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Faradiba Sarquis Serpa5

1Universidade Federal de Minas Gerais, Department of Statistics, Brazil.
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Abstract

This paper aims to evaluate the statistical association between exposure to air pollution
and forced expiratory volume in the first second (FEV1) in both asthmatic and non-asthmatic
children and teenagers, in which the response variable FEV1 was repeatedly measured on a
monthly basis, characterizing a longitudinal experiment. Due to the nature of the data, a
robust linear mixed model (RLMM), combined with a robust principal component analysis
(RPCA), is proposed to handle the multicollinearity among the covariates and the impact
of extreme observations (high levels of air contaminants) on the estimates. The Huber and
Tukey loss functions are considered to obtain robust estimators of the parameters in the linear
mixed model (LMM). A finite sample size investigation is conducted under the scenario where
the covariates follow linear time series models with and without additive outliers (AO). The
impact of the time-correlation and the outliers on the estimates of the fixed effect parameters
in the LMM is investigated. In the real data analysis, the robust model strategy evidenced that
RPCA exhibits three principal component (PC), mainly related to relative humidity (Hmd),
particulate matter with a diameter smaller than 10 µm (PM10) and particulate matter with a
diameter smaller than 2.5 µm (PM2.5).

Keywords: Linear mixed model, Principal component analysis, M-estimation, robustness,
outliers, asthma.

1 Introduction

The development in cities not only benefits the local economy, such as by creating jobs and con-
tributing to urban development, but it also generates various residues which lead to environmental
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and health problems, affecting the quality of life of the population among others. The World Health
Organization (WHO) conceptualizes health as a “state of complete physical, mental and social well-
being, and not simply the absence of disease or illness” (World Health Organization, 2006). As is
widely addressed in the environmental epidemiological studies, children are more vulnerable to air
pollution since their respiratory and immunologic systems are immature. Consequently, they suffer
more severe mortality and morbidity (Thurston et al., 2017; Abidin et al., 2014; Favarato et al.,
2014). In this context, the statistical association between air quality variables and health effects
must be computed with caution, independently of the statistical regression and time series models
used. In the statistical models in epidemiological studies, a standard strategy is to consider air
pollutants and weather as covariate variables. In general, these variables are time-correlated and
present multicollinearity. Ignoring these phenomena in the modelling steps can lead to a wrong
model selection and have severe consequences on the analysis of the impact of the pollutants on
health, like a false-positive conclusion of the population health risk. Additionally, high levels of
pollutants frequently appear in the pollutant variables, but their impact is often ignored in the
literature. However, these observations can be identified as AO which affect the estimation of some
statistical characteristics of the data, like the mean, the variance, and the correlation. Hence, ro-
bust estimation methods are needed to get reliable statistical models see, for example, Reisen et al.
(2017); Cotta et al. (2020).

Many studies have recently paid attention to these issues in quantifying the association between
pollutants and adverse health effects. For example, principal component analysis (PCA) has been
proposed to mitigate multicollinearity in the predictor or regressor variables. Wang and Pham
(2011) studied the combined effects of pollutants on daily mortality using a generalized additive
model (GAM) with a robust PCA. They concluded that the relative risk (RR) estimates were
more pronounced when the multivariate robust PCA technique was used. The application of PCA
generally requires the data to be obtained through independent replications. However, as addressed
in Zamprogno et al. (2020), if the covariates are time-correlated the PC are also autocorrelated. In
this context, to handle the multicollinearity among the covariates and the autocorrelation of the PC,
Souza et al. (2018) and Ispány et al. (2018) have combined the PCA technique and multivariate
time series in the GAM model to quantify the impact of the pollutants on respiratory diseases.
They showed that the estimation of the RR was more pronounced than indicated previously in the
literature. This corroborates that statistical tools must be used with caution to quantify linear and
non-linear statistical associations between response and predictor variables.

The same issues appear in longitudinal studies where repeated measurements are collected over
time. General regression models with multiple sources of errors, denoted as LMMs, have been
suggested in the literature to analyse this type of data, see for example Verbeke and Molenberghs
(2000) for a review. In the early 90s, many researches on robust estimation methods for repeated
measurements were conducted, from a theoretical and an applied point of view. Huggins (1993)
applied the M-estimation approach proposed by Huber (1964) and since then, significant progress
has been made towards proposing robust methodologies for analysing longitudinal data in different
areas of application (Richardson and Welsh, 1995; Gill, 2000; Koller and Stahel, 2011), especially be-
cause, nowadays, there is a large amount of multivariate data, and also computational and software
facilities. An alternative approach to LMM for longitudinal data is to use a functional regression
model, see for instance Bauer et al. (2018); Aneiros et al. (2022). Recently, as a robust alterna-
tive technique for longitudinal data analysis, special attention has been paid to quantile regression
methods see, e.g., Koenker (2004); Galvão et al. (2020); Ji and Shi (2021).

The goal of this paper is to quantify the predictor variables of air pollution, weather, the
logarithm of total immunoglobulin E (IgE), among others, with FEV1, both in asthmatic and
non-asthmatic children and teenagers up to 18 years old. FEV1 values were repeatedly measured
monthly in an experiment held at the Public Health Center of Praia do Suá, in Vitória, Capital of
Esṕırito Santo, Brazil. Although all children started the FEV1 test in the same month, they do not
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necessarily take the first measurement on the same day. Each repeated measurement is taken on
average 30 days after the previous one, but with minor variations within a week at most. As the
days of the measurements are recorded, it is easy to connect this information with the other envi-
ronmental data as the air pollutants in (10).Biological, social, and economic level variables of each
unit (child) were also considered as covariates in the modelling strategy. This data set is presented
in Serpa (2019, page 31). Since the response variable is longitudinal, a particular case of the LMM
discussed by Huggins (1993) is proposed, but considering the covariates as a multiple time series
data with abrupt observations, such as high peaks of the pollutants. As previously mentioned,
these observations produce the same effect on the estimates as AO do. Since the estimation of the
covariance and correlation matrices are strongly influenced by AO, the estimation of eigenvectors
and eigenvalues is also affected, and thus classical PCA is sensitive to AO.

In this context, a RLMM, combined with a RPCA, is proposed to handle simultaneously the
multicollinearity among the covariates and the impact of high peaks of the air contaminants on the
estimates. The classical least squares (LS) estimator and the standard PCA are also considered
for comparison. To the best of our knowledge, this modelling strategy has not been suggested yet
for the case of repeated measurement data with multivariate time series covariates and outliers. In
addition, to empirically verify the impact of the outliers on the estimates of the fixed effects and
the variances of the source errors, a finite sample size investigation is conducted under the scenario
where the covariates follow linear time series models, either with or without AO.

The remaining sections of this paper are organized as follows. Section 2 discusses the LMM and
its robust estimation. Section 3 presents a Monte Carlo simulation study to evaluate the efficiency
of the LS method and M-estimation with Huber and Tukey loss functions, under different scenarios.
Section 4 addresses the real data problem, and conclusions are in Section 5.

2 Linear mixed model

We denote by Yi = (Yi1, . . . , Yimi
)T the vector of measurements taken at times ti1, . . . , timi

of the
ith subject for i = 1, . . . , n. Following Diggle (1988) and Verbeke and Molenberghs (2000, page 23),
we assume that each measurement Yij of Yi, j = 1, . . . ,mi, follows the LMM

Yij = Xijβ +Zijγi + Uij, (1)

where Xij is a known (1× d) design vector, β = (β0, . . . , βd−1)
T is a vector of d unknown but fixed

parameters to be estimated, Zij is a known (1 × q) design vector for the random effect, γi is a
vector of q unobservable random effects assumed to follow a normal distribution with mean 0 and
(q × q) covariance matrix D, i.e., γi ∼ N (0,D), and Ui = (Ui1, . . . , Uimi

)T ∼ N (0, σ2
eΩi) models

an experimental error. When q = 1 and Zij = 1, γi represents a random intercept. When Ωi is the
identity matrix, the components of Ui are independent. However, in real applications, it is usually
assumed that these components are time-correlated and follow a first order autoregressive (AR(1))
model, i.e., the (j, k)th entry of Ωi is given by ν |tij−tik|/(1 − ν2) where |ν| < 1. Verbeke and
Molenberghs (2000, page 99) suggest alternative correlation structures for the LMM.

It follows from (1) that
Yi = Xiβ +Ziγi +Ui

where Xi = [XT
i1, . . . ,X

T
imi

]T is the (mi × d) design matrix of subject i for fixed parameters and
Zi = [ZT

i1, . . . ,Z
T
imi

]T is the (mi × q) design matrix for the random effects of subject i. We assume
that γ1, . . . ,γn,U1, . . . ,Un are mutually independent. Then, Yi is a Gaussian vector with mean
Xiβ and covariance matrix

Σi = ZiDZT
i + σ2

eΩi. (2)
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The standardized residuals Ri is defined as

Ri = Σ
−1/2
i (Yi −Xiβ). (3)

Let θ = (β0, . . . , βd−1, D11, . . . , Dqq, σ
2
e , ν)

T be the vector parameter with dimension p = d +
q(q + 1)/2 + 2. To estimate θ, we consider the likelihood function proposed by Huggins (1993) in
which we introduce the weights ωij defined below see, for example, Cantoni and Ronchetti (2001).
The log-likelihood is written as

l(θ) = −
n∑

i=1

(
λ

2
log |Σi|+

mi∑
j=1

ωij ρ(Rij)

)
, (4)

where ρ is a loss function with derivative ρ′ = ψ, λ = E(Rψ(R)) with R ∼ N (0, 1), ωij =
√

1− hi(j) ,
hi(j) is i(j)th component of the diagonal of the projection matrix H = X(XTX)−1XT where
X = [XT

1 , . . . ,X
T
n ]

T is the (N × d) design matrix , N =
∑n

i=1mi, and

i(j) =

{
j if i = 1,

j +
∑i−1

k=1mk if i ≥ 2.

The role of the weights ωij and function ρ is to accommodate the outliers not only in the response
variable Yi, but also in the covariate Xi. When ωij = 1, (4) becomes the likelihood function given in
Huggins (1993). Function ρ is assumed to be convex (Richardson and Welsh, 1995) or ρ is assumed
to be twice continuously differentiable and bounded (Huggins, 1993). The M-estimator θ̂ of θ
maximizes (4) where Σi and Rij are calculated from (2) and (3), respectively, and D is constrained
to be a covariance matrix. An alternative robust and weighted method to estimate mixed models
was proposed by Koller and Stahel (2011).

Under some regularity conditions (Crowder, 1986; Huggins, 1993), the asymptotic covariance
matrix of θ̂ may be estimated by

Ĉov(θ̂) = G(θ̂)−1

n∑
i=1

(
Λi(θ̂)Λi(θ̂)

T
)
G(θ̂)−1, (5)

where G(θ) = ∂2l(θ)
∂θ∂θT and Λi(θ) is the vector of derivatives with respect to θ of the ith summand in

(4) (Huggins, 1993; Welsh and Richardson, 1997). An estimated asymptotic covariance matrix of
β̂ may be obtained as

Ĉov(β̂) ≈

(
ω̄

ϱ

n∑
i=1

XT
i Σ̂

−1
i Xi

)−1

, (6)

where Σ̂i is the estimate of Σi obtained by replacing the unknown parameters by their estimates
in (2), ω̄ = N−1

∑n
i=1

∑mi

j=1 ωij is a known constant, and

ϱ =
E[ψ(R)2]

(E[ψ′(R)])2
. (7)

The approximation in (6) is based on the inverse Hessian matrix see, for example, Huber (1981,
page 173) and Gill (2000) for the classical linear and LMM regression models, respectively.

Remark 1. There are several possible choices of functions ρ which are known in the literature.
Here, we consider the classical LS function ρ1(r) =

1
2
r2, the Huber function

ρ2(r) =

{
1
2
r2 if |r| ≤ κ2,

κ2|r| − 1
2
κ22 if |r| > κ2,
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where κ2 > 0, and the Tukey bisquared function

ρ3(r) =

{
κ2
3

6
(1− (1− (r/κ3)

2)3) if |r| ≤ κ3,
κ2
3

6
if |r| > κ3,

where κ3 > 0. We denote by (λk, ϱk) the value of (λ, ϱ) when ρ = ρk for k = 1, 2, 3. Obviously,
since ψ1(r) = r, λ1 = ϱ1 = 1. The explicit expressions of (λ2, ϱ2) and (λ3, ϱ3) in terms of κ2 and κ3,
respectively, are given in the Appendix. These expressions are useful to compute (4) and (6).

Remark 2. We denote by β̂1, β̂2 and β̂3 the LS, Huber and Tukey estimate of β, respectively.
We deduce from (6) that the asymptotic relative efficiency of β̂2 and β̂3 with respect to β̂1 is
approximately equal to 1/ϱ2 and 1/ϱ3, respectively. This can be a guideline to choose κ2 and κ3.
The standard choice is κ2 = 1.345 and κ3 = 4.685, which gives a relative efficiency of 95% for β̂2

and β̂3, respectively, see, e.g., Hampel et al. (1986, page 383), Venables and Ripley (2002, page
123) and Maronna et al. (2006, page 357).

Remark 3. Under some assumptions, the asymptotic properties of the above estimators are well-
established in the literature. All estimators are consistent and asymptotically Gaussian (Huggins,
1993; Richardson and Welsh, 1995; Gill, 2000; Cantoni and Ronchetti, 2001). If the loss function
is convex, then the estimator converges to the global maximum, otherwise, as in the case of the
Tukey loss function, a good initial point is required to ensure that the estimator converges to the
true solution (Koller, 2013, page 45).

Remark 4. For each k = 1, 2, 3, the maximization of l(θ) where ρ = ρk in (4) is achieved numerically
by successive iterations. The initial value β̂0k of β is obtained by minimizing

l0k(β) =
n∑

i=1

mi∑
j=1

ρk(Yij −Xijβ),

σ2
01 is the sample variance of the residuals (Yij −Xijβ̂01) and σ0k is the median absolute deviation

of the residuals (Yij −Xijβ̂0k) for k = 2, 3. The initial values of D is D0k where D0k,ii = σ2
0k/(q+1)

for i = 1, . . . , q and D0,ij = 0 if i ̸= j, the initial value of σ2
e is σ2

0k,e = σ2
0k/(q + 1) and the initial

value of ν is ν0 where ν0 is the same for the three loss functions and is sampled from the uniform
distribution on the interval (0, 1). From the computational aspect, l(θ) is maximized using the L-
BFGS-B method which is a quasi-Newton procedure allowing box constraints, i.e., each variable is
restricted inside lower and upper bounds. This ensures that the variances are positive. The gradient
of l(θ) is approximated by finite differences. Our codes are developed in R language (R Core Team,
2018) however, we also use the package RcppArmadillo to accelerate the calculations (Eddelbuettel
and Sanderson, 2014). This allows to work in a big data context (Byrd et al., 1995). Our R codes,
a documentation, and simulated examples are available on GitHub1. Other researchers can analyze
the method or apply it to their own longitudinal databases if they have analogous problems.

3 Monte Carlo simulations

In this section, a simulation study with finite sample sizes is conducted to verify the performance
of the estimators in LMM when the covariates are cross-correlated time series with AO. In the
context of time series data, AO are particularly dangerous since they have a strong impact on sample
estimates such as sample mean and sample autocorrelations. Additionally, as previously mentioned,

1For the printed version, see https://github.com/iandanilevicz/RLMM
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the pollution series may present observations with high levels of pollutant concentrations which may
produce sample densities with heavy tails, and these observations provoke the same effect on the
estimates as AO do. We consider the following particular case of model (1),

Yij = Xijβ + γi + Uij, (8)

where the measurements are supposed to be taken at times ti,j = j, Xij = (X
(0)
ij , X

(1)
ij , X

(2)
ij ) with

X
(0)
ij = 1 and (X

(1)
ij , X

(2)
ij )T follows the first order vector autoregressive (VAR(1)) model[

X
(1)
i,j

X
(2)
i,j

]
=

[
ϕ1,1 0
0 ϕ2,2

] [
X

(1)
i,j−1

X
(2)
i,j−1

]
+

[
W

(1)
i,j

W
(2)
i,j

]
,

[
W

(1)
i,j

W
(2)
i,j

]
∼ N

[(
0
0

)
,

(
1 ξ
ξ 1

)]
, (9)

where ϕ1,1 = 0, 0.7, ϕ2,2 = 0, 0.6 and ξ = 0, 0.5, 0.9 see, for example, Brockwell and Davis
(1991, pages 417-421). In (8), β = (2,−0.5, 1)T , γi ∼ N (0, 1) is a scalar random intercept,
and Uij ∼ N (0, 1). Therefore, the parameter vector is θ = (β0, β1, β2, D, σ

2
e)

T with true value
θ0 = (2,−0.5, 1, 1, 1)T . We take n = 20, 40, 80, mi = 5, 50, and the weights ωij = 1 and

ωij = (1− hi(j))
1
2 in (4). As previously mentioned, κ2 = 1.345 and κ3 = 4.685.

To evaluate the robustness of each estimation method, we simulate Xij with (9) and Yij with

(8) where θ = θ0. Then, when we estimate θ, we replace in (3) X
(2)
ij by the corrupted version X

(2)∗
ij

defined by
X

(2)∗
ij = X

(2)
ij + µBijKij,

where Bij is a Bernoulli random variable (RV) with P(Bij = 1) = δ where δ = 0, 0.01, . . . , 0.05 and
Kij follows a Student’s t-distribution with 3 degrees of freedom. The RVs Bij, Kij for i = 1, . . . , n
and j = 1, . . . ,mi are mutually independent, and µ = 1, 2 is the magnitude of AO. To compare
the estimators, we calculate by Monte Carlo simulations for each component θ̂k, k = 1, . . . , 5 of the
parameter estimate θ̂, the sample mean (SM) µ̂(θ̂k), mean squared error (MSE) σ̂2(θ̂k), and coverage
probability (CP) with 95% of confidence υ̂(θ̂k). Let M = 1000 be the number of replications and
θ̂k,m be the estimate of θk obtained in the mth experiment for m = 1, . . . ,M . We have

µ̂(θ̂k) =
1

M

M∑
m=1

θ̂k,m, σ̂2(θ̂k) =
1

M

M∑
m=1

(θk − θ̂k,m)
2, υ̂(θ̂k) =

1

M

M∑
m=1

wk,m,

where wk,m = 1 if θk ∈ [θ̂k,m − 1.96σ̂(θ̂k), θ̂k,m + 1.96σ̂(θ̂k)] and 0 otherwise. As the nominal level of
the CP is 0.95, we say that an estimator is good when its CP value lies in the range 0.95 ± 0.02,
and is acceptable when its CP lies in the range 0.95± 0.04.

In our simulations, a slight improvement of the performance when using ωij = (1−hi(j))
1
2 instead

of ωij = 1 in (4) was observed only for the smallest sample size (n,mi) = (20, 5) and ξ = 0.9, while
in all other cases both log-likelihood functions led to similar estimates. This shows that in the
scenarios considered in our empirical study, the Huber and Tukey loss functions are sufficient to
handle some potential outlier effects on the SM, MSE and CP. Based on this empirical evidence,
the results presented here are related to n = 40, mi = 5, 50 and ωij = 1.

Figures 1 to 3 plot for ξ = 0, 0.5, 0.9, respectively, the SM and CP of each parameter estimate as
a function of the percentage of contamination δ using the three estimation methods when mi = 5,
µ = 1 and (ϕ1,1, ϕ2,2) = (0, 0) in (9), which implies that (X

(1)
ij , X

(2)
ij )T is not time-correlated. Table 1

display the SM, MSE and CP of each parameter estimate using the three estimation methods when
ξ = 0, 0.5, δ = 0, 0.02, mi = 5, µ = 2 and (ϕ1,1, ϕ2,2) = (0, 0) in (9). Tables 2 and 3 present the same
results when ξ = 0, 0.5, δ = 0, 0.002, mi = 50, µ = 2 and (ϕ1,1, ϕ2,2) = (0, 0), (ϕ1,1, ϕ2,2) = (0.7, 0.6),
respectively.
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In Figure 1, ξ = 0 and therefore X
(1)
ij and X

(2)
ij are uncorrelated. µ̂(β̂0) and µ̂(β̂1) fluctuate

randomly around the true values. µ̂(β̂2) decreases and µ̂(σ̂2
e) increases as δ increases, and D̂ is

slightly underestimated. About CP, the Huber estimation method provides a good estimate of
β0, LS and Tukey provide an acceptable estimate; the Huber estimation method provides a good
estimate of β1 except for δ = 0.04, LS provides a good estimate except for δ = 0.05 and Tukey
provides an acceptable estimate; Tukey provides an acceptable estimate of β2 if δ ≤ 0.03, Huber
provides an acceptable estimate if δ ≤ 0.02, and LS provides an acceptable estimate only if δ = 0;
the Tukey estimation method provides a good estimate of D, LS and Huber provide acceptable
estimates; Huber estimation method provides a good estimate of σ2

e , Tukey provides acceptable
estimates, and LS is acceptable if δ ≤ 0.03. Therefore, the three methods provide acceptable
estimates of β0 and β1 and Tukey estimate is the most resilient to outliers in β2.

In Figure 2, ξ = 0.5 and therefore the correlation betweenX
(1)
ij andX

(2)
ij is moderate. Again µ̂(β̂0)

fluctuates randomly around the true value, µ̂(σ̂2
e) slowly increases and D is slightly underestimated.

However, β1 is overestimated and β2 is underestimated and the bias increases as δ increases. About
CP, we have a similar situation to ξ = 0 for β0 estimations; Huber and Tukey methods provide
acceptable estimates of β1, and LS also if δ ≤ 0.02; Tukey provides an acceptable estimate of β2 if
δ ≤ 0.03, Huber provides an acceptable estimate if δ ≤ 0.01, and LS provides an acceptable estimate
only if δ = 0; the three methods are acceptable to estimate D; Huber and Tukey are acceptable
to estimate σ2

e , but LS is acceptable if δ ≤ 0.03. Again, the Tukey estimate method is the most
resilient to outliers in β2.

In Figure 3, ξ = 0.9 and then the correlation between X
(1)
ij and X

(2)
ij is strong. Concerning the

SM, β0, σ
2
e and D display similar behaviors as previously. Again, β1 is overestimated and β2 is

underestimated and the bias increases severely as δ increases. Regarding CP, we have a similar
situation to ξ = 0 for β0 estimations; Tukey provides an acceptable estimate of β1 if δ ≤ 0.02, Huber
provides an acceptable estimate if δ ≤ 0.01, and LS provides an acceptable estimate only if δ = 0;
Huber and Tukey provide an acceptable estimate of β2 if δ ≤ 0.01, and LS provides an acceptable
estimate only if δ = 0; the three methods provide acceptable estimates of D and σ2

e to any δ.
These simulations show that the use of one of the robust methods is strongly recommended

when the presence of outliers is suspected in the data. When the covariates present moderate,
low or no correlation and the percentage of outliers is less than 2%, Huber estimates are the best
choice. If the covariates are strongly correlated or the percentage of outliers is more than 2%, then
Tukey estimates are the best choice. Note that if the contamination level of a covariate is 4% or
higher, then this covariate should not be included in the model since even Tukey estimation method
does not provide an acceptable CP. Also moderate and strong correlations should be avoid when
possible.

Table 1 reports the SM, MSE and CP related to the simulations shown in Figures 1 and 2 when
δ = 0 (uncontaminated data). This table also displays the performance of the estimators with
outlier’s magnitude µ = 2 and δ = 0.02. These sample quantities corroborate the previous analysis
of the performance of the estimators based on the plots. Now, the increase of the magnitude µ
from 1 to 2 affects the preciseness of the estimators. For example, when ξ = 0, δ = 0.02 and µ = 1,
the estimates of the σ̂2(β̂2) were 0.0127, 0.0094 and 0.0087 for LS, Huber and Tuckey methods,
respectively. Thus, comparing these values to the ones in Table 1 for ξ = 0, δ = 0.02 and µ = 2, we
see that σ̂2(β̂2) is almost multiplied by 4 for the LS method. In the same way, the corresponding
CP reduces substantially from 89.6% to 59.1%. Similar conclusions are drawn for the other cases.
In general, the Tukey loss-function displayed more resistance against the increase of the outlier’s
magnitude.

Table 2 reports the simulation results when the size of the repeated measurements is mi = 50.
For a comparison purpose with the previous scenario, the expected number of outliers was fixed to
4 by choosing δ = 0.002. Similar conclusions to the previous case can be derived. The SM, MSE
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and CP are strongly affected by the outliers, especially when ξ = 0.5 and δ = 0.002. The MSE
estimates decrease as mi increases, which corroborates the asymptotic result that the estimators
are consistent.

Table 3 displays the empirical quantities when (ϕ1,1, ϕ2,2) = (0.7, 0.6) in (9), which implies that

(X
(1)
ij , X

(2)
ij )T is also time-correlated. Although the SM and MSE behave similarly to the case in

Table 2, the CP present for the regression coefficients β1 and β2 much smaller relative frequency
than the previous cases and, again, the Tukey method provides the most resistant estimator. The
degradation of the CP is more important when ξ = 0.5, i.e. when X

(1)
ij and X

(2)
ij are correlated.

We proceed with an additional simulation to verify the computational time. Using model (8)
with ϕ1,1 = 0, ϕ2,2 = 0, µ = 1, ξ = 0, δ = 0.05 and (n,mi) = (40, 5), (80, 5), (40, 50). As this
model has p = 5, and the sample size is equal to 200, 400 and 2000, then the degrees of freedom are
195, 395 and 1995. All the results are obtained using a desktop processor Intel Core i7-6700 CPU
3.40GHz×8. Table 4 displays the time of the methods withM = 1000. The three techniques present
a similar computational time, slightly over one second for (n,mi) = (40, 5), (80, 5) and slightly over
ten seconds for (n,mi) = (40, 50).

This empirical study shows that the multivariate time series structure of the covariates, as well
as the presence of atypical observations in the data, are phenomena that can not be ignored in the
model strategy, otherwise, the conclusions can be totally erroneous and lead to severe consequences
in terms of statistical inference.

Table 1: SM, MSE and CP with 95% of confidence when ξ = 0, 0.5, δ = 0, 0.02, (n,mi) = (40, 5),
(ϕ1,1, ϕ2,2) = (0, 0), µ = 2. LMM estimated by LS, Huber (H) and Tukey (T) with κ2 = 1.345 and
κ3 = 4.685, respectively.

Parameters SM MSE CP
ξ = 0, δ = 0 LS H T LS H T LS H T

β0 2.002 2.002 2.002 0.0289 0.0306 0.0307 0.939 0.953 0.962
β1 -0.497 -0.497 -0.497 0.0057 0.0061 0.0061 0.958 0.965 0.972
β2 0.998 0.998 0.998 0.0067 0.0070 0.0070 0.936 0.955 0.965
D 0.991 0.990 0.990 0.0031 0.0034 0.0035 0.940 0.939 0.972
σ2
e 0.980 0.980 0.980 0.0188 0.0193 0.0193 0.942 0.944 0.960

ξ = 0, δ = 0.02 LS H T LS H T LS H T
β0 2.006 2.005 2.004 0.0302 0.0319 0.0324 0.947 0.963 0.972
β1 -0.499 -0.499 -0.500 0.0070 0.0069 0.0069 0.943 0.965 0.971
β2 0.860 0.920 0.952 0.0467 0.0186 0.0108 0.591 0.815 0.923
D 1.059 1.036 1.016 0.0113 0.0064 0.0043 0.788 0.932 0.983
σ2
e 0.974 0.968 0.957 0.0192 0.0197 0.0210 0.927 0.927 0.933

ξ = 0.5, δ = 0 LS H T LS H T LS H T
β0 2.002 2.002 2.001 0.0328 0.0346 0.0347 0.926 0.935 0.946
β1 -0.503 -0.504 -0.504 0.0084 0.0088 0.0088 0.943 0.958 0.969
β2 1.004 1.003 1.003 0.0086 0.0092 0.0092 0.940 0.957 0.963
D 0.995 0.995 0.994 0.0032 0.0035 0.0036 0.937 0.938 0.972
σ2
e 0.975 0.975 0.974 0.0195 0.0202 0.0205 0.925 0.933 0.949

ξ = 0.5, δ = 0.02 LS H T LS H T LS H T
β0 1.999 2.000 1.999 0.0291 0.0305 0.0313 0.942 0.957 0.960
β1 -0.419 -0.449 -0.468 0.0229 0.0146 0.0113 0.802 0.902 0.951
β2 0.830 0.891 0.930 0.0642 0.0320 0.0197 0.567 0.772 0.892
D 1.049 1.032 1.014 0.0090 0.0061 0.0045 0.819 0.944 0.981
σ2
e 0.977 0.970 0.957 0.0192 0.0200 0.0214 0.933 0.932 0.948
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Figure 1: SM and CP with 95% of confidence when ξ = 0, (n,mi) = (40, 5), (ϕ1,1, ϕ2,2) = (0, 0),
µ = 1. LS estimates (red square), Huber estimates with κ2 = 1.345 (green circle) and Tukey
estimates with κ3 = 4.685 (blue triangle).
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Figure 2: SM and CP with 95% of confidence when ξ = 0.5, (n,mi) = (40, 5), (ϕ1,1, ϕ2,2) = (0, 0),
µ = 1. LS estimates (red square), Huber estimates with κ2 = 1.345 (green circle) and Tukey
estimates with κ3 = 4.685 (blue triangle).
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Table 2: SM, MSE and CP with 95% of confidence when ξ = 0, 0.5, δ = 0, 0.002, (n,mi) = (40, 50),
(ϕ1,1, ϕ2,2) = (0, 0), µ = 2. LMM estimated by LS, Huber (H) and Tukey (T) with κ2 = 1.345 and
κ3 = 4.685, respectively.

Parameters SM MSE CP
ξ = 0, δ = 0 LS H T LS H T LS H T

β0 1.999 1.999 2.000 0.0256 0.0270 0.0269 0.934 0.957 0.963
β1 -0.501 -0.502 -0.502 0.0005 0.0006 0.0006 0.948 0.955 0.966
β2 1.000 0.999 0.999 0.0005 0.0005 0.0005 0.937 0.956 0.969
D 1.000 1.000 1.000 0.0003 0.0003 0.0003 0.950 0.963 0.983
σ2
e 0.976 0.977 0.977 0.0130 0.0132 0.0132 0.927 0.928 0.950

ξ = 0, δ = 0.002 LS H T LS H T LS H T
β0 2.000 2.000 2.000 0.0255 0.0269 0.0270 0.948 0.970 0.974
β1 -0.499 -0.500 -0.500 0.0005 0.0005 0.0005 0.957 0.971 0.977
β2 0.980 0.994 0.997 0.0027 0.0006 0.0006 0.819 0.966 0.974
D 1.009 1.004 1.001 0.0007 0.0003 0.0003 0.870 0.971 0.981
σ2
e 0.983 0.982 0.981 0.0123 0.0128 0.0128 0.932 0.931 0.949

ξ = 0.5, δ = 0 LS H T LS H T LS H T
β0 1.993 1.993 1.993 0.0250 0.0262 0.0262 0.947 0.956 0.966
β1 -0.501 -0.500 -0.500 0.0008 0.0008 0.0008 0.936 0.955 0.966
β2 1.001 1.001 1.001 0.0007 0.0008 0.0008 0.948 0.961 0.971
D 1.000 1.000 1.000 0.0003 0.0003 0.0003 0.951 0.958 0.982
σ2
e 0.979 0.979 0.979 0.0128 0.0131 0.0131 0.929 0.927 0.943

ξ = 0.5, δ = 0.002 LS H T LS H T LS H T
β0 2.002 2.003 2.003 0.0246 0.0254 0.0254 0.935 0.957 0.966
β1 -0.488 -0.497 -0.499 0.0014 0.0008 0.0007 0.899 0.962 0.972
β2 0.975 0.993 0.997 0.0035 0.0009 0.0008 0.800 0.943 0.966
D 1.009 1.003 1.001 0.0006 0.0003 0.0003 0.880 0.959 0.987
σ2
e 0.988 0.987 0.986 0.0138 0.0142 0.0143 0.922 0.925 0.945

4 Real data analysis

In this section, we apply the model and estimation methods discussed before in order to quantify the
statistical association between FEV1, in both asthmatic and non-asthmatic children and teenagers,
aged 7 to 18 years, with PM10, PM2.5 and sulfur dioxide (SO2) pollutants, Hmd, temperature in
degrees Celsius (Tmp), IgE and passive smoking (PS). The pollutants and the weather variables
were measured at the air quality automatic monitoring network (AQAMN) of the great Vitória
region (GVR), which is a densely populated region with approximately 1,900,000 inhabitants in an
area of 2319 km2 located on the east coast in the State of Esṕırito Santo (ES), Brazil (latitude
20◦19S, longitude 40◦20W) and has a humid tropical climate, with average temperatures ranging
from 24◦C to 30◦C. The GVR is a port region and industrialized area. The AQAMN of the GVR
consists of eight monitoring stations: two in Serra (Laranjeiras and Carapina), three in Vitória city
(Jardim Camburi, Praia do Suá and Vix-Centro), two in Vila Velha (VV-Centro and Ibes), and one
in Cariacica. The response variable FEV1 was measured monthly, from July to December 2017,
at the Public Health Center of Praia do Suá, Vitória, ES, Brazil. All children live and study in
the same neighborhood, which is close to the air monitoring station Praia do Suá. For this reason,
although atmospheric information from several meteorological stations in the GVR are available,
only the information from one station is used. All environmental covariates refer to the daily
averages of the day before the spirometry test. This one-day lag for the environmental covariates is
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Table 3: SM, MSE and CP with 95% of confidence when ξ = 0, 0.5, δ = 0, 0.002, (n,mi) = (40, 50),
(ϕ1,1, ϕ2,2) = (0.7, 0.6), µ = 2. LMM estimated by LS, Huber (H) and Tukey (T) with κ2 = 1.345
and κ3 = 4.685, respectively.

Parameters SM MSE CP
ξ = 0, δ = 0 LS H T LS H T LS H T

β0 1.999 1.999 2.000 0.0252 0.0263 0.0261 0.939 0.962 0.969
β1 -0.501 -0.501 -0.501 0.0004 0.0004 0.0004 0.907 0.928 0.938
β2 0.999 0.999 0.999 0.0004 0.0004 0.0004 0.916 0.938 0.947
D 1.000 0.999 0.999 0.0002 0.0003 0.0003 0.965 0.962 0.987
σ2
e 0.976 0.975 0.975 0.0133 0.0137 0.0137 0.924 0.923 0.935

ξ = 0, δ = 0.002 LS H T LS H T LS H T
β0 2.005 2.004 2.005 0.0262 0.0268 0.0269 0.938 0.961 0.965
β1 -0.500 -0.500 -0.500 0.0004 0.0004 0.0004 0.919 0.939 0.945
β2 0.989 0.997 0.999 0.0013 0.0005 0.0004 0.811 0.916 0.942
D 1.010 1.004 1.001 0.0008 0.0003 0.0003 0.876 0.968 0.985
σ2
e 0.980 0.979 0.978 0.0127 0.0130 0.0131 0.938 0.934 0.952

ξ = 0.5, δ = 0 LS H T LS H T LS H T
β0 1.999 1.999 1.999 0.0252 0.0263 0.0261 0.939 0.962 0.969
β1 -0.501 -0.501 -0.501 0.0006 0.0006 0.0006 0.899 0.920 0.927
β2 1.000 1.000 1.000 0.0005 0.0006 0.0006 0.908 0.932 0.939
D 1.000 0.999 0.999 0.0002 0.0003 0.0003 0.965 0.962 0.986
σ2
e 0.976 0.975 0.975 0.0133 0.0137 0.0137 0.924 0.923 0.935

ξ = 0.5, δ = 0.002 LS H T LS H T LS H T
β0 2.005 2.004 2.005 0.0262 0.0268 0.0269 0.938 0.961 0.965
β1 -0.493 -0.498 -0.499 0.0009 0.0006 0.0006 0.871 0.935 0.940
β2 0.985 0.996 0.998 0.0019 0.0007 0.0006 0.776 0.905 0.924
D 1.010 1.004 1.001 0.0007 0.0003 0.0003 0.877 0.968 0.985
σ2
e 0.980 0.979 0.978 0.0127 0.0131 0.0131 0.939 0.934 0.952

motivated by the following review of literature Strickland et al. (2010); Rice et al. (2013); Qu et al.
(2018). Furthermore, a sensitivity analysis with two-days lag is realized, and the results are very
similar. Other noise covariates, such as body mass index (BMI), age and gender were dropped from
the final model since, in the first steps of the model strategy, these variables were not statistically
significant.

The longitudinal study involved 82 children, and for each child, 6 measurements of FEV1 were
obtained. The age range of the study is justified by the fact that children of these ages are more
susceptible to the effects of air pollution and have a higher prevalence of respiratory diseases. This
data set is presented in Serpa (2019) and its main characteristics are summarized in Table 5 with
the mean, standard deviation (s.d.), minimum, and maximum of each variable. Furthermore, the
dichotomous variable PS shows 26.5% of passive smokers and 73.5% of non-passive smokers.

Before analysing the statistical association between pollution and FEV1, we verify if the high
peaks of concentrations present in the data have some impact on the correlation matrix of the
environmental covariates. Let Mi be the (6 × 5) matrix of the 6 measurements of the 5 en-
vironmental covariates, Hmd, Tmp, SO2, PM10 and PM2.5, corresponding to the ith child, and
M = [MT

1 ,M
T
2 , . . . ,M

T
82]

T be the (492 × 5) matrix of all environmental covariates. Table 6 dis-
plays respectively below and above the diagonal, the classical and robust correlations of the columns
of M . Shevlyakov and Smirnov (2011) propose a robust correlation estimation based on Sn, a ro-
bust variance defined by Sn = cmedi{medj |ri − rj|}, where r = (r1, . . . , rn)

T , ri ∈ R and for each
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Figure 3: SM and CP with 95% of confidence when ξ = 0.9, (n,mi) = (40, 5), (ϕ1,1, ϕ2,2) = (0, 0),
µ = 1. LS estimates (red square), Huber estimates with κ2 = 1.345 (green circle) and Tukey
estimates with κ3 = 4.685 (blue triangle).

Table 4: Average time (in seconds) of each method when (n,mi) = (40, 5), (80, 5), (40, 50), ϕ1,1 = 0,
ϕ2,2 = 0, µ = 1, δ = 0.05 and ξ = 0

Methods
(n,mi) LS Huber Tukey
(40, 5) 1.078 1.061 1.073
(80, 5) 1.135 1.123 1.140
(40, 50) 11.799 12.920 13.688
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Table 5: Exploratory data analysis

Variable mean s.d. min max
FEV1 93.63 15.83 35.00 141.00
Hmd 83.44 6.48 70.89 95.46
Tmp 23.13 2.03 19.47 26.77
PM10 18.99 4.99 10.25 29.54
PM2.5 10.36 2.68 6.75 19.00
SO2 7.13 5.17 2.27 26.31
IgE 5.01 1.62 0.76 8.52

i we compute the median of {|ri − rj|; j = 1, . . . , n}. This builds n numbers, the median of which
provides the final value of Sn. The constant c is by default equal to 1.1926 (Rousseeuw and Croux,
1993).

As can be seen, the correlations are very different, and in general, the robust ones are numerically
larger. This may indicate that there are high levels of concentration that are causing the same
effect as AO. To clarify this issue, the original data were modified by replacing the 10% smallest
and greatest peaks of the pollutants by their respective means. The sample correlations of the
modified data are shown in Table 7, and differently from the results in Table 6, both sample
correlation functions display close values. Thus, this empirical result illustrates the effect of the large
peaks of the concentrations on the sample correlations and the occurrence of the multicollinearity
phenomenon.

Table 6: Correlations between environmental covariates.

Robust correlation
Hmd Tmp SO2 PM10 PM2.5

Hmd -0.572 -0.324 -0.044 0.273
Tmp -0.469 0.378 0.231 0.594

Classical SO2 0.033 0.433 0.601 0.101
correlation PM10 -0.245 0.149 0.417 0.526

PM2.5 -0.074 0.389 0.264 0.648

Table 7: Correlation between environmental covariates after replacing the 10% smallest and greatest
values by the average of each covariate.

Robust correlation
Hmd Tmp SO2 PM10 PM2.5

Hmd -0.445 0.094 0.451 0.231
Tmp -0.286 0.045 -0.153 0.447

Classical SO2 0.131 0.053 0.487 -0.054
correlation PM10 0.398 0.090 0.448 0.218

PM2.5 0.237 0.385 -0.048 0.268

To minimize the effects of outliers, we use a RPCA method before the regression analysis in
the LMM in order to quantify the statistical association between FEV1 and the covariates. Table 8
displays the loadings L(k) for k = 1, 2, 3 of the three first PC of the classical PCA (Venables and
Ripley, 2002, page 304), and RPCA (Hubert et al., 2005) of M . The cumulative proportion of
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the total variation (CPV) of the classical PCA is smaller than the RPCA, suggesting a number of
regressors larger than three in the model to achieve a CPV larger than 90%. The CPV of the first
k principal component is

CPV(k) =
k∑

i=1

L(i)TV L(i)/
5∑

i=1

L(i)TV L(i),

where V = Var(M ) (Johnson and Wichern, 2002, pages 440-444). In the case of the classical PCA,
the first PC is essentially an average of all variables except Hmd, whereas the most important
contributions to the second and third PC are from Hmd and SO2, respectively. The situation is
very different in the RPCA where the loadings values differ from classical PCA and each PC is
mainly explained by only one variable: the main contributions to the first, second and third PC
are from Hmd, PM10 and PM2.5, respectively. Note that the variables PM10 and SO2 are highly
correlated (see Table 6).

Table 8: Loadings of the three first PC of the classical PCA and RPCA, and CPV.

PCA RPCA
L(1) L(2) L(3) L(1) L(2) L(3)

Hmd -0.436 -0.795 0.297 -0.972 0.011 -0.048
Tmp 0.704 0.481 0.373 0.184 -0.116 0.358
SO2 0.639 -0.279 0.635 0.134 0.194 -0.469
PM10 0.767 -0.344 -0.393 0.021 0.945 -0.059
PM2.5 0.765 -0.317 -0.311 -0.060 0.235 0.803
CPV 0.454 0.686 0.862 0.826 0.913 0.967

We adjust the following LMM to our data

Yij = β0 + β1P
(1)
ij + β2P

(2)
ij + β3P

(3)
ij + β4 IgEi+β5 PSi +γi + Uij, (10)

where, for i = 1, . . . , 82 and j = 1, . . . , 6, Yij is the FEV1 measurement of ith child at jth trial,

P
(k)
ij is the jth element of P

(k)
i = MiL

(k) for k = 1, 2, 3, IgEi is the allergic condition of ith
child, PSi is a binary variable indicating if the ith child is a passive smoker or not, γi ∼ N (0, D)
is a scalar random intercept and Uij is the measurement error of the model. We assume that
Ui = (Ui,1, . . . , Ui,6)

T ∼ N (0, σ2
eΩ) where the (j, k)th entry of Ω is Ωjk = ν |j−k|/(1 − ν2) with

|ν| < 1.
Let θ = (β0, . . . , β5, D, σ

2
e , ν)

T . Since n = 82 is large enough, the empirical results in Section 3
suggest to take ωij = 1 in (4). Six different models can be fitted according to the choice of ρ in
(4) and whether the loadings L(k) of the PC correspond to the classical PCA or the RPCA. For
instance, LS-PCA means that we use ρ = ρ1 and the loadings of the classical PCA, and Tukey-
RPCA means that we use ρ = ρ3 and the loadings of the RPCA. Table 9 displays the estimates of
θ, their standard errors (SE) and p-values in the fitted models LS-PCA, LS-RPCA, Huber-RPCA
and Tukey-RPCA. For the four models, the intercept β0 and the parameter ν are significant and the
parameters β3 and β4 are not significant with a p-value larger than 18%. The SE of the estimates
of β1 and β2 obtained by the LS-PCA are much larger compared to those of the robust approaches,
which display very close estimates and standard deviation values. In general, the Huber-RPCA
and Tukey-RPCA fitted models are quite similar by presenting very close parameter estimates and
p-values. The LS-RPCA also shows similar estimates to these two robust approaches, except the
estimate of β1 which is not significant with a p-value larger than 10%. All methods find that the
PS (parameter β5) give a significant contribution to the response variable with a p-value smaller
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Table 9: Estimated coefficients, SE and p-values in the fitted LMM LS-PCA, LS-RPCA, Huber-
RPCA and Tukey-RPCA.

LS-PCA LS-RPCA Huber-RPCA Tukey-RPCA
coeff. SE p coeff. SE p coeff. SE p coeff. SE p

β0 103.62 5.00 * 93.74 7.78 * 92.59 8.21 * 92.84 8.18 *
β1 -1.34 0.30 * -0.11 0.07 0.115 -0.13 0.07 0.058 -0.14 0.07 0.052
β2 -0.54 0.41 0.188 -0.22 0.08 0.003 -0.21 0.08 0.008 -0.21 0.08 0.008
β3 -0.96 0.48 0.046 0.20 0.15 0.180 0.18 0.15 0.225 0.17 0.14 0.222
β4 -0.85 0.86 0.324 -0.66 0.86 0.440 -0.92 0.94 0.328 -1.11 0.96 0.247
β5 -6.89 3.07 0.025 -6.49 3.06 0.034 -6.61 3.23 0.041 -5.86 3.29 0.075
D 10.69 1.21 * 9.86 1.44 * 10.17 1.37 * 9.77 1.38 *
σ2
e 9.89 0.37 * 10.16 0.39 * 9.15 0.45 * 8.49 0.51 *
ν 0.40 0.08 * 0.51 0.08 * 0.48 0.09 * 0.49 0.10 *

* p-value smaller than 0.001.
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Figure 4: Estimated standardized residuals of Huber-RPCA model with AR(1) and independent
errors.

than 7, 5%. For the four models, the estimates of variances σ2
e and D are significant even at 0.001

(Wellek, 2017).

In Figure 4a, we plot for each i = 1, . . . , 82, the estimated standardized residuals R̂ij for j =
1, . . . , 6 obtained by replacing Σi and β by their estimates in (3). For all estimation methods, these
residuals behave similarly and we display only the residuals obtained with the Huber-RPCA model.
To see the influence of the AR(1) parameter ν in model (10), we have also fitted a Huber-RPCA
model with independent errors Uij ∼ N(0, σ2

e). The corresponding estimated standardized residuals
are plotted in Figure 4b. There is a clear difference between Figures 4a and 4b; the variability
on the left side is much smaller than on the right, which is a crucial point in favor of the AR(1)
structure, see Verbeke and Molenberghs (2000, pages 125-127).
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5 Conclusion

This paper proposes to combine RPCA and robust estimation in a LMM in the context where
the covariates present outliers and are time-correlated. The high levels of the pollutants create a
similar effect as AO on the estimates. The robust methods provide a model which is simple to
interpret. They display three predictor factors for the respiratory ability which are the first PC
(mainly Hmd), the second PC (mainly PM10) and PS. Monte Carlo simulations show that Huber
and Tukey estimation methods are very competitive with the classical LS when there are no outliers
in the data. On the other hand, the performances of the robust methods
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6 Appendix

We establish explicit expressions of λ and ϱ in terms of κ2 and κ3 when ρ = ρ2 and ρ = ρ3. Let
R ∼ N (0, 1) and f denote the probability density of R. Let κ > 0, n ∈ N and

In =

∫ κ

−κ

r2nf(r)dr.

Then, I0 = P(|R| ≤ κ) and since f ′(r) = −rf(r) under Gaussianity, and using integration by parts,
we have for n ≥ 1,

In = −
∫ κ

−κ

rn−1f ′(r)dr = un + (2n− 1)In−1,

where un = −2κ2n−1f(κ). By iteration, we get

In = un + (2n− 1)un−1 + (2n− 1)(2n− 3)un−2 + · · ·+ 3 · 5 · · · (2n− 1)(u1 + I0).

It was shown by Gill (2000) that
λ2 = E(Rψ2(R)) = I0.

Let

λ3 = E[Rψ3(R)] =

∫ κ3

−κ3

r2

(
1−

(
r

κ3

)2
)2

f(r)dr =

∫ κ3

−κ3

(
r2 − 2r4

κ23
+
r6

κ43

)
f(r)dr

= I1 −
2I2
κ23

+
I3
κ43

= −2f(κ3)

κ3

(
15

κ23
− 1

)
+

(
1− 6

κ23
+

15

κ43

)
I0.

We have

ψ2(r) =

{
r if |r| ≤ κ2,

κ2 sgn(r) if |r| > κ2,
ψ3(r) =

r
(
1− r2

κ2
3

)2
if |r| ≤ κ3,

0 if |r| > κ3,

and

ψ′
2(r) =

{
1 if |r| < κ2,

0 if |r| > κ2,
ψ′
3(r) =

{
5r4

κ4
3
− 6r2

κ2
3
+ 1 if |r| < κ3,

0 if |r| > κ3.

Then
E(ψ′

2(R)) = I0,

E(ψ2(R)
2) =

∫ κ2

−κ2

r2f(r)dr + κ22

[∫ −κ2

−∞
f(r)dr +

∫ ∞

κ2

f(r)dr

]
= I1 + κ22(1− I0) = κ22 − 2κ2f(κ2) + (1− κ22)I0,

E(ψ′
3(R)) =

∫ κ3

−κ3

(
5r4

κ43
− 6r2

κ23
+ 1

)
f(r)dr =

5I2
κ43

− 6I1
κ23

+ I0

=
2f(κ3)

κ3

(
1− 15

κ23

)
+

(
1− 6

κ23
+

15

κ43

)
I0,

and

E(ψ3(R)
2) =

∫ κ3

−κ3

(
r10

κ83
− 4r8

κ63
+

6r6

κ43
− 4r4

κ23
+ r2

)
f(r)dr =

I5
κ83

− 4I4
κ63

+
6I3
κ43

− 4I2
κ23

+ I1

=
2f(κ3)

κ3

(
1− 13

κ23
+

105

κ43
− 945

κ63

)
+

(
1− 12

κ23
+

90

κ43
− 420

κ63
+

945

κ83

)
I0.

The explicit expressions of ϱ when ψ = ψ2 and ψ = ψ3 follow easily from (7) and the above
calculations.
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