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Abstract
Two-player turn-based zero-sum games on (finite or infinite) graphs are a central framework in
theoretical computer science — notably as a tool for controller synthesis, but also due to their
connection with logic and automata theory. A crucial challenge in the field is to understand how
complex strategies need to be to play optimally, given a type of game and a winning objective. In
this invited contribution, we give a tour of recent advances aiming to characterize games where
finite-memory strategies suffice (i.e., using a limited amount of information about the past). We
mostly focus on so-called chromatic memory, which is limited to using colors — the basic building
blocks of objectives — seen along a play to update itself. Chromatic memory has the advantage of
being usable in different game graphs, and the corresponding class of strategies turns out to be of
great interest to both the practical and the theoretical sides.
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1 Introduction

Two-player turn-based zero-sum games on graphs. We consider games between two
players, P1 and P2, that are played on a (finite or infinite) graph, often called arena, whose
set of vertices is partitioned into vertices controlled by P1 and vertices controlled by P2. The
players interact by moving a pebble from vertex to vertex, ad infinitum, following edges of
the graph. The game starts in a given vertex, and the owner of the current vertex decides
where to send the pebble next. The infinite path thereby created is called a play.

We assume that the edges of the graph are labeled with colors from a finite or infinite set.
These colors are used to define the objective of the game: an objective is simply a language of
infinite color sequences [24]. This general view of objectives encompasses all classical notions
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43:2 The True Colors of Memory

from the literature, qualitative and quantitative objectives alike.
The goal of P1 is to create a play whose projection to colors belongs to the objective

whereas P2 tries to prevent it; hence our games are zero-sum. They are also turn-based as
the players take turns moving the pebble depending on the owner of the current vertex.
These moves are chosen according to the strategy of the player, which, in general, might use
memory (bounded or not) of the past moves to prescribe the next action.

This type of games has been studied for decades, for a plethora of objectives: see many
examples in [4]. Interestingly, virtually all such games (i.e., for all reasonable objectives)
are known to be determined since Martin’s seminal result on Borel determinacy [36]. This
means that for every vertex v, either P1 has a strategy that guarantees victory when the
game starts in v, or P2 has one. Two natural questions follow: given a game, can we decide
from which vertex each player can win, and what kind of strategy do they need to use?

Reactive synthesis. This survey focuses on the latter question, which is particularly relevant
in the context of controller synthesis for reactive systems [25, 41, 8, 2]. This formal methods
approach aims to automatically synthesize a provably-correct controller for a reactive system
that operates within an uncontrollable environment. Through the game-theoretic metaphor,
one can model the interaction between the system and its (possibly antagonistic) environment
as a two-player zero-sum game on a graph: vertices of the graph model states of the
system-environment pair whereas the specification of the system is encoded as a winning
objective.

The goal of synthesis is to decide if P1 (the system) has a winning strategy, i.e., one that
ensures the objective against all possible strategies of P2 (the environment), and to build
such a strategy if it exists. Winning strategies are essentially formal blueprints for controllers
to implement in practical applications: these will thus be correct by design.

A wide variety of objectives (and combinations thereof — e.g., [14, 33]) have been studied
in the literature, notably to offer appropriate modeling power for applications in reactive
synthesis. All can be expressed through the formalism of colors used in this paper.

Strategy complexity. Keeping in mind that strategies are used as blueprints for real-world
controllers, one easily understands why their complexity is of utmost importance: the simpler
the strategy, the easier and cheaper it will be to synthesize the corresponding controller and
maintain it. On the theoretical level, comprehending which classes of strategies suffice to
play optimally (i.e., win whenever winning is possible) for various classes of games is also a
worthy venture as it may lead to more efficient solving algorithms and the identification of
common grounds between these different classes of games.

Many classical objectives are known to be memoryless-determined: memoryless strategies,
i.e., only using the current vertex as the basis for their decisions, suffice to play optimally.
It is for example the case of mean-payoff (in finite graphs) [19] or parity (in finite and
infinite graphs) [20, 45]. Yet, over the last decade, the need to model increasingly complex
specifications has geared research toward games with more intricate objectives (e.g., [9, 5]) or
objectives arising from the combination of simple ones (e.g., [33, 10]). When considering such
rich objectives, memoryless strategies usually do not suffice, and one has to use strategies
relying on a memory structure, which can be finite or infinite. A natural follow-up question
is thus to quantify the memory that is needed for a given objective.

Two flavors of memory. Two models of strategies coexist in the recent literature. In both,
a finite-memory strategy can be seen as the association of a memory structure — we will call
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this a memory skeleton — taking the form of a finite automaton and of a memoryless strategy
defined, not on the arena, but on the product of the arena and this memory structure — this
memoryless strategy is the next-action function in the classical Mealy machine model. The
only but crucial difference is how the memory structure updates its state when an edge is
taken in the arena.

In chromatic memory (e.g., [4, 7, 11]), the update function only considers the color of the
edge, whereas in chaotic memory (e.g., [18, 31, 13]), the updates consider the actual edge of
the arena. That is, in chaotic memory, two different edges bearing the same color may lead
to different updates whereas this is not possible in chromatic memory. As such, chromatic
memory can be seen as a restricted class of finite-memory strategies. Yet, interestingly,
chromatic memory proves sufficient in most cases, and appears more robust with regard to
general characterizations. An important feature of chromatic memory is that it allows to
define a memory skeleton for an objective independently of an arena, which is impossible
for chaotic memory as it explicitly uses the underlying arena. Indeed, chromatic memory
coincides with the model used for arena-independent strategies in [4]. That being said, given
a particular arena, chaotic memory may lead to smaller memory structures — state-wise,
not necessarily true when counting transitions — as it can use additional knowledge of the
graph; see examples in [11, 13, 32].

General characterizations vs. tight memory bounds. In this invited contribution, we
survey recent advances in the study of chromatic-memory strategies, most stemming from a
series of co-authored papers on the topic. One can identify two orthogonal yet complementary
directions in our work.

Our first line of research aims to establish general characterizations for large classes of
games. A typical example is our characterization of objectives for which arena-independent
(chromatic) finite-memory strategies suffice [4] (in finite arenas), providing a finite-memory
equivalent to Gimbert and Zielonka’s seminal result [24]. The philosophy of this research
direction is to identify the common grounds between various objectives and to pinpoint the
underlying source of complexity, going beyond the use of ad-hoc proofs and techniques. In
addition to its fundamental interest, this endeavor permits to establish amenable criteria
that one can check to establish that finite-memory optimal strategies exist in a wide range of
contexts. Of course, due to its generality, this approach might not lead to perfectly tight
memory bounds in particular contexts.

Our second topic of interest can be seen as an answer to this limitation, as it aims to
provide tight (lower and upper) memory bounds for specific objective classes. We focus on
ω-regular objectives and rely on their representations through different classes of automata
in our approach.

Outline. The structure of our paper follows these two lines of research. In Section 2,
we introduce the main concepts and notations. Section 3 surveys our results on general
characterizations, mainly [4] for finite arenas and [7] for infinite ones. Section 4 focuses on
tight bounds for specific ω-regular objectives — we notably present the results of [3]. Finally,
Section 5 discusses open questions and future work.

We highlight that this paper is meant as an introductory survey to the topic and, as
such, does not give a fully-detailed presentation of all concepts and results. We settled
on a high-level, hopefully intuitive, exposition of the field, trying to highlight the interest
and limits of our current knowledge, along with connections between the different results.
Interested readers may find all details in the corresponding full papers.

FSTTCS 2022



43:4 The True Colors of Memory

Additional related work. This paper only considers deterministic games and the corre-
sponding results. In general, these do not carry over to stochastic (one-player or two-player)
games, and specific techniques are needed, both to establish results on memory, but also to
study the need for randomness — another aspect of the complexity of strategies arising in
this context. We mention some references on the topic: [28, 27, 17, 6, 34].

Acknowledgments. Most of the results presented here [4, 6, 7, 3] are related to the F.R.S.-
FNRS project FrontieRS, led by the authors. Some of these were obtained in collaboration
with Antonio Casares, Stéphane Le Roux, and Youssouf Oualhadj. We express our utmost
gratitude to our delightful co-authors.

2 Games on Graphs, Objectives, Chromatic Memory

In the whole article, letter C refers to a (finite or infinite) non-empty set of colors. Given
a set A, we write respectively A∗, A+, and Aω for the set of finite, non-empty finite, and
infinite sequences of elements of A. We denote by ε the empty word.

Arenas. We consider two players P1 and P2. An arena is a tuple A = (V, V1, V2, E)
such that V is a non-empty set of vertices and is the disjoint union of V1 and V2, and
E ⊆ V × C × V is a set of (colored) edges. Intuitively, vertices in V1 are controlled by P1
and vertices in V2 are controlled by P2. We assume arenas to be non-blocking: for all v ∈ V ,
there exists (v, c, v′) ∈ E. For v ∈ V , a play of A from v is an infinite sequence of edges
π = (v0, c1, v1)(v1, c2, v2) . . . ∈ Eω such that v0 = v. A history of A from v is a finite prefix
in E∗ of a play of A from v. For convenience, we assume that there is a distinct empty
history λv for every v ∈ V . If γ = (v0, c1, v1) . . . (vn−1, cn, vn) is a non-empty history of A,
we define last(γ) = vn. For an empty history λv, we define last(λv) = v. For i ∈ {1, 2}, we
denote by Histsi(A) the set of histories γ of A such that last(γ) ∈ Vi. An arena is finite if V

and E are finite. An arena A = (V, V1, V2, E) is a one-player arena of P1 (resp. P2) if V2 = ∅
(resp. V1 = ∅).

Strategies. Let i ∈ {1, 2}. A strategy of Pi on A is a function σi : Histsi(A) → E such
that for all γ ∈ Histsi(A), the first component of σi(γ) coincides with last(γ). Given a
strategy σi of Pi, we say that a play π = e1e2 . . . is consistent with σi if for all finite prefixes
γ = e1 . . . en of π such that last(γ) ∈ Vi, σi(γ) = en+1. A strategy σi is memoryless (also
called positional in the literature) if its outputs only depend on the current vertex and not
on the whole history, i.e., if there exists a function f : Vi → E such that for all γ ∈ Histsi(A),
σi(γ) = f(last(γ)).

Memory skeletons. A (memory) skeleton is a tuple M = (M, minit, αupd) such that M is a
finite set of states, minit ∈ M is an initial state, and αupd : M × C → M is an update function.
Such skeletons are sometimes called chromatic, as their transitions are only based on the
colors seen. We denote by α∗

upd the natural extension of αupd to finite sequences of colors.
We define the trivial skeleton Mtriv as the only skeleton with a single state.

Let M1 = (M1, m1
init, α1

upd) and M2 = (M2, m2
init, α2

upd) be two skeletons. Their (direct)
product M1 ⊗ M2 is the skeleton (M, minit, αupd) where M = M1 × M2, minit = (m1

init, m2
init),

and for all m1 ∈ M1, m2 ∈ M2, c ∈ C, αupd((m1, m2), c) = (α1
upd(m1, c), α2

upd(m2, c)).
For M = (M, minit, αupd) a skeleton, a strategy σi of Pi is based on M if there exists

a function αnxt : V × M → E such that for all vertices v ∈ Vi, σi(λv) = αnxt(v, minit),
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and for all non-empty histories γ = (v0, c1, v1) . . . (vn−1, cn, vn) ∈ Histsi(A), σi(γ) =
αnxt(last(γ), α∗

upd(minit, c1 . . . cn)). Such a strategy is said to use chromatic memory. Notice
that a strategy is memoryless if and only if it is based on Mtriv.

Objectives. An objective is a set W ⊆ Cω of infinite words. When an objective W is clear
in the context, we say that an infinite word w ∈ Cω is winning if w ∈ W , and losing if
w /∈ W . We write W for the complement Cω \ W of an objective W . An objective W is
prefix-independent if for all w ∈ C∗ and w′ ∈ Cω, w′ ∈ W if and only if ww′ ∈ W . For a
finite word w ∈ C∗, we write w−1W = {w′ ∈ Cω | ww′ ∈ Cω} for the winning continuations
of w. We have in general that ε−1W = W , and if W is prefix-independent, for all w ∈ C∗,
we have w−1W = W .

A game is a tuple (A, W ), where A is an arena and W is an objective. In such a game,
P1 wants to achieve an infinite word in W through the infinite interaction with P2 in A,
while P2 wants to achieve an infinite word in W .

ω-regular objectives. A central class of objectives is the one of ω-regular objectives. They
admit multiple equivalent definitions: they are the objectives that can be expressed using an ω-
regular expression, a non-deterministic Büchi automaton, a deterministic parity automaton. . .
In this contribution, we mostly use their representation as a deterministic parity automaton
(DPA). A (transition-based) DPA is a tuple D = (Q, qinit, δ, p) where Q is a finite set of states,
qinit ∈ Q is an initial state, δ : Q × C → Q is a transition function, and p : Q × C → N is a
priority function. A DPA D recognizes an objective containing the words such that, when
read in D, the maximal priority that they see infinitely often is even. Notice that the first
three components of a DPA are syntactically the same as a memory skeleton; for a memory
skeleton M = (M, minit, αupd), if there is p : M × C → N such that D = (M, p), we say that
D is built on top of M.

Optimality. Let A = (V, V1, V2, E) be an arena, (A, W ) be a game, and v ∈ V . We say that
a strategy σ1 of P1 is winning from v if for all plays (v0, c1, v1)(v1, c2, v2) . . . from v consistent
with σ1, c1c2 . . . ∈ W . A strategy of P1 is optimal for P1 in (A, W ) if it is winning from all
the vertices from which P1 has a winning strategy. We often write optimal for P1 in A if the
objective W is clear from the context. This notion of optimality requires a single strategy to
be winning from all the winning vertices (a property sometimes called uniformity).

Our games are zero-sum, hence the objective of P2 is formally W . For the sake of
readability, we still talk about winning and optimal strategies of P2 for W , taking into
account the symmetric nature of their antagonistic role (i.e., an optimal strategy of P2 for
W is an optimal strategy of P1 for W if the two players are swapped).

Let W be an objective and i ∈ {1, 2}. A memory skeleton M suffices for Pi for W

(resp. in finite, one-player arenas) if Pi has an optimal strategy based on M in game (A, W )
for all (resp. finite, one-player) arenas A. We say that W is M-determined (resp. in finite
arenas) if M suffices for both P1 and P2 for W (resp. in finite arenas), and that W is
finite-memory-determined if it is M-determined for some M. We call Mtriv-determinacy
memoryless determinacy. For consistency with the literature [30], we call the notion “Mtriv
suffices to play optimally for P1 for W” half-positionality of W .

▶ Remark 1. We stress that the notion of finite-memory determinacy used throughout the
paper is strong in several respects: it requires chromatic memory to be sufficient (the memory
can only observe colors, and not actual edges that are taken during a play), and it requires
the same memory skeleton to be sufficient in all arenas (that is, it is arena-independent). ⌟

FSTTCS 2022



43:6 The True Colors of Memory

3 Characterization of finite-memory-determined objectives

Many objectives are known to be memoryless-determined, that is, to require no memory
except the knowledge of the current vertex to be won. For instance, Ehrenfeucht and Mycielski
proved in 1979 that mean-payoff games are memoryless-determined in finite arenas [19], and
Emerson and Jutla proved in 1991 that parity games are memoryless-determined [21].

It has therefore been a natural research direction to try to characterize the winning
objectives that are memoryless-determined. Gimbert and Zielonka gave the first charac-
terization of winning objectives that are memoryless-determined in finite arenas [24]; this
characterization is presented in Section 3.1.1. Trying to extend that result to finite memory
was very natural, but the extension could only be handled fifteen years later, and required to
focus on chromatic arena-independent memory [4]; this is presented in Section 3.1.2.

Some objectives are memoryless-determined in finite arenas, but require infinite memory
in infinite arenas; this is for instance the case of mean-payoff objectives. Hence the above
characterizations do not carry over to infinite arenas. Inspired by a work by Colcombet and
Niwiński [16] who focused on prefix-independent and memoryless-determined objectives, a
full characterization of objectives that are finite-memory-determined in infinite arenas is
given in [7], where it is proved that they actually coincide with ω-regular objectives; this is
discussed in Section 3.2.

3.1 Finite graph games
3.1.1 Memoryless-determined objectives
The first complete characterization of objectives (or more generally preference relations —
we do not define this notion here) admitting memoryless optimal strategies is established
in [24]. By complete characterization, we mean sufficient and necessary conditions on the
objectives. This result can be stated as follows.

▶ Theorem 2 ([24, Theorem 2]). An objective W is memoryless-determined if and only if
both W and W are monotone and selective.

Roughly, monotony for an objective says that if an infinite word uwω
1 is winning and

another one uwω
2 is losing, then their “winning status” cannot be swapped by replacing prefix

u, i.e., we cannot have u′wω
1 losing and u′wω

2 winning for any u′ ∈ C∗. This property is
obviously satisfied by prefix-independent objectives, but is more general.

Selectivity is defined with regard to cycle mixing: starting from two sequences of colors, it
is impossible to create a third one by mixing the first two in such a way that the third one is
winning while the first two are not. Similar-looking notions (fairly mixing, concave [23, 30])
had been defined in other attempts in the literature, but they slightly differ and are actually
incomparable to selectivity.

A by-product of the proof of the above theorem is the following so-called one-to-two-player
lift.

▶ Corollary 3. Assume that for an objective W , memoryless strategies suffice for both P1
and P2 in their respective finite one-player arenas. Then W is memoryless-determined in
finite arenas.

Such a lifting corollary provides a neat and easy way to prove that an objective admits
memoryless optimal strategies without proving monotony and selectivity at all: proving it
in the two one-player subcases, which is generally much easier as it boils down to graph
reasoning, and then lifting the result to the general two-player case through the corollary.
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▶ Example 4. Let C = Q. For w = c1c2 . . . ∈ Cω, we define its mean payoff

MP(w) = lim inf
n→∞

1
n

n∑
i=1

ci

as the limit (inferior) of the average of the colors of its finite prefixes. We define the objective
“achieving a non-negative mean payoff” as MP≥0 = {w ∈ Cω | MP(w) ≥ 0}. This objective is
memoryless-determined in finite arenas, which was first proved in [19]. We argue informally
that it is easy to recover this result using Corollary 3.

We take the point of view of P1. Let A be a finite one-player arena of P1. We consider the
cycles of A, and we say that a cycle is non-negative if the average of its colors is non-negative.
Clearly, P1 can win for MP≥0 if a non-negative cycle is reachable: P1 can simply reach the
cycle and loop around it. To win with a memoryless strategy, we simply observe that a
non-negative cycle always contains a non-negative simple cycle (i.e., not going twice through
the same vertex). A simple cycle can be reached and looped around with a memoryless
strategy. This describes a way to win with a memoryless strategy if there is a non-negative
cycle, and this is actually “complete”: if there is no non-negative cycle, then P1 simply cannot
win for MP≥0. We have shown that given a fixed initial vertex of A, if P1 can win, then P1
can win with a memoryless strategy. Formally, we must still argue that we can build a single
memoryless strategy winning “uniformly” from all the vertices from which P1 has a winning
strategy, which we do not do here but is reasonably straightforward. These arguments show
that memoryless strategies suffice for P1 in its one-player arenas, and the same reasoning
works for P2 (using negative cycles instead). By Corollary 3, MP≥0 is memoryless-determined
in finite arenas. ⌟

3.1.2 Finite-memory-determined objectives
Gimbert and Zielonka’s result completely characterizes objectives which can be won with
memoryless strategies in all games played on finite arenas. This paves the way to the quest
for a similar characterization for finite-memory strategies. A first reasonable attempt for
a generalization to finite-memory strategies could be: given an objective, if in all finite
one-player arenas, players have finite-memory optimal strategies, does the same hold in
finite two-player arenas? Unfortunately, this generalization does not actually hold: there are
objectives for which both players have finite-memory optimal strategies in their respective
finite one-player arenas, but for which there exists a finite two-player arena that requires
infinite memory for a player to win — see [4, Figure 1].

However, a result similar to Theorem 2 can be proved for M-determinacy. Note the
subtlety here: M-determinacy requires the memory skeleton M to be uniform with regard
to the arena; the structure of the memory must be arena-independent, as opposed to the
more general version sketched above where the memory may depend on the arena.

▶ Theorem 5 ([4, Theorem 3.6]). Let M be a memory skeleton. An objective W is M-
determined if and only if both W and its complement W are M-monotone and M-selective.

The two concepts of M-monotony and M-selectivity are keys to the approach. Intuitively,
they correspond to Gimbert and Zielonka’s monotony and selectivity, modulo a memory
skeleton. The more general concepts of M-monotony and M-selectivity serve the same
purpose, but they only compare sequences of colors that are deemed equivalent by the
memory skeleton. For the sake of illustration, take selectivity: it implies that one has no
interest in mixing different cycles of the game arena. For its generalization, the memory

FSTTCS 2022



43:8 The True Colors of Memory

skeleton is taken into account: M-selectivity implies that one has no interest in mixing cycles
of the game arena that are read as cycles on the same memory state in the skeleton M. In
particular, Mtriv-monotony and Mtriv-selectivity are respectively equivalent to the original
notions of monotony and selectivity, as Mtriv never distinguishes sequences of colors.

The proof of this theorem mimics the one of [24] via the notion of M-covered arena.
An M-covered arena is an arena which is compatible with M, in the sense that there is a
morphism from the arena to M. Examples of M-covered arenas are products of an arena
with M, but they are more general (notably, removing edges from these products preserves
M-coverability). Strategies based on M on arenas correspond to memoryless strategies on
M-covered arenas. The proof technique for memoryless strategies, relying on an induction
on the size of arenas, can be made on M-covered arenas to obtain the theorem for strategies
based on M.

As for memoryless strategies, a by-product of the proof of the above theorem is a
one-to-two-player lift.

▶ Corollary 6. Let M be a memory skeleton. Assume that for an objective W , strategies
based on M suffice for both P1 and P2 in their respective finite one-player arenas. Then W

is M-determined in finite arenas.

As in general P1 and P2 may need different memory structures, we may instantiate the
result with two different memory structures M1 and M2: if M1 suffices for P1 and M2
suffices for P2 for W in finite one-player arenas, then M1 ⊗ M2 suffices for both P1 and P2
in their finite one-player arenas (remembering more information cannot do harm), so W is
(M1 ⊗ M2)-determined in finite arenas. However, it is unknown whether M1 (resp. M2)
alone could be sufficient for P1 (resp. P2) in finite (two-player) arenas, or if the product is
required.

m1 m2
a

b, c a, b, c

m′
1 m′

2
a, b

c a, b, c

Figure 1 Memory skeletons M (left) and M′ (right) for two-target reachability games. In
figures, diamonds (resp. circles, squares) represent memory or automaton states (resp. arena vertices
controlled by P1, arena vertices controlled by P2).

▶ Example 7. Consider the objective W = (C∗aCω) ∩ (C∗bCω) over alphabet C = {a, b, c}.
The objective W requires that both colors a and b should be seen at least once. Consider
the two skeletons M and M′ in Figure 1.

Let us briefly explain why W is not Mtriv-monotone (i.e., monotone) but is M-monotone.
On the one hand, abω ∈ W is preferred to aaω /∈ W , but baω ∈ W is preferred to bbω /∈ W ;
hence, W is not Mtriv-monotone. On the other hand, skeleton M distinguishes a and b

(in the sense that they reach two different states of skeleton M), hence we do not need to
compare their winning continuations a−1W and b−1W . Also, we can prove that two pairs of
continuations u−1

1 W and u−1
2 W such that u1 and u2 reach the same memory state of M are

comparable (for the inclusion), hence W is M-monotone.
Let us now briefly explain why W is not Mtriv-selective (i.e., selective) but is M′-selective.

Notice that a and b are losing cycles, in the sense that if repeated infinitely often, they
generate a losing word (aω, bω ∈ W ). But combining a and b, which are cycles on the state of
Mtriv (as are all finite words), may result in a winning word. For instance, they can be used



P. Bouyer, M. Randour, and P. Vandenhove 43:9

to make (ab)ω ∈ W . Hence, W is not Mtriv-selective. On the other hand, W is M′-selective,
as M′ distinguishes cycles in such a way that two losing cycles on the same memory state
cannot be combined into a winning cycle. For m′

1: all cycles around m′
1 are losing (since

they contain neither a nor b) and cannot be combined into a winning cycle. For m′
2: if one

reaches m′
2, it means that one of a or b was seen, hence only one color remains to be seen.

Any subsequent cycle on m′
2 is either useless (if it sees c or the color among a and b that

was already seen) or immediately winning (if it sees the color among a and b that was not
seen). There is therefore no advantage to combine multiple cycles once m′

2 is reached.
Overall, W is M-monotone and M′-selective, and we can show in a similar fashion that

W is M-monotone and Mtriv-selective. Moreover, monotony and selectivity are “preserved
by product” (intuitively, as having more information to our disposal is never harmful), so
both W and W are (M ⊗ M′)-monotone and (M ⊗ M′)-selective. This allows to conclude
by Theorem 5 that W is (M ⊗ M′)-determined in finite arenas. Skeleton M ⊗ M′ has
formally four states but only three reachable states, so both players can play optimally for
W using three memory states, which is minimal [22]. ⌟

Applicability of these results goes beyond ω-regular objectives. For instance, the intersec-
tion of a reachability condition and a mean-payoff objective requires two memory states, and
it suffices for both players to keep track of whether the reachability objective has already
been satisfied, e.g., using skeleton M of Figure 1.

3.2 Infinite graph games
Unfortunately, memoryless determinacy in finite arenas does not carry over straightforwardly
to infinite arenas. Indeed, there are objectives that are memoryless-determined in finite
arenas but that require infinite memory in some infinite (even one-player) arenas: this is the
case for the mean-payoff objective MP≥0, which we showed to be memoryless-determined in
finite arenas in Example 4.

▶ Example 8. We consider objective MP≥0 and the infinite one-player arena of P1 in
Figure 2 [40]. Despite the fact that all colors are negative, P1 has a winning strategy: the
idea is to loop on state si sufficiently many times to bring the payoff close to − 1

i , and then
move to si+1 and repeat. At the limit, the mean payoff is 0. However, this winning strategy
requires memory (even infinite memory) to be implemented, and no memoryless strategy is
winning. Hence, MP≥0 is not memoryless-determined in infinite arenas. ⌟

v1 v2 v3 · · ·−1 −1 −1

−1 − 1
2 − 1

3

Figure 2 One-player arena requiring infinite memory for objective MP≥0.

An interesting result dealing with infinite arenas is the work by Colcombet and Ni-
wiński [16], who proved that a prefix-independent objective W is memoryless-determined
in infinite arenas if and only if W is a parity condition. A parity condition is an objective
recognized by a deterministic parity automaton with a single state, in which each color is
directly mapped to a priority in a finite set of integers. In [7], we generalized it to a charac-
terization of objectives that are finite-memory-determined in infinite arenas. Formulating
this generalization requires the language-theoretic notion of right congruence. Let W ⊆ Cω

FSTTCS 2022



43:10 The True Colors of Memory

be an objective. The right congruence ∼W ⊆ C∗ × C∗ of W is defined as w1 ∼W w2 if
w−1

1 W = w−1
2 W (meaning that w1 and w2 have the same winning continuations). When

∼W has finitely many equivalence classes, we can associate to W a natural skeleton MW

whose set of states is the set of equivalence classes and with transitions defined in a natural
way [43, 35]. We call skeleton MW the prefix classifier of W , as two finite words reach the
same state of MW if and only if they are equivalent for ∼W . We can now state the main
result from [7].

▶ Theorem 9 ([7]). An objective is finite-memory-determined (in arenas of any cardinality) if
and only if it is ω-regular. Furthermore, if W is M-determined (in arenas of any cardinality),
then W is recognized by a DPA built on top of M ⊗ MW .

Before [7], ω-regular objectives were known to be finite-memory-determined [21, 45]: if
it is possible to represent an objective with a DPA, then the structure of this automaton
suffices to play optimally for both players. Indeed, keeping in memory the extra information
from this DPA effectively reduces any game using this objective into a (larger) game using a
(simpler) parity condition. This shows one implication of Theorem 9. The proof of the other
implication goes through the following steps: if W is M-determined for some skeleton M,
then

W is M-cycle-consistent: after any finite word, if we concatenate infinitely many winning
(resp. losing) cycles on the skeleton state reached by that word, then it only produces
winning (resp. losing) infinite words;
MW is finite, which implies that W is MW -prefix-independent: MW classifies prefixes
in such a way that two prefixes reaching the same memory state have the same winning
continuations.

From this, we obtain in particular that W is (M ⊗ MW )-cycle-consistent and (M ⊗ MW )-
prefix-independent. We can prove that under these properties, one can associate to transitions
of M ⊗ MW priorities such that W is recognized by a DPA built on top of M ⊗ MW . This
part of the proof is rather technical, but relies on ordering the cycles according to “how good
they are for winning”; order which can be used to assign priorities to transitions.

We recover the result of [16], since the prefix classifier has a single state in the case
of a prefix-independent objective (that is, the prefix classifier is Mtriv). Hence, under
the assumption that W is prefix-independent and memoryless-determined (that is, Mtriv-
determined), we deduce that W is recognized by a DPA built on top of the skeleton
Mtriv ⊗ Mtriv with a single state, that is, W is a parity condition.

As previously, we can extract a one-to-two-player lift from the proof of the above result.

▶ Corollary 10. Let W be an objective. If M suffices for both P1 and P2 in their respective
one-player arenas (of arbitrary cardinality), then W is (M ⊗ MW )-determined (in arenas
of arbitrary cardinality). In particular, if W is prefix-independent, then under the previous
hypotheses, W is M-determined.

We discuss two ω-regular objectives and illustrate that to represent them using DPAs,
we may need some information given by their prefix classifier and some information given by
a sufficient memory structure.

▶ Example 11. Consider the objective W1 = b∗ab∗aCω over the alphabet C = {a, b}. This
objective has a prefix classifier MW1 with three states, corresponding to the three equivalence
classes of finite words that have seen 0, 1, or 2 times the color a. This objective is also
memoryless-determined that is, Mtriv-determined; we do not prove it here (in finite arenas,
it can be shown with Corollary 3). By Theorem 9, this means that W1 can be recognized by
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b | 1 b | 1

a, b | 2
a | 1 a | 1

b | 1 a | 1

b | 0

a | 0

Figure 3 DPA recognizing W1 = b∗ab∗aCω (left), which is built on top of its prefix classifier
MW1 . DPA recognizing W2 = C∗(ab)ω (right), which is built on top of a minimal memory structure
sufficient for P1 and P2. A transition from a state q to a state q′ labeled with “c | n” means that
δ(q, c) = q′ and that p(q, c) = n.

a DPA built on top Mtriv ⊗ MW1 = MW1 . We represent such a DPA in Figure 3 (left): its
structure is the same as MW1 , and we just added the right priorities to its transitions.

Consider the objective W2 = C∗(ab)ω over the alphabet C = {a, b}. It is prefix-
independent, hence its prefix classifier is Mtriv. It is furthermore M-determined, where M is
the skeleton with two states that remembers whether a or b was last seen; this skeleton has
the same structure as the DPA in Figure 3 (right). By Theorem 9, W2 can be recognized by
a DPA built on top of M ⊗ Mtriv = M. We represent such a DPA in Figure 3 (right). ⌟

On the other hand, our results can also illustrate why an objective is not finite-memory-
determined (or equivalently, ω-regular).

▶ Example 12. We go back to the mean-payoff objective MP≥0 defined in Example 4. It
is a prefix-independent objective, hence MMP≥0 = Mtriv. However, it is not Mtriv-cycle-
consistent. Indeed, repeating ad infinitum the same color from the set {− 1

n | n ∈ N>0}
results in a losing word; however, the sequence (−1)(− 1

2 )(− 1
3 ) . . . combining multiple such

losing colors is winning (its mean payoff is exactly 0). This argument can be extended to
any finite memory skeleton M to show that MP≥0 is not M-cycle-consistent. This means
that MP≥0 is not finite-memory-determined over infinite arenas, and is not ω-regular. ⌟

In some classes of objectives, finite-memory determinacy/ω-regularity depends on the
values of some parameters.

▶ Example 13. Let C ⊆ Q be a bounded set of colors and λ ∈ (0, 1) be a discount factor.
We consider the discounted-sum objective [42]

DSC,λ
≥0 = {c1c2 . . . ∈ Cω |

∞∑
i=1

ci · λi−1 ≥ 0}.

For all values of λ, it is possible to show that DSC,λ
≥0 is Mtriv-cycle-consistent. This means by

Theorem 9 that the prefix classifier of DSC,λ
≥0 , when finite, can be used as a DPA to recognize

objective DSC,λ
≥0 . Proof details and a characterization of the values of C and λ such that

DSC,λ
≥0 is ω-regular can be found in [7, Section 4.1]. We give a specific example of values that

make DSC,λ
≥0 ω-regular: for λ = 1

2 and C = {−2, −1, 0, 1, 2}, the prefix-classifier is finite and
is depicted in Figure 4. ⌟

4 Memory requirements of ω-regular objectives

Section 3.2 presented an equivalence between ω-regularity and a kind of finite-memory
determinacy of two-player zero-sum games. This suggests that, in addition to their relevance
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⊤⊥

0

1−1

2−2

−1

0, 1, 2

−2

1

−2, −1

2

0

2

C \ {2}
CC

Figure 4 Prefix classifier of DSC,λ
≥0 for λ = 1

2 and C = {−2, −1, 0, 1, 2}. An infinite word if
winning if and only if it does not reach state ⊥.

in logic and in synthesis, understanding the memory requirements of ω-regular objectives is a
natural stepping stone in order to study the strategy complexity of all two-player zero-sum
games. We discuss known results about memory requirements of ω-regular objectives in this
section.

As was stated in Theorem 9, one can relate the memory requirements of an ω-regular
objective to its representation as a DPA. We may wonder how close this result brings us to
characterizing precisely the memory requirements of ω-regular objectives. Albeit being quite
general, there are still multiple questions about memory requirements that Theorem 9 is not
able to answer precisely. We introduce these questions by highlighting two of its limitations.

The first limitation comes from the asymmetry of its two implications. In one direction,
which is the novel contribution from Theorem 9, we start from a sufficient memory skeleton
M for some objective and show that the objective can then be represented as a DPA built
on the automatic structure M ⊗ MW . In the other direction, we simply use the known
memoryless-determinacy of parity conditions, which we already mentioned. What does this
tell us on the memory requirements of an ω-regular objective? We know two things: (i) a
minimal memory skeleton has always at most as many states as any DPA representing the
objective; (ii) a minimal memory skeleton and a minimal DPA differ at most by the factor
MW . However, we do not know in general how to get minimal memory requirements from a
representation as a DPA.

The second, perhaps more fundamental limitation is that it makes an assumption on
the memory requirements of both players simultaneously, as it asks for a memory skeleton
sufficient for both players. This assumption therefore conceals a possibly large gap between
the individual memory requirements of the two players. This limitation also applies to
Theorem 5 (which deals with games played on finite arenas), which cannot be used in general
to give tight bounds about memory requirements of each individual player in two-player
games.

We illustrate these two limitations on a small example: in this example, the representation
of an objective as a DPA is an upper (but not a tight) bound on the memory requirements,
and the memory requirements of each player differ.

▶ Example 14. Let C = {a, b}. We consider the objective W = (b∗a)ω ∪ (C∗aaCω) of words
that see a infinitely often or see a twice in a row at some point. This objective is recognized
by the DPA with three states depicted in Figure 5 (left), and it is not possible to recognize
it using a DPA with fewer states. We therefore know that both players can play optimally
using three states of memory, using the memory skeleton underlying this automaton. The
prefix classifier of this objective has three states corresponding to three classes of finite
words, and its structure also corresponds to the underlying structure of the DPA in Figure 5.
According to Theorem 9, this suggests that P1 and P2 may need between one and three
states of memory to play optimally.
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It turns out here that P1 can play optimally with just one state of memory in all arenas
(i.e., W is half-positional), which can be proved using results from [3] (discussed below).
Meanwhile, P2 cannot play optimally with just one state of memory, as is witnessed by the
arena in Figure 5 (right). If the play starts in v1, we observe that P2 loses by not using the
loop in v2 and going immediately to v3, as well as by staying infinitely often in v2. Player
P2 can actually win, but needs to loop at least once (and finitely many times) in v2 before
going to v3, which cannot be done without memory. For this objective, P2 can actually play
optimally with two states of memory: intuitively, P2 must keep track of whether the current
history is in qε or qa, but there is no point in keeping track of state qaa, as the play is already
lost in that state for P2. ⌟

qε qa qaa

a | 2

b | 2

a | 2
b | 1 a, b | 2 v1 v2 v3

a

bab

a
b

Figure 5 A DPA representing the objective W = (b∗a)ω ∪ (C∗aaCω) from Example 14 (left), and
an arena in which P2 cannot play optimally with a memoryless strategy (right).

The following questions therefore remain: given an ω-regular objective, what is a minimal
(i.e., with as few states as possible) memory skeleton sufficient to play optimally for both
players? And for a single player? A less ambitious (but still open) question would be
to understand the memoryless case: how to characterize/decide memoryless determinacy
or half-positionality? And would these precise results give us even more information on
the representation of ω-regular objectives, perhaps using other acceptance conditions than
the parity one? Progress toward these questions, which can be seen as strengthenings of
Theorem 9, has been obtained on specific classes of ω-regular objectives. We discuss two of
them here.

Memory requirements of Muller conditions. Muller conditions are objectives whose winning
words depend solely on the set of colors seen infinitely often. They are usually specified by a
set F ⊆ 2C of sets of colors. The related Muller condition then contains the set of words
w ∈ Cω such that the set of colors seen infinitely often by w is a set of F . They are in
particular prefix-independent, i.e., their prefix classifier has just one state. A systematic
study of the memory requirements of Muller conditions started in the ’80s, with first general
upper bounds through the later appearance record construction [26, 37], culminating in a
complete characterization of their (chaotic) memory requirements [18].

More relevant to our chromatic memory considerations, we mention the recent work by
Casares [11] that characterizes the chromatic memory requirements of Muller conditions for
each individual player. The characterization uses the Rabin acceptance condition, which
subsumes parity acceptance conditions.

▶ Theorem 15 ([11, Theorem 27]). Let W be a Muller condition and M be a memory
skeleton. Structure M suffices for P1 for objective W if and only if W is recognized by a
deterministic Rabin automaton built on top of M.

Once again, one direction has been known for some time: Rabin conditions have been
known to be half-positional for some time [29] (but unlike parity conditions, their comple-
ment may not be). The other, novel direction was obtained thanks to results about the
representation of ω-regular objectives [12].
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This provides, in the special case of Muller conditions, a characterization of the memory
requirements of each player without any blow-up in any direction of the equivalence, and
independently of the memory requirements of the other player. It therefore goes beyond
the two limitations of Theorem 9 sketched above. As a bonus, this result allows to link
the problem of finding a minimal memory skeleton to the problem of minimizing a Rabin
automaton, and implies that the related decision problem (given a Muller condition, is there
a sufficient memory skeleton with ≤ k states for a fixed k?) is NP-complete.

Half-positional deterministic Büchi automata. Deterministic Büchi automata (DBAs),
unlike their nondeterministic counterparts, only recognize a proper subclass of the ω-regular
objectives [44]. They can be seen as a special case of DPAs using only priorities 1 and 2 (the
automaton in Figure 5 is also a DBA). The objectives that they recognize are incomparable
to Muller conditions. In particular, they recognize some non-prefix-independent objectives,
hence with a non-trivial prefix classifier. Currently, their complete memory requirements
are not understood — only their half-positionality has been fully characterized. Article [3]
gives a characterization of the objectives that are half-positional among those that can be
recognized by a DBA. This characterization is a conjunction of three properties that are
decidable in polynomial time. The first property is equivalent for this class of objectives to
the aforementioned monotony property, so we do not discuss it here.

The second property deals with the notion of progress: a finite word w2 is said to be a
progress after a finite word w1 if w1w2 has strictly more winning continuations than w1. We
illustrate this property on the objective from Example 14. We take the point of view of P2,
who wants to avoid seeing infinitely many a and avoid seeing a twice in a row at some point.
If w1 = a and w2 = bab, for P2, w2 is a progress after w1: any winning continuation of w1 is
still winning after w1w2, and w1w2abω is winning, while w1abω is losing. See the link between
our choice of words and the arena in Figure 5. The reason that P2 needs memory here is
that although w2 is a progress after w1, repeating w1wω

2 is not winning. Hence, it is useful
to play w2, but an optimal strategy cannot just repeat w2. We define a progress-consistent
objective as an objective such that for all progresses w2 after some w1, w1wω

2 is winning.
This is necessary for half-positionality.

The third property relates once more to the representation of an ω-regular objective,
this time using a DBA. Any deterministic automaton representing an ω-regular objective W

needs at least one state per equivalence class of the right congruence ∼W . The celebrated
Myhill-Nerode theorem [38] states that to represent regular languages (of finite words), we
do not need more than one state per equivalence class. This does not hold in general for
ω-regular objectives, as was shown with objective W2 = C∗(ab)ω in Example 11. Still, some
ω-regular objectives admit representations using exactly one state per equivalence class [1].
One example was given in Example 14, which admits a representation as a DBA with three
states — one per equivalence class. One of the main technical contribution of [3] is that for
an objective recognizable by a DBA to be half-positional, it is necessary that it admits a
representation as a DBA with just one state per equivalence class. In such cases, a DBA can
be minimized in polynomial time.

▶ Theorem 16 ([3, Theorem 10]). Let W be an objective recognized by a DBA. Objective W

is half-positional if and only if it is monotone, progress-consistent, and recognized by a DBA
built on top of its prefix classifier.
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5 Perspectives

We highlight some of the remaining open paths in the topic of strategy complexity of zero-sum
games on graphs. As shown in Section 4, the memory requirements of ω-regular objectives,
despite their relevance to logic and synthesis, are not fully mapped out. As discussed in
Section 1, there are two relevant memory formalisms for this question: the first one is the
chromatic one (which we discussed extensively), and the second one is the chaotic memory
formalism. A promising research direction about chaotic memory requirements was recently
given in [13], which proved a bridge between this question and the theory of good-for-games
automata for Muller conditions. Moreover, it is shown that for some Muller conditions,
chaotic memory requirements (expressed as a number of memory states) can be exponentially
smaller than chromatic ones, at the cost of having to specialize the transitions of the memory
structure for each distinct arena.

We also mention a recent tool used to study zero-sum games: universal graphs. Universal
graphs were originally introduced to design algorithms to decide the winner for some classes
of games [15]. Recently, Ohlmann [39] showed an equivalence between the existence of some
“good” universal graph for an objective and half-positionality of the objective. Roughly, a
universal graph (with the right properties) can be a structural witness of the half-positionality
of an objective, and any half-positional objective has a good universal graph. This result has
already been used to prove the sufficient condition of Theorem 16 [3] by mechanizing the
construction of good universal graphs given a DBA with the right properties. This suggests
that using universal graphs may be one path toward understanding half-positionality of
ω-regular objectives.
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