
HAL Id: hal-04223217
https://centralesupelec.hal.science/hal-04223217

Submitted on 29 Sep 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Predictive Modeling of Loss Ratio for Congestion
Control in IoT Networks Using Deep Learning

Hanane Benadji, Lynda Zitoune, Véronique Vèque

To cite this version:
Hanane Benadji, Lynda Zitoune, Véronique Vèque. Predictive Modeling of Loss Ratio for Congestion
Control in IoT Networks Using Deep Learning. IEEE Global Communications Conference, IEEE
ComSoc, Dec 2023, Kuala Lumpur, Malaysia. �hal-04223217�

https://centralesupelec.hal.science/hal-04223217
https://hal.archives-ouvertes.fr

Predictive Modeling of Loss Ratio for
Congestion Control in IoT Networks Using

Deep Learning
Hanane Benadji∗, Lynda Zitoune∗, Véronique Vèque∗

∗ Université Paris-Saclay,
CNRS, CentraleSupélec, Laboratoire des signaux et systèmes, 91190, Gif-sur-Yvette, France.

Email: {hanane.benadji, lynda.zitoune, veronique.veque}@centralesupelec.fr

Abstract—Congestion in the Internet of Things (IoT)
networks arises when multiple flows share the same network,
which can significantly impede the performance of IoT
networks. This problem is exacerbated by the limitations
of low-power lossy networks (LLNs), resulting in increased
latency, high packet losses, reduced goodput, and other
capacity-related issues. To ensure a high quality of service
(QoS), and network reliability, it is crucial to implement
effective congestion control mechanisms in IoT networks.
Congestion in a network leads to an increase in packet losses.
The loss ratio represents the proportion of lost packets to
the total number of transmitted packets and is a critical
metric for assessing the network’s traffic load and congestion
levels. This paper emphasizes the significance of studying
IoT application-generated traffic to predict the loss ratio
accurately. For instance, reliable data transfer is essential for
IoT applications such as health monitoring, which are highly
susceptible to performance degradation due to congested
traffic and packet loss. This study proposes a novel approach
that uses time series data and Deep Learning (DL) models
to predict loss ratio in IoT networks. Our approach involves
the implementation of a sliding window technique, as well as
the validation and comparison of various DL models using
data generated by the Cooja/Contiki framework.

Index Terms—IoT Networks, Congestion Control, Net-
work Traffic Analysis, Loss Ratio Prediction, Time Series
Data, Sliding Window, and Deep Learning.

I. INTRODUCTION

The growth of the Internet of Things (IoT) has led to a
substantial increase in the number of connected devices,
with projections of over more than 75 billion objects
joining the Internet by 2030 [1], [2]. However, several
factors, including application-specific traffic characteris-
tics, limited processing, storage, and power capacity of
IoT devices, can affect the operation of IoT networks
[3]. Consequently, congestion has become a complex and
unavoidable problem in these networks [4], resulting in
a degradation of the quality of service (QoS): increased
latency, packet loss, and reduced goodput [5]. Effectively
managing congestion in IoT networks is crucial for en-
suring efficient operation and achieving the desired QoS.

To address congestion in IoT networks, two transmis-
sion models have been developed: one uses TCP, such
as Message Queuing Telemetry Transport (MQTT) [6],
while the other as the Constrained Application Protocol

(CoAP) uses User Datagram Protocol (UDP) [7]. These
models are reactive congestion indicators composed of
static rules [8] based on loss-based, delay-based, and
hybrid-based [6]. For example, each time a loss oc-
curs, the throughput is reduced. However, we argue that
proactive resolution is more efficient and suggest the
use of lightweight and adapted DL techniques to predict
congestion indicators accurately [9]–[11].

To implement a reactive congestion control scheme
for IoT networks. This study proposes using DL models
based on time series data to predict congestion in IoT
networks, using loss ratio variation as the indicator [5].
The aim is to assess the accuracy and precision of
DL models to select the more appropriate model. This
paper makes five significant contributions. Firstly, we
collect a new dataset for the IoT networks using the
Cooja/Contiki framework [12], and we preprocess the
data to extract relevant features. Secondly, we design
and train six DL models, namely including Recurrent
Neural Networks (RNN), Gated Recurrent Units (GRU),
Convolutional Neural Networks (CNN), Long Short-Term
Memory (LSTM), Bidirectional Long Short-Term Mem-
ory (Bi-LSTM), and Encoder-Decoder Long Short-Term
Memory (ED-LSTM) for time series forecasting [13].
Thirdly, we configure the hyperparameters of the DL
models. Fourthly, we investigate the influence of different
window sizes on prediction accuracy and precision to
enhance learning and prediction efficiency. Fifth, we
evaluate the models using three standard performance
metrics: Mean Absolute Error (MAE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE),
by comparing the actual and predicted loss ratio values
in the training and testing sets.

Outline: Section II summarizes some related work on
applying DL approaches for network traffic management.
Section III describes Time Series Forecasting for the loss
ratio. Section IV sums up most DL models for Time
Series Prediction. The following Section presents the
experimental design and evaluates the DL models using a
Sliding Window. Finally, section VI concludes the paper
and gives some future work.

II. RELATED WORK

DL has gained widespread adoption in various fields
due to its exceptional ability to handle complex patterns
and relationships in sequential data [13], [14]. This makes
it a preferred choice for modeling time series data, partic-
ularly in the network domain. In [15], the authors com-
pared and classified Linear and nonlinear prediction mod-
els. The study aims to predict Traffic Matrix in Software
Defined Networks (SDN) to manage the network. They
proposed an LSTM-based framework called NeuTM after
finding the hyperparameters of LSTM, which was shown
a good prediction performance and converged quickly. In
[16], the authors compared LSTM, ED-LSTM, and LSTM
with the ”Attention model” for predicting throughput
in Long Term Evolution (LTE) networks to be used in
time-critical applications. The results demonstrated that
LSTM with Attention outperformed the other models,
as RMSE and nRMSE metrics indicated. In [17], the
authors compare the accuracy of two models, K-Nearest
Neighbour (KNN) and LSTM techniques, to predict the
Received Signal Strength (RSSI) and Packet Delivery
Ratio (PDR) metrics to classify the link quality in IoT
networks. However, the results show an overfitting, which
could lead to erroneous prediction results that degrade the
network’s performance.

Recently, several research studies have investigated
machine learning and DL to improve the TCP congestion
control mechanism at the transport layer. These studies
rely on congestion indicators that are grouped into three
categories:

Loss-based: DL-TCP [9] is a modified congestion
control algorithm designed for uplink traffic in disas-
ter zones with mmWave signals. The algorithm uses
LSTM to predict the blockage duration by considering
factors such as mobility, location, and received Signal-
to-Interference-plus-Noise Ratio (SINR) values of the
TCP sender, achieving an approximate 90% probability
of accuracy. Based on the blockage duration, proposed
TCP congestion control algorithm effectively differenti-
ates between temporary link disconnections and actual
congestion.

Delay-based: In [10], the authors used The fixed-share
Experts algorithm, which is a machine learning (ML)
algorithm, to adjust the sending rate in wireless networks.
The approach uses the Round Trip Time (RTT) values as
an input to predict the next RTT in congested networks
and update weights based on the difference between
the estimated and actual RTTs. The results demonstrate
that the model rapidly adapts to changes in Round-Trip
Time, resulting in a significant reduction in the number
of retransmitted packets and a notable improvement in
goodput, particularly in highly congested scenarios.

Hybrid-based: Combine loss and delay techniques
to predict the congestion status of 5G access networks,
particularly mmWave links. In [11], the authors compare

classification ML techniques to predict congestion status
and investigate the impact of mmWave physical issues
on transport layer metrics, including delay and inter-
arrival time (IaT) at the receiver endpoint’s transport layer
and RLC (radio link control) buffer size. The authors
categorized the comparison based on binary or multi-level
classification. The simulation results showed the k-means
algorithm is preferred for ML-based congestion control
for mmwaves.

Overall, the LSTM model is the most cited [9], [14],
[15], [17] in work aimed at improving the performance
of networks due to its ability to retain information over
extended periods. This study provides a comprehensive
analysis and comparison of accuracy-based DL models
to identify the most appropriate model for accurately
predicting the loss ratio in IoT networks. This aims
to implement a proactive congestion control protocol
in IoT networks, making IoT devices intelligent with
efficient and reliable communication adaptable to various
environments and applications [8].

III. TIME SERIES FORECASTING

This section describes the steps to create Time Series
Loss Ratio Forecasting in IoT networks.

A. Problem statement

In developing an efficient and accurate model in DL,
the availability and sufficiency of training data play a
crucial role. However, due to the scarcity of publicly
accessible datasets for IoT networks, this study uses
data generated from the realistic simulator Cooja/Contiki
framework. Cooja/Contiki is widely used for evaluating
and designing IoT networks [12]. This environment pro-
vides a realistic emulation of constrained devices with
varying processing capabilities. In this work, two types
of IoT devices, Wismote and Sky Mote, are considered to
emulate various communication scenarios and derive the
dataset. The motes embedded MSPSim [12], an accurate
hardware emulator, and run Contiki, the open-source
operating system for IoT devices. Table I summarizes the
hardware specification embedded on the motes.

TABLE I: Cooja/ Contiki: hardware specifications of Wismote and Sky
motes

Wismote specifications
RAM 16KB
ROM 256KB
Micro-Controller MSP430F5437
CPU Clock Speed 25Mhz
RADIO CC2520 2.4GHz / 250Kbps data rate

Sky mote specifications
RAM 10KB
ROM 48KB
Micro-Controller MSP430F1611
CPU Clock Speed 8MHz
RADIO CC2420 2.4GHz / 250Kbps data rate

B. Network Model

We simulate a network of 100 motes organized in a
grid topology, including 98 CoAP senders, one server on

the Wismote devices, and an RPL border router on Sky
Mote devices. Each sender generates periodic traffic of a
message of size 112 bytes every ten seconds to the server,
and it receives back from the server of a message size
86 bytes; this traffic represents a realistic traffic profile
of a smart healthcare application, particularly the patient
surveillance [3]. The CoAP protocol [7] is used as the
congestion control protocol in the application layer. It
is a lightweight protocol designed for IoT devices with
limited resources and bandwidth, making it suitable for
our simulation. Table II summarizes the protocol stack
we consider. All the transactions between CoAP senders
and the server are recorded in the log file that we parse
to extract the loss ratio every 10 seconds and form
the dataset. This log file is useful for examining and
evaluating the network’s performance regarding the CoAP
parameters as in [5].

TABLE II: Cooja/Contiki: simulation parameters

Simulation parameters
Application Layer CoAP
Routing Layer RPL (Routing Protocol for LLNs)
Transport Layer UDP
Network Layer 6LoWPAN/ IPV6
MAC Layer CSMA/ CA
Link/Physical Layer IEEE 802.15.4
Radio Duty Cycling ON ContikiMAC driver
PDR (Packet Delivery Ratio) 100%

C. Sliding Window Technique

In this study, the time series data represents the loss
ratio, denoted as XT = {X1, X2, X3, ..., XT }, which is
a series of positives values collected at equally spaced
time slots T = {1, 2, 3, ..., T}. This study aims to predict
the loss ratio at time t ∈ T using information from prior
times, known as lag times or lags [13]. For example, the
loss ratio at the previous time is Xt−1, and at the time be-
fore that is Xt−2. To achieve this goal, we start with pre-
processing the obtained dataset [18], to prepare data for
effective analysis or use. We perform data normalization
to scale all dataset features to a comparable scale, enhanc-
ing DL models’ performance and convergence. After that,
we divide the time series data into two sets: the training
and test sets are denoted as Nk = {X1, X2, X3, ..., Xk}
and Mk = {Xk+1, Xk+2, Xk+3, ..., XT }, respectively,
where k ∈ T . The training set is used to train the DL
models and find the optimal hyperparameters [19] for
each model, while the test set is used to evaluate the
model’s accuracy and precision.

Then, we transformed the time series data, which
consisted of observed loss ratios {X1, X2, X3, . . . , XN},
into a supervised learning problem f(X) = Y , where
X represents input variables and Y represents output
variables. To achieve this, we employed the sliding win-
dow technique to transform the data into fixed-length
sequences of size m, where m is less than the total
number of samples (N). Specifically, we divided the data
into fixed-length input sequences representing a sequence

of loss ratio values and an output value representing the
loss ratio to predict. We used time lags T = 1 to slide
the window m along the time series. We repeated this
process until we structured all the data into S = N −m
subsamples. Finally, we used the new data to train and
evaluate DL models.

IV. DEEP LEARNING MODELS

Given the remarkable capacity of DL techniques in
effectively handling and extracting insights from exten-
sive sequential data, significant research efforts have
been directed towards harnessing DL to enhance network
performance, as discussed in [14], [15], [17]. This paper
proposes using DL models to predict loss ratios in IoT
networks. Specifically, we introduce three distinct cate-
gories of DL models:

The first category is Basic RNN. RNNs have recurrent
connections that enable the processing of new inputs
while incorporating previous ones. This inherent ability
for dynamic sequence modeling facilitates the detection
of long-term patterns. In RNN, we employ the hyperbolic
tangent (tanh) activation function. To stabilize the learn-
ing process in RNNs, we use the Root Mean Square Prop-
agation (RMSprop) optimizer. Extending our exploration,
we delve into LSTM, an extension of RNNs designed to
mitigate short-term memory limitations. LSTM employs
gates, including the forget gate, input gate, and output
gate, to identify which data in a sequence is relevant.
In LSTM, we employ the Rectified Linear Unit (ReLU)
as an activation function and Adam optimizer. Another
type of RNN used in this study is GRU, which offers a
streamlined alternative to LSTM with fewer parameters.
GRU architecture includes two fundamental gates, the up-
date gate and the reset gate, making it less complex than
LSTM. Employing the tanh activation function within the
context of GRU, we optimize the learning process through
the RMSprop optimizer.

The second category is Advanced RNN. Which
includes Bi-LSTM and ED-LSTM. Bi-LSTM shares the
same architecture as LSTM and introduces bidirectional
processing by incorporating information from both for-
ward and backward directions. This dynamic approach,
implemented through two hidden layers, enables informa-
tion propagation throughout the sequence at every step.
Employing the tanh activation function, Bi-LSTM’s opti-
mization relies on the RMSprop optimizer. On the other
hand, ED-LSTM emerges as an extension of the LSTM
model, tailored to accommodate variable-length inputs
and outputs. ED-LSTM comprises an encoder tasked
with compressing time series data into compact vectors
and a decoder responsible for restoring the original time
series data from the compressed vectors. The activation
function chosen for ED-LSTM is also the tanh, and the
optimization strategy remains the RMSprop optimizer.

The third category is CNN. CNN comprises convo-
lution and pooling layers, followed by fully connected

layers. Convolution and pooling layers extract features
from the input sequence while reducing dimensions. Sub-
sequently, fully connected layers employ these extracted
features to generate predictions. In our study, ReLU is the
chosen activation function within the CNN architecture.
We employ the RMSprop optimizer for optimization
purposes.

V. EXPERIMENTS AND RESULTS

A. Experimental design

The generated dataset of 10000 observations, repre-
senting the loss ratio computed every 10 seconds, is
preprocessed to obtain more accurate and consistent re-
sults when training the considered models. The dataset is
scaled to the range of [0, 1] and divided into a training
set to fit the models and a testing set to evaluate the
models, representing a 60/40 split of the dataset [13].
Afterward, we transformed each training and test set into
a state-space representation with varying W = 5, 10,
15, and 20 window sizes for each experiment, using a
time lag of T = 1 for 1-step-ahead prediction purposes.
We conducted a thorough hyperparameter tuning process
for each DL model employed in our experiments. This
involved evaluating different values for key hyperparam-
eters, including the number of layers, hidden units, and
activation functions, using the Grid Search technique [19].
Through this process, we identified the optimal parameter
combinations that yielded the highest performance in loss
ratio prediction for each DL model. Table III summarizes
the crucial parameters for the DL models considered in
our study. The term ’input’ refers to the data fed into the
considered learning models; a ’hidden unit’ refers to a
single node within a hidden layer in a neural network,
and the term ’output’ refers to the predicted value of a
single size.

TABLE III: Hyperpamaters of the considered DL models

Models Input Hidden
Layers

Hidden units Output

LSTM 5-10-15-20 1 20 1
Bi-LSTM 5-10-15-20 1 10 1
ED-LSTM 5-10-15-20 2 20 for each layer 1
CNN 5-10-15-20 2 Layer 1: 64;

Layer 2: 20
1

GRU 5-10-15-20 1 128 1
RNN 5-10-15-20 2 Layer 1: 64;

Layer 2: 20
1

The models were constructed and trained in this work
using the Keras library [20]. The training was conducted
on an Intel Core i9 machine with 32GB of memory.

B. Results and discussion

The results of the prediction models are based on
ten experimental runs for both the training and testing
datasets. We varied the window size to evaluate the impact
of the amount of data used in each experiment. The mean
and 95% confidence interval of the RMSE is displayed

for each prediction model to assess robustness. A lower
confidence interval indicates higher confidence in the
prediction, as shown in Fig. 1. Table IV presents the
results for RMSE, MAE, and MSE, described by the
following formulas:

MAE =
1

n

n∑
i=1

|yi − ŷi| (1)

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (2)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2 (3)

yi and ŷi are the observed and the predicted values,
respectively, and n represents the total number of predic-
tions.

Table IV shows the values for all measurements. MAE
values do not vary from model to model and remain stable
because MAE is not very sensitive to large errors. In
contrast, MSE penalizes large errors more severely than
MAE, and RMSE rescales the errors computed by MSE,
making it easier to read and classify models according to
their accuracy.

Fig. 1 presents the results for different window sizes,
including 5, 10, 15, and 20. For a window size of 5 (Fig.
1a), the best training and test set performance is observed
for ED-LSTM and RNN, with an RMSE of around 0.09
for both training and test sets. Increasing the window
size to 10 (Fig. 1b) maintains a similar performance
to a window size of 5 for all models, except for ED-
LSTM, which shows an improvement in the training set
with an RMSE of around 0.08. The performance of the
LSTM, RNN, and GRU models remains consistent with a
window size of 15 (Fig. 1c), while the Bi-LSTM model’s
performance is slightly better with a window size of
10. The CNN model’s performance does not improve
with an increase in the window size. On the other hand,
ED-LSTM model performance slightly improves with a
window size of 15, with an RMSE of approximately 0.08
for the training set. For a window size of 20 (Fig. 1d),
the performance of LSTM, Bi-LSTM, CNN, RNN, and
GRU models remains the same as with a window size of
15. ED-LSTM continues to demonstrate the best overall
performance, exhibiting an RMSE of less than 0.08 in
training and less than 0.1 in testing sets.

The experimental results demonstrate that all DL
models perform similarly regarding TrainRMSE and
TestRMSE. This finding confirms that our dataset’s split
dataset ratio of 60/40 is sufficient for training and testing
the DL models.

Moreover, the results show that the ED-LSTM model
is a robust and effective tool for predicting loss ratio,
followed by RNN, GRU, Bi-LSTM, and LSTM models.
To assess the accuracy of the trained ED-LSTM model,

Fig. 1: RMSE evalution: mean and 95% confidence interval.

TABLE IV: RMSE, MAE, and MSE on training and test sets Vs window size.

Window size of 5
Metrics LSTM Bi-LSTM ED-LSTM CNN RNN GRU
TrainRMSE 0.129584 0.123411 0.090034 0.126525 0.09822 0.12116
TestRMSE 0.132458 0.125601 0.099007 0.129314 0.098189 0.123887
TrainMAE 0.052748 0.053687 0.053865 0.052185 0.055990 0.067429
TestMAE 0.054163 0.054801 0.055128 0.054658 0.056765 0.069833
TrainMSE 0.008285 0.007950 0.008036 0.008311 0.008114 0.011634
TestMSE 0.008165 0.007950 0.007887 0.008599 0.007785 0.011851

Window size of 10
TrainRMSE 0.130003 0.13022 0.085395 0.134392 0.105121 0.126332
TestRMSE 0.131772 0.132065 0.100905 0.137622 0.107236 0.127948
TrainMAE 0.052577 0.053127 0.053724 0.054022 0.061215 0.068961
TestMAE 0.053420 0.052594 0.055002 0.056246 0.061757 0.070966
TrainMSE 0.008335 0.007913 0.008517 0.008598 0.010168 0.013009
TestMSE 0.007948 0.007474 0.008294 0.008650 0.009751 0.013077

Window size of 15
TrainRMSE 0.130708 0.128324 0.083739 0.140897 0.102301 0.124868
TestRMSE 0.132282 0.12999 0.097578 0.145435 0.107454 0.126255
TrainMAE 0.052085 0.052945 0.053392 0.053706 0.058417 0.072884
TestMAE 0.053104 0.053756 0.054461 0.058958 0.058997 0.074609
TrainMSE 0.008085 0.008306 0.008453 0.008284 0.009768 0.012656
TestMSE 0.007933 0.007966 0.008191 0.009752 0.009350 0.012750

Window size of 20
TrainRMSE 0.131071 0.129455 0.078683 0.136817 0.106735 0.122068
TestRMSE 0.131997 0.131587 0.097312 0.14127 0.10719 0.122597
TrainMAE 0.051156 0.052159 0.054183 0.051836 0.055597 0.076215
TestMAE 0.051592 0.051731 0.054753 0.056189 0.055516 0.077172
TrainMSE 0.007980 0.007970 0.008193 0.007568 0.008315 0.011992
TestMSE 0.007630 0.007318 0.007844 0.008450 0.007665 0.011896

we compared it to the LSTM model using new loss ratio
data of 2000 observations that we collected by simulating
a network of 14 motes organized in a ring topology, as
in [5], using the Cooja/Contiki framework. We employed
a window size of 5 for making predictions and compared
the actual loss ratio values with the values predicted
by the ED-LSTM and LSTM models in Figs. 2 and 3.
The results demonstrate that both models exhibit strong
performance; however, the ED-LSTM model outperforms
the LSTM model, achieving a lower RMSE value of 0.06
compared to 0.07. Furthermore, the ED-LSTM model
accurately predicts loss ratio values ranging from 0.2 to

0.6 (Fig. 2).
To further evaluate the accuracy of ED-LSTM and

LSTM models, we conducted an in-depth analysis by
generating error histograms, as shown in Figs. 4 and 5.
The error histogram calculates the absolute difference be-
tween the predicted and actual values. Analyzing the error
histograms reveals that both models exhibit a significant
proportion of observations with 0 errors, accounting for
0.6 of the total. This finding suggests that both models
accurately predict most observations. Approximately a 0.1
proportion of observations with errors falling within 0 to
0.2. This indicates that some observations exhibit rela-

tively minor errors within this range. However, a smaller
proportion of observations with errors are 0.2 to 0.6. This
suggests that errors within this range are infrequent in
the predictions generated by both models. Additionally,
the error histogram reveals a predominant proportion of
observations with 0 errors, and only a limited number of
observations exhibit errors exceeding 0. For both models,
the distribution of errors follows an exponential pattern.
Based on these results, we can conclude that the close
correspondence between the predicted and actual values
suggests the absence of overfitting or underfitting. This
indicates that the ED-LSTM model is a dependable and
precise tool for accurately predicting loss ratio in IoT
networks.

Fig. 2: Actual vs. predicted values: ED-LSTM Model.

Fig. 3: Actual vs. predicted values: LSTM Model.

Fig. 4: Histogram of Errors: ED-LSTM Model.

Fig. 5: Histogram of Errors: LSTM Model.

VI. CONCLUSION AND FUTURE WORK

In the context of this study, our investigation into the
efficacy of DL models for loss ratio prediction in IoT
networks using time series data and the sliding window

approach. Our findings underscore the ED-LSTM model’s
consistent superiority in accurately forecasting loss ratio
within IoT networks. The ED-LSTM’s remarkable perfor-
mance is attributed to its specific architectural composi-
tion, notably its adeptness at capturing intricate temporal
dependencies within sequences of variable lengths. This
proficiency enables it to grasp and adapt to the intricate
dynamics intrinsic to IoT data. This competitive edge
firmly distinguishes the ED-LSTM model, rendering it
a robust instrument for loss ratio prediction.

In future work, we aim to design a proactive congestion
control solution based on our ED-LSTM model. This
solution significantly improves network performance and
is adaptable to various environments and IoT applications.

REFERENCES

[1] H. Tahaei, et al., “The rise of traffic classification in iot networks:
A survey,” Journal of Network and Computer Applications, vol.
154, p. 102538, 2020.

[2] L. Columbus, “Roundup of internet of things forecasts and market
estimates, 2016,” Forbes. com, November 27th, 2016.

[3] J. Mocnej, et al., Network Traffic Characteristics of the IoT
Application Use Cases, ser. Technical report series. School
of Engineering and Computer Science, Victoria University of
Wellington, 2018.

[4] N. Mishra, et al., “An analysis of IoT congestion control policies,”
Procedia Computer Science, vol. 132, pp. 444–450, 2018.

[5] H. Benadji, et al., “Performance evaluation and congestion analy-
sis in iot network,” in 2022 IEEE International Mediterranean
Conference on Communications and Networking (MeditCom),
2022, pp. 232–237.

[6] B. H. Çorak, et al., “Comparative analysis of IoT communica-
tion protocols,” in 2018 International Symposium on Networks,
Computers and Communications (ISNCC), 2018, pp. 1–6.

[7] Z. Shelby, et al., “The Constrained Application Protocol (CoAP),”
RFC 7252, Jun. 2014.

[8] P. K. Donta and S. Dustdar, “Towards intelligent data protocols for
the edge,” in IEEE International Conference on Edge Computing
and Communications (EDGE). IEEE, 2023, pp. 1–9.

[9] W. Na, et al., “DL-TCP: Deep learning-based transmission control
protocol for disaster 5g mmWave networks,” IEEE Access, vol. 7,
pp. 145 134–145 144.

[10] A. Nunes, et al., “A machine learning framework for TCP round-
trip time estimation,” EURASIP Journal on Wireless Communica-
tions and Networking, vol. 2014, no. 1, p. 47, 2014.

[11] L. Diez, et al., “Can we exploit machine learning to predict
congestion over mmWave 5g channels?” Applied Sciences, vol. 10,
no. 18, p. 6164, 2020.

[12] A. Kurniawan, Practical Contiki-NG. Apress.
[13] R. Chandra, et al., “Evaluation of deep learning models for multi-

step ahead time series prediction,” vol. 9, pp. 83 105–83 123, 2021.
[14] O. Aouedi, et al., “Intelligent traffic management in next-

generation networks,” Future Internet, vol. 14, no. 2, p. 44, 2022.
[15] A. Azzouni and G. Pujolle, “NeuTM: A neural network-based

framework for traffic matrix prediction in sdn,” in 2018 IFIP
Network Operations and Management Symposium (NOMS), 2018,
pp. 1–5.

[16] H. Na, et al., “LSTM-based throughput prediction for LTE net-
works,” ICT Express, pp. 1–6, 2021.

[17] C. Boucetta, et al., “QoS in IoT networks based on link quality
prediction,” in ICC 2021 - IEEE International Conference on
Communications, pp. 1–6.

[18] S. Garcı́a, et al., Data Preprocessing in Data Mining, ser. In-
telligent Systems Reference Library. Springer International
Publishing, 2015, vol. 72.

[19] J. Brownlee, Deep Learning for Time Series Forecasting: Predict
the Future with MLPs, CNNs and LSTMs in Python. Machine
Learning Mastery, 2018.

[20] https://keras.io/.

