)
 . (55)

Hence, it is sufficient to provide a high probability bound
on ∥Σ∥2 to prove the desired statement. To that end, we apply
the triangle inequality on (9). This yields

∥Σz∥2 = ∥p(1− p)PBP + 2pEB +C∥2
≤ p(1− p) ∥PBP ∥2 + 2p ∥EB − γIn∥2

+ ∥C∥2 + ∥2pγIn∥2
≤ p ∥P ∥22 ∥B∥2 + 2p ∥EB − γIn∥2 + ∥C∥2 + 2pγ.

(56)

Now, we bound each of the elements on the right-hand side
of (56) individually. We recall ∥B∥2 = d, ∥EB − γIn∥2 is
controlled by the (µ, ν)-coherence assumption on A. Further-
more, we recall that for any Hermitian matrices X,Y of same
dimension, we have ∥X ⊙ Y ∥2 ≤ ∥X∥2 ∥Y ∥max (see e.g. [54,
p. 113]). This implies that

∥P ∥2 = ∥M ⊙M∥2 ≤ ∥M∥2 ∥M∥max

= ∥A∥22 ∥M∥max (57a)∥∥M2 ⊙M
∥∥
2
≤
∥∥M2

∥∥
2
∥M∥max

= ∥A∥42 ∥M∥max (57b)
∥A⊙A∥2 ≤ ∥A∥2 ∥A∥max . (57c)

We are now ready to bound ∥C∥2 to derive an upper bound
on ∥Σz∥2. Applying the triangle inequality on the expression
of C given in (10) gives

∥C∥2 ≤ 2p ∥P ∥22 + 2p2 ∥F ∥2 + 2σ4 ∥G∥2
+ 2pσ2

∥∥M2 ⊙M
∥∥
2
+ 2σ4 ∥A⊙A∥22 (58)

Substituting (57) into (58) and leveraging the (µ, ν)-coherence
assumption on the matrix A yield

∥C∥2 ≤ 2p ∥A∥42 ∥M∥
2
max + 2p2 ∥F ∥2 + 2σ4 ∥G∥2

+ 2pσ2 ∥A∥42 ∥M∥max + 2σ4 ∥A∥22 ∥A∥
2
max

≤ 4p
n2

m2
log2(n)µ8 + 2p

n2

m2
log(n)µ6σ2

+ 4
n2

m2
log(n)µ4σ4. (59)

Finally, we can substitute (59) into (56) to obtain

∥Σz∥2 ≤ 7pd
n2

m2
log2(n)µ8 + 2p

n2

m2
log(n)µ6σ2

+ 4
n

m
log(n)µ4σ4

≤ 7pd
n2

m2
log2(n)µ8

·
(
1 +

2

7 log(n)

σ2

µ2
+

4

7p log(n)

σ4

µ4

)
(60)

We achieve the desired statement with p = m
βn and by letting

t = log(L)

7
√
L
∥Σz∥2 in the matrix Bernstein bound (55). .
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