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Goal-Oriented Communications for
Distributed Sensing of Gaussian Sources

Maxime Ferreira Da Costa, Salah Eddine Elayoubi, Wassim Hajji
CentraleSupélec | Université Paris–Saclay

Abstract—This paper tackles the problem of distributed sensing
from a goal-oriented communications perspective. The case of
sensors sampling sources in the environment and conveying the
collected information to a fusion center over a wireless channel
is considered. Herein, the objective of the communications is
to achieve a reliable estimation of the sources, while preserving
network resources. The fusion center task is formulated as a
joint distributed sensing problem, where a scheduling policy has
to be designed to optimize the applicative goal. Two distinct
goals are considered: a) when the objective is to achieve the best
possible estimation of the sources given a communication resource
constraint; b) when the objective is to minimize the communication
resource to estimate the sources up to a pre-determined precision.
For both cases, the optimal scheduling policy is formulated as the
solution to a constrained optimization problem. Greedy iterative
algorithms are proposed to efficiently solve those problems for
the particular case of independent sources. Numerical results
illustrate the tradeoff between achievable estimation accuracy
and resource consumption, and provide insights on the impact of
the network structure on the achievable performance.

I. INTRODUCTION

Goal-oriented communications have emerged as a novel
paradigm in wireless networks. Goal is here tailored in terms
of network performance at a specific application, rather than in
terms of more classical telecommunication metrics such as the
Quality of Service (QoS) or throughput. In other words, goal-
oriented communications aim to maximize the impact of the
received bits for a custom goal intended by the transmitter and
the receiver [1]. It is sometimes called task-oriented, as in [2].
The first derivation of this paradigm focuses on point-to-point
communication, where data is incoming from a single source.
The case of real-time tracking of a source was considered
in [3], and edge learning in [4]. Another context of application
is the joint optimization of the network and application, which
has been studied for image retrieval [5] or vehicle platooning
controller design under channel imperfections [6].

While goal-oriented communications have gained significant
interest in the past few years, the problem of distributed optimal
sensing over wireless channels remains widely unexplored. We
consider in this paper a scenario with distributed sampling and
scheduling of information from multiple sources, observed by
multiple sensors. Possible applications include collaborative
computer vision, or joint localization of a target, where sensors

The authors are with the Laboratory of Signals and Systems (L2S), CNRS
at CentraleSupélec, Université Paris–Saclay in Gif-sur-Yvette, France.

This research work is supported by the Sustainable 6G research chair, held
by CentraleSupélec, and funded by Orange.

acquire correlated signals that, once resolved together, provide
improved estimation of a statistical prior than the individual
sensor estimates. The case where each sensor may have a
partial view of the environment, with possibly overlapping
observations, is considered. In order to derive the optimal
sampling strategy, the network exploits its knowledge about
the structure of the information retrieved from each sensor, and
the radio conditions knowledge, i.e. the quality of the different
wireless links between the sources and the 6G base station.

The proposed scenario relates partially to the framework of
Integrated Sensing and Communications (ISAC). The ISAC
mainstream of works consists in integrating radar sensing and
communications into the same hardware and/or spectrum, and
is based on using the RF signals for sensing [7]. However,
the broader concept of ISAC includes the cross-layer design
of 5G/6G networks for conveying sensing information in an
optimal way. To the best of our knowledge, this paper is the
first to tackle the challenge of integrating sensing accuracy in
radio resource allocation.

A. Contributions and organization of the paper

The remainder of this paper is organized as follows. Sec-
tion II presents the system model, with sensors observing
sources that might be correlated and conveying data over a
wireless channel towards a fusion center for estimation. When
the state of the environment is assumed to be Gaussian, the
performance of the MMSE estimator for the non-constrained
case where all data are available at the fusion center is derived.
Section III introduces the joint estimation and communication
problem, where the communication resources are limited.
Optimization techniques should be leveraged to discover the
optimal sampling policy. The MMSE estimator for a given
sampling policy (i.e. under incomplete data) is first derived,
and the goal-oriented communication problem is formulated
either in terms of minimizing the MMSE under communication
constraints or in terms of minimizing the resource consumption
for a target MMSE. Closed-form solutions are also derived
for specific setups of interests. Section IV provides numerical
experiments that illustrate the optimal policies for different
joint sensing and scheduling settings, including the case of
overlapped observation between sensors. A comparison is made
between the studied goal-oriented schedulings and the classical
“fair sampling” scheduling. A conclusion is drawn in Section V.



Figure 1. The distributed sensing model.

B. Notations

The operators var and cov denote the variance of a random
variable and the covariance between two random vectors,
respectively. The matrix whose diagonal elements correspond
to the elements of vector x is written diag(x). Tr(X) is the
trace of matrix X , and Ik is the identity matrix in dimension
k. We write ΠK = [0, 1]

K the hypercube in dimension K.

II. SYSTEM MODEL

A. Observation model

We consider K sources that monitor jointly the state of the
environment s ∈ RN modeled as a random Gaussian vector
with mean µ and covariance matrix Σ, that is

s = [s1, ..., sN ]T ∈ RN , s ∼ N (µ,Σ). (1)

At time instant t, each sensor samples a partial measure of the
state s. We assume a central entity, called fusion center, can
query at each time instant the observation of one or several
sensors over a wireless communication channel, according to
its scheduling policy. At the end of the monitoring cycle, of
duration T , the fusion center builds an estimate ŝ of s based
on the queried measurements. It is assumed that each source
observes a noisy linear form of the state of the environment
so that the observation xk at the k-th sensor writes

xk(t) = ⟨ak, s⟩+ ek(t), (2)

where ak ∈ RN is a sensing vector that is assumed to be
known and ek(t) ∈ R is additive white Gaussian noise with 0
mean and variance η2k, that is ek(t) ∼ N (0, η2k). Overall, the
observation is Gaussian with probability law

xk(t) ∼ N (a⊤
k µ,a

⊤
k Σak + η2k), (3)

and is correlated to both s and ek(t). In the sequel, we derive
the performance of the MMSE estimator of the state of the
environment s, first at the sensor level when estimation is done
individually, and then at the fusion center when estimation is
done jointly in the event of an unconstrained sampling policy
where all sensors are queried at all time.

B. Individual estimation at sensor level

We first consider the case of estimating s from the acquisition
of a single sensor during the whole cycle. To proceed, we
assume the sensor computes the time average over the cycle
yk = 1

T

∑T−1
t=0 xk(t). Under the measurement model (1)

and (2), the MMSE estimator ŝk of s given yk results of
the Gaussian estimation formula (see e.g. [8, chapter 4]):

ŝk = cov(s; yk) var(yk)
−1yk

= Σak

(
(a⊤

k Σak) + T−1η2k
)−1

yk. (4)

Moreover, this estimator achieves the MMSE:

E ∥ŝk − s∥22

= Tr

(
Σ−

(
(a⊤

k Σak) + T−1η2k)
)−1

Σa⊤
k akΣ

⊤
)
.

(5)

C. Joint estimation with all sensors

We now turn to the case where all sensors collaborate for
the estimation, and the fusion center combines the information
of all sensors to estimate the sources. We define by x(t) =
[x1(t), . . . , xK(t)]⊤ ∈ RK the joint observation vector at time
t. From (2) we have that x(t) = A⊤s + e(t), where A =
[a1, . . . ,aK ] ∈ RN×K the sensing matrix of the system and
e(t) = [e1(t), . . . , eK(t)]⊤ ∈ RK is the noise vector at time t.
At the end of the sampling cycle, the fusion center computes

y =
1

T

T−1∑
t=0

A⊤s+ e(t), (6)

and computes the MMSE estimate ŝ the sources as

ŝ = cov(s;y) cov(y;y)−1y

= ΣA
(
A⊤ΣA+ T−1 diag(η2

k)
)−1

y, (7)

yielding the estimation error

E ∥ŝ− s∥22 =

Tr

(
Σ−ΣA

(
A⊤ΣA+ T−1 diag(η2

k))
)−1

A⊤Σ⊤
)
.

(8)

As the matrices involved on the right-hand sides of (5) and (8)
are positive semi-definite, we immediately get E ∥ŝk − sk∥22 ≤
E ∥ŝ− s∥22. This highlights the benefits of the joint optimiza-
tion scheme over individual estimation.

III. JOINT SCHEDULING AND ESTIMATION POLICY

In this section is considered the joint estimation of the fusion
center on the state of the environment s when data acquisition
is constrained by the network resources and the radio conditions
of the links between each sensor and the fusion center. The
channel between source k and the base station is assumed
to be time-varying and differs from one source to another.
This translates into a quantity of network resources rk(t) to
use to query the k-th source at time t. The parameter rk(t)
encompasses the packet length, the modulation scheme, and
the realization of the k-th channel at time t.



A. Sampling process

A sampling policy of the base station consists of attributing
a sampling frequency 0 ≤ πk(t) ≤ 1 at time slot t ∈ [1, T ] and
for each source k. A realization of the policy consists in the
subset of sources that are queried at time t by the base station.
It is expressed by the vector f(t) ∈ {0, 1}K with component:

fk(t) =

{
1, with probability πk(t)

0, with probability 1− πk(t).
(9)

In the above the policy πk(t) can be time-dependent. Herein, we
restrict our analysis to the case where πk(t) remains constant
over a cycle duration, that is πk(t) = πk for 0 ≤ t ≤ T − 1.
Additionally, f(t) and r(t) are assumed to be independent
random variables, meaning that the realizations of the sampling
policy are independent of the realizations of the channel.
However, f(t) might depend on the channel statistics.

The average cost C(π) of the sampling the wireless sensors
with the policy π over a cycle is defined as:

C(π) =
1

T
E

[
T−1∑
t=0

K∑
k=1

fk(t)rk(t)

]
=

K∑
k=1

πkrk (10)

At the end of a cycle, the base station averages the samples
acquired by each sensor into a vector z ∈ RK , with entries zk
given by zk = 1

T

∑T−1
t=0 fk(t)xk(t).

B. MMSE estimator for a given policy

As the cycle length T increases, the random variable zk will
converge in law to a Gaussian random variable z̃k that has the
same distribution as the average of T · πk random variables
each having the same distribution as xk. Hence, the asymptotic
behaviour z̃ of z follows is drawn according to the multivariate
Gaussian distribution

z̃ ∼ N

(
diag(π)A⊤µ,

diag(π)A⊤ΣAdiag(π) + T−1 diag(π) diag(η2)

)
. (11)

With that observation, we formulate an estimator of ŝπ from
the observation z under the sampling policy π of the form

ŝπ = cov(s; z) cov(z; z)−1z

= ΣAdiag(π)
(
diag(π)(A⊤ΣA) diag(π)

+ T−1 diag(π ⊙ η2)
)−1

z (12)

When the cycle length T is large enough, the performance
of ŝπ defined in (12) follows those of the Gaussian MMSE
estimator, and the error covariance matrix K is given by

K = Σ− cov(s, z) cov(z, z)−1 cov(s, z)⊤

= Σ−ΣA diag(π)
(
diag(π)(A⊤ΣA) diag(π)

+ T−1 diag(π ⊙ η2)
)−1

diag(π)A⊤Σ⊤. (13)

For particular interest, the MSE is given by

E ∥ŝπ(z)− s∥22 = Tr(K). (14)

In the sequel, we aim to understand the empirical properties
of this estimator as a function of the policy π.

Remark: When the sensor’s observations are noiseless, i.e.
η = 0, the covariance of the MMSE estimator is independent
of the sampling policy π as long as every sensor is sampled at
least once, i.e. πk > 0. This property holds even when A⊤Σ
is not full rank. In the latter case, the inverse in Equation (12)
has to be replaced by its Moore–Penrose pseudo-inverse.

C. Formulation as an optimization problem

In goal-oriented communication, the objective is to derive
an optimal policy that takes into account both the estimation
error on the state of the environment and the network resource
consumption. To that end, we define two distinct optimization
problems:

• Performance maximization under communication con-
straint: In this setting, the objective is to achieve the
best applicative performance within an available budget
of network resources. Given a resource budget R ≥ 0,
the optimal policy π⋆ minimizes the objective

π⋆ = argmin
π∈ΠK

E∥ŝ(π)− s∥22 s.t.
K∑

k=1

πkrk ≤ R. (15)

• Resource minimization under an applicative goal: In
this setting, the optimal policy π⋆ is set to achieve
a predetermined estimation error ε while minimizing
resource consumption. It amounts to the optimization
program

π⋆ = argmin
π∈ΠK

K∑
k=1

πkrk s.t. E∥ŝ(π)− s∥22 ≤ ε. (16)

These two problems can be solved using the error expression
in equation (14) with off-the-shelf solvers, and may lead to
different scheduling policies, as will be seen next.

D. Particular case of direct sampling of independent sources

This section considers the case where all K environment
sources are directly and uniquely sampled by a sensor in the
network. In this case, N = K and A = In is the identity
matrix. Also, we assume independent sources of variances σ2

n

for n ∈ [1, N ]. The MMSE of (14) reduces to:

E ∥ŝπ(z)− s∥22 =

K∑
k=1

σ2
kη

2
k

Tπkσ2
k + η2k

=

K∑
k=1

1

Tπkη
−2
k + σ−2

k

(17)
1) Performance maximization under communication con-

straint: The optimization problem (15) become

π⋆ = argmin
π∈ΠK

K∑
k=1

1

Tπkη
−2
k + σ−2

k

s.t.
K∑

k=1

πkrk ≤ R.

(18)



It is easy to show that the cost function to minimize is convex
on ΠK as its Hessian is positive definite. Next, as the cost is
strictly decreasing for πk > 0, the constraint in To solve this
problem, we first notice that the inequality constraint (18) is
saturated at the optimum, that is

∑K
k=1 π

⋆
krk = R. The optimal

policy π⋆ can be retrieved from a Lagrangian analysis. The
Lagrangian L1(π, λ) of problem (18) writes

L1(π, λ) =

K∑
k=1

1

Tπkη
−2
k + σ−2

k

+ λ

(
K∑

k=1

πkrk −R

)
(19)

Setting the derivative with respect to πk to 0 yields

λ =
Tη−2

k

rk(Tπkη
−2
k + σ−2

k )
2 , (20)

and the global solution to (18) writes

π∗
k =

 R+
∑N

j=1

η2
j rj

Tσ2
j√

η2
krk
T

(∑N
j=1

√
η2
j rj

T

) − 1

σ2
k

 η2k
T

(21a)

λ∗ =

 ∑N
j=1

√
rkη2

k

T

R+
∑N

j=1
rkη2

k

Tσ2
k

2

. (21b)

We note that π∗ should be in the simplex ΠK . The solution (21)
only meets this condition whenever the optimal dual variable
λ⋆ takes value λ⋆ ∈ [λmin(k), λmax(k)] for k ∈ [1, N ] with

λmin(k) :=
Tη−2

k

rk(Tη
−2
k + σ−2

k )
2 ; λmax(k) :=

Tη−2
k

rkσ
−4
k

. (22)

As the resource consumption
∑K

k=1 πkrk is increasing with
the πk, and the MMSE is decreasing with πk. Suppose that
the rk are ranked in ascending order, we propose the following
greedy iterative procedure to solve the problem:

1) Let k♮ be the largest index such that λ⋆ < λ(k) with
the convention k♮ = 0 if λ⋆ < λ(1). Set πk = 1 for all
k ≤ k♮.

2) Let k be the smallest index such that λ⋆ > λmin(k) with
the convention k = N +1 if λ⋆ > λ(N −1). Set πk = 0
for all k ≥ k.

3) For the other sources with indices k♮ < k < k, compute
πk by solving the intermediate optimization problem:

minimize
π

k−1∑
k=k♮+1

1

Tπkη
−2
k + σ−2

k

subject to
k−1∑

k=k♮+1

πkrk ≤ R−
k♮∑
j=1

rj , (23)

whose solution is given by

π∗
k =

R−
∑k♮

j=1 rj +
∑k−1

j=k♮+1

η2
j rj

Tσ2
j√

η2
krk
T

(∑k−1

j=k♮+1

√
η2
j rj

T

) − 1

σ2
k

 η2k
T
.

(24)

Here again, the solution of the modified algorithm may lead
to values of π⋆ that are outside of the simplex ΠK . The
heuristic algorithm should be repeated until narrowing the
optimal solution to ΠK .

2) Minimizing resource consumption for a given goal:
We now move to problem (16). Under the hypothesis of
Subsection III-D, the optimization problem becomes

π⋆ = argmin
π∈ΠK

K∑
k=1

πkrk s.t.
K∑

k=1

1

Tπkη
−2
k + σ−2

k

≤ ε (25)

As in Subsection III-D1, the inequality constraint is saturated
at the optimum, and the Lagrangian L2(π, µ) of (25) is

L2(π, µ) =
∑
k

πkrk + µ

(
K∑

k=1

1

Tπkη
−2
k + σ−2

k

− ε

)
(26)

The solution to this problem is

πk =
η2k
T

(√
µ∗T

rkη2k
− σ−2

k

)
(27a)

µ⋆ =

1

ε

N∑
j=1

√
rkη2k
T

2

. (27b)

As before, this solution does not ensure that π ∈ ΠK . However,
it is possible to follow a similar iterative greedy algorithm
proposed in Subsection III-D1 to reach the optimal solution, by
solving instead of (23) the intermediate optimization program

minimize
π

k−1∑
k=k♮+1

πkrk

subject to
k−1∑

k=k♮+1

1

Tπkη
−2
k + σ−2

k

≤ ε−
k♮∑
j=1

1

Tη−2
j + σ−2

j

−
N∑

j=k

1

σ−2
j

.

(28)

IV. NUMERICAL EXPERIMENTS

In this section, a 5G network with N information sources is
simulated, and the radio resource consumption is modeled ac-
cording to the 5G NR Adaptive Modulation and Coding (AMC)
table in [9, Table 5.2.2.1-4]. A classical FDD numerology with
15kHz subcarrier spacing and 2 OFDM symbols per mini-slot is
considered. A sampling cycle consists of a slot (1 ms), and the
sampling opportunities are based on a mini-slot basis, making
T = 7 mini-slots. As for the resource consumption model, we
consider the practical case where the Modulation and Coding
Scheme (MCS) is chosen at the beginning of the slot, to match
the condition of Section III that rk remains constant for the
whole cycle, and might change from one cycle to another.



Figure 2. Illustration of the optimization algorithm (N = 4, R = 40 RBs).

Figure 3. Maximizing accuracy vs; minimizing resource consumption (N = 4
sources, R = 40 RBs).

A. Validation of the optimal policy

We first consider N = 4 independent sources sampled
directly with CQI indices (12, 10, 8, 6) (from [9, Table 5.2.2.1-
4]). Every sampled packet has a size of 512 bits, leading to the
resource consumption vector r = (8, 11, 17, 33) RBs, using
the spectral efficiencies of the aforementioned table.

We start by validating the algorithm for obtaining the optimal
solution defined in Section III-D1. Figure 2 compares the
optimal solution of (21) with the modified solution proposed
by the greedy iterative method detailed in Subsection III-D1.
While removing the simplex constraint π ∈ ΠK would lead
to selecting sources with the best channel conditions with a
sampling frequency greater than 1, the modified version forces
these sampling frequencies to 1 and increases the sampling rate
of other sources. Furthermore, it is shown that the modified
solution matches the optimal one, obtained by directly solving
the convex problem (21).

We now turn to the problem of minimal resource consump-
tion under an error constraint as in Subsection III-D2. We set
a target error that is 5% larger than the one obtained with the
optimal solution of Program (16) in Figure 2 and compare the
optimal policies. In Figure 3, we observe lower sampling rates
corresponding to an average resource consumption of 32 RBs,
compared to the consumption of 40 RBs when the goal is set
to minimize the estimation error.

Figure 4. Impact of different channel conditions (N = 4, R = 40 RBs).

B. Sampling policy with dynamic radio conditions

We now move to the case where the wireless channels may
change with time, leading to a different MCS for each cycle
and a different subsequent resource consumption per sensor.
In that scenario, the optimal policy varies with time. Figure 4
draws the optimal policies for three cases: when the CQIs are
those of the optimal policies pictured in Figure 2; when the
CQIs are slightly smaller; and when the CQIs that are slightly
greater. We observe a large impact of the channel variations,
calling for adapting dynamically the sampling policy.

To illustrate the dynamic policy, we simulate the system
where the sensors are deployed in fixed positions but with
fluctuating channel CQIs and MCS, due to noise and interfer-
ence. However, the average CQI remains better for sensors
that are closer to the access point. Figure 5 illustrates the
performance of the dynamic policies when a) the estimation
error is minimized when respecting a resource constraint; b) the
average resource consumption for a constraint on the estimation
error. The estimation error is defined as the relative difference
between the MMSE for the given policy and the MMSE of
the reference policy that samples all sensors with probability 1
(corresponding to the best unconstrained achievable estimation).
We observe that, for the case of a constraint on resources,
the estimation error changes with time, but remains lower
when more resources are available (for a larger R). When
the objective is to minimize resource consumption under a
constraint on the relative error, the average amount of consumed
resources increases when a tighter estimation constraint is set.

We also compare our scheme with a classical “fair” sampling
scheme under a resource constraint R, where in the absence
of information about the application performance, all sensors
are sampled indiscriminately, that is πk = R

K . Figure 5(c)
compares the estimation error for the optimal scheme (the
same as for figure 5-a with R = 40) to this fair policy. A
significant enhancement of the estimation error is observed for
the goal-oriented approach.

C. Sampling for sensors with overlapping

We now move to the more general case where sensors are
decoupled from sources and may have overlapping observations.
We assume independent observation errors of equal variance



Figure 5. Performance evolution with changing radio condition.

on each sensor, that is η2k = η2 for all k ∈ [1,K]. Additionally,
up to a rotation, we assume the entries s⋆n of the state of the
environment to be uncorrelated with equal variance σ2

n = σ2

for all n ∈ [1, N ]. The observation pattern is described by a
matrix A. The covariance matrix of equation (13) becomes

K = σ2In − σ2Adiag(π)(
diag(π)A⊤Adiag(π) + T−1 η

2

σ2
diag(π)

)−1

diag(π)A⊤,

(29)

as in this case Σ = σ2In and diag(π ⊙ η2) = η2 diag(π).
For the example, it is assumed scenarios with 4 sources and

4 sensors acting in four different observation patterns:
1) Each sensor observes one source, as in III-D.
2) Each sensor observes all sources (A is a matrix of ones).
3) Sensors may observe multiple sources, with sensing

matrices below. For matrix A1, sensors are assumed
to observe two sources. For matrix A2, Sensors 1, 2, and
3 observe exactly one source, while the last one observes
all sources with the worst radio conditions:

A1 =


1 0 0 1
1 1 0 0
0 1 1 0
0 0 1 1

 , A2 =


1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 1


We observe that the first two scenarios (one source per sensor
and all sources observed by each sensor) lead to the same
policy, as the situations are symmetrical. However, the later
cases yield different solutions as the optimal policy specializes
in the sampling pattern and the radio conditions. Furthermore,
the experiment showcases the greater importance of sampling
sensor 4 under observation pattern A2, as it is the only sensor
providing information on the fourth environment state s4.

V. CONCLUSIONS

In this paper, we have developed a goal-oriented com-
munications framework for distributed sensing in wireless

Figure 6. Impact of overlapped source observation (N = 4, R = 40 RBs,
CQI=[10, 8, 6, 4]).

networks. The scenario consists of sensors observing sources
and conveying their observations over a wireless channel to
a data fusion center that estimates the sources. Instead of
conveying all the generated data, we have proposed sampling
and scheduling schemes that integrate the objective of the
application into the decision. We have considered the mini-
mization of the estimation error and the minimization of the
resource consumption for selecting an optimal sampling policy
and formulated two optimization problems. When directly
sampling independent sources, iterative greedy procedures can
be applied to calculate the optimal policy efficiently. Finally,
we showcased the schemes for a distributed sensing problem
in 5G NR. We showed how the observation structure and the
radio conditions of sensors influence the optimal strategies.
Numerical simulations highlight the benefits of adapting the
sampling schemes over using a static “fair sampling” policy.
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