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Abstract

This article presents proposals for the design of reduced-order controllers for high-dimensional dynamical sys-
tems. The objective is to develop efficient control strategies that ensure stability and robustness with reduced
computational complexity. By leveraging the concept of partial pole placement, which involves placing a subset
of the closed-loop system’s poles, this study aims to strike a balance between reduced-order modeling and control
effectiveness. The proposed approach not only addresses the challenges posed by high-dimensional systems but also
provides a systematic framework for controller design. When an infinite-dimensional operator is Riesz spectral, our
theoretical analysis highlights the potential of partial pole placement in advancing control design. Model uncer-
tainties, introduced by an error on the spectral decomposition, can also be allowed. This is illustrated in particular
in the case of systems modeled by coupled ordinary-partial differential equations (ODE-PDE).

1 Introduction

In modern engineering practice, the control of dynamical systems has become crucial due to their widespread appli-
cations across diverse domains such as aerospace, robotics, manufacturing, and power systems [1]. The control design
for dynamical systems faces significant growth in size and complexity over the years due to complex models and spec-
ifications. For instance, one can mention the interconnections of numerous subsystems, with subsystems described by
partial differential equations. As the dimension of these dynamical systems grows, the design and implementation of
controllers that guarantee stability, performance, and robustness have become hot challenges. Synthesizing a controller
for a high-dimensional system requires the use of sophisticated methods [2].

Control design methods such as backstepping [3] and forwarding [4] became the standard for linear infinite-
dimensional systems. These approaches involve manipulating operators and constructing infinite-dimensional con-
trollers [5, 6]. However, when it comes to implementing such controllers, numerical issues arise due to the substantial
computational resources required [7]. Moreover, the computational burden can lead to instabilities that are difficult
to prevent [8]. An alternative approach involves reducing the order of the system and designing the controller using
the reduced order model [9, 10]. Although reduced-order controllers stabilize the reduced model effectively, ensuring
the stability of the original high-dimensional system is challenging [11, 12].

In the context of dissipative infinite-dimensional systems, the main result focuses on the existence of an order from
which the controller effectively stabilizes the closed-loop system, under the assumption that the reduced-order model
accurately captures the rightmost system’s spectrum [13]. In the literature, different and more direct techniques are
proposed for synthesizing fixed-order controllers with the goal of minimizing a specific cost while satisfying stabiliza-
tion constraints [14, 15]. In an even more compact form, the design of proportional integral derivative controllers
is performed for distributed parameter system [16], hyperbolic PDEs [17], parabolic PDEs [18] or ODE-PDE cou-
plings [19]. Implicitly, these approaches involve performing partial pole placement [20]. For that matter, as addressed
in [21, 22], partial pole placement rewrites as optimization problems with constraints on the location of eigenvalues
of the closed-loop system in predefined regions of the complex plane. By strategically placing a limited number of
poles, reduced-order controllers focus on stabilizing and controlling the unstable dynamics of the system. A trade-off
between computational complexity and control performance can then be reached.

This work delves into the design of reduced-order controllers using partial pole placement techniques for linear
infinite-dimensional systems [23]. The main goal is to develop control strategies that not only reduce the computational
burden but also ensure stability, performance, and robustness for the original high-dimensional dynamical system [13,
24, 25]. The proposed approach provides a systematic framework for reduced-order observer-based control design. It
is based on a mild set of assumptions, outlined below:

• the system is exactly controllable and observable,

• the system has bounded input and output operators,
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• the system has a finite number of eigenvalues on the right of any vertical line in the complex plane,

• the ratio between the input-output operators upper bound and the state operator lower bound is bounded.

Taking inspiration from the approach introduced in [26, 27], an output feedback dynamic controller that reconstructs
and stabilizes the unstable modes while preserving the stability of the remaining stable modes is constructed in two
steps. On one hand, a static state feedback control gain is set up, which shifts the unstable eigenvalues with the
same dimension as the unstable part of the initial system, which is denoted n0. On the other hand, a Luenberger-like
observer of order n ≥ n0 is built [28]. The estimation error on the unstable modes is rendered stable with observation
gains, while the stable modes are simply reconstructed in open loop. It is then shown that there exists a sufficiently
large order n such that this finite-dimensional output feedback dynamic controller stabilizes the infinite-dimensional
system. The stability is proven based on the construction of a Lyapunov function. The practical aspects of implement-
ing these controllers are also investigated, taking into account uncertainties in the eigenvalues of input and output
operators. It is proven that under small enough model mismatch, the result still holds.

Section 2 summarizes the problem and assumptions with two motivating examples. Section 3 proposes a controller
structure of order n and proves the stability of the closed-loop system for a sufficiently large order n. Section 4 ex-
tends this result to the control synthesis subject to modeling errors. Section 5 finally apply numerically this common
framework to specific examples such that ODE-transport and ODE-reaction-diffusion interconnections.

Notation: Throughout this article, N, R, C, Rn×m, Cn×m and ℓ2(N) denote the sets of integers, real or complex
numbers, real or complex matrices of size n ×m and the space of square summable complex sequences, respectively.
For any s ∈ C, Re(s) and Im(s) stand for its real and imaginary parts, respectively. For any M ∈ Cn×m, M∗ is the
conjugate transpose of M . For any square matrix M , σ

(
M
)
and σ̄

(
M
)
denote the minimal and maximal real parts

of its eigenvalues, respectively. Furthermore, M ≻ 0 denotes a positive definite symmetric matrix. Lastly, we define
the following functions

|·| :

{
Cn → R,

x 7→
√
x∗x,

∥·∥ :


ℓ2(N) → R,

(xi)i∈N 7→
√∑

i∈N
|xi|2, ⟨·|·⟩ :


ℓ2(N)× ℓ2(N) → R,

(xi)i∈N, (zi)i∈N 7→
∑
i∈N

x∗
i zi.

2 Preliminaries and assumptions

2.1 System data

We focus on the following subclass of linear infinite-dimensional system{
d
dtx(t) = Ax(t) + Bu(t),
y(t) = Cx(t),

∀t ≥ 0, (1)

where the operator A : D(A) ⊂ ℓ2(N)→ℓ2(N) has generalized eigenvectors {υk}k∈N which form a Riesz basis [29, 30]
and where the operators B : Rnu →ℓ2(N) and C : ℓ2(N)→Rny are bounded.

Assumption 1. For any δ > 0, there exists an order n ∈ N such that the generalized eigenvectors {υk}k∈{n,...,∞} are
associated to algebraically simple eigenvalues with real parts smaller than −δ.

Under Assumption 1, consider (n0, n1) ∈ N2 the number of eigenvalues of the operator A, repeated according to
their multiplicity, which respectively

• have real parts larger than −δ, regarless of their algebraic multiplicity,

• have real parts strictly smaller than −δ and are algebraically multiple.

For any integer n ≥ n0 + n1 (that will be specified later when discussing control design), system (1) takes, up to a
change of variable, the following decomposed form

d
dt

[
x0(t)
x1(t)

]
=
[
A0 0
0 A1

][ x0(t)
x1(t)

]
+
[
B0

B1

]
u(t),

d

dt
zi(t) = aizi(t) + biu(t), ∀i ∈ N,

y(t) = [C0 C1 ]
[
x0(t)
x1(t)

]
+
∑
i∈N

cizi(t),

∀t ≥ 0. (2)
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Here (A0, A1, ai) ∈ Cn0×n0 × Cn−n0×n−n0 × C are on the complex Jordan normal form verifying σ̄
(
A1

)
< −δ and

Re(ai) < σ
(
A1

)
, (B0, B1, bi) ∈ Cn0×nu × Cn−n0×nu × C1×nu , (C0, C1, ci) ∈ Cny×n0 × Cny×n−n0 × Cny×1. The

finite-dimensional part of the state [ x0
x1

] belongs to Cn and the infinite-dimensional remainder (zi)i∈N belongs to ℓ2(N).

Remark 1. Note that this decomposition is often used for the eigenvalue-based control of linear infinite-dimensional
systems involving transport [31], parabolic [23, 32], wave [18] or beam [33] equations.

Remark 2. Note that the framework of Assumption 1 is large enough to capture certain PDE-ODE interconnection, as
discussed later in the paper. However, infinite-dimensional systems with accumulation points or rightmost asymptotic
branch in the root locus do not satisfy Assumption 1. It is the case, for instance, of neutral time-delay systems with
non Shur neutral parts [34].

In the context of Assumption 1, the objective of this article is the design of a finite-dimensional controller (of
dimension n) that takes the form: {

d
dt x̂(t) = Lx̂(t) +My(t) +Nu(t),

u(t) = Kx̂(t)
(3)

where L ∈ Rn×n, M ∈ Rn×ny , N ∈ Rn×nu and K ∈ Rnu×n are matrices to be designed such that (3) stabilizes (2)
with the exponential decay rate δ, meaning that

∃κ ≥ 1, δ > 0 ; |x(t)|2 + ∥zi(t)∥2 + |x̂(t)|2 ≤ κ exp(−δt)
(
|x(0)|2 + ∥zi(0)∥2 + |x̂(0)|2

)
, ∀t ≥ 0. (4)

Remark 3. Owing to the consideration of Riesz spectral systems and to Assumption 1, there exists a continuous
and bijective linear transformation T : ℓ2(N) → Cn × ℓ2(N) from system (1) to system (2) linked to the Jordan
normalization and the rearranging by decreasing real parts. It satisfies

T x =

(
[ x0
x1

]
(zi)

)
, T AT −1 =

([
A0 0
0 A1

]
(ai)

)
, T B =

([
B0

B1

]
(bi)

)
, CT −1 =

(
[C0 C1 ] (ci)

)
.

It is worth mentioning that the transformation T −1 is also continuous according to the open mapping theorem [35].
Hence, the exponential stability of systems (1)-(3) and (2)-(3) is equivalent. Throughout this paper, for simplicity
reasons, we will only focus on the system (2)-(3) and on the exponential stability defined in (4).

2.2 Controllability and observability

The possibility to successfully design an output feedback controller (3) for (2) to achieve exponential stabilization
with decay rate κ > 0 in the sense of (4) heavily relies on the controllability and observability properties of the
finite-dimensional part of dimension n0 of the plant. We discuss here the controllability and observability properties
of the pairs (A0, B0) and (C0, A0), respectively.

Assumption 2. The pair (A,B) is exactly controllable and that the pair (C,A) is exactly observable.

Lemma 1. Under Assumption 2, the pair (A0, B0) is controllable and the pair (C0, A0) is observable.

Proof. Only the observability proof is provided, since controllability is obtained by duality using the same arguments.
Let λ > 0 larger than the supremum of the eigenvalues real parts of the operator A. Applying [36, Thm 6.5.3] with
the exponentially stable shifted semigroup associated to A−λI, if (C,A) is exactly observable, then there exists k > 0
such that for all s ∈ {C |Re(s) < λ},

1

|Re(s)− λ|2
∥(sI −A)x∥2 + 1

|Re(s)− λ|
|Cx|2 ≥ k∥x∥2, (5)

The proof is then conducted by contradiction. Assume that (C0, A0) is not observable. Applying the Hautus lemma,
there exists s ∈ C and a non-null vector x0 such that (sI − A0)x0 = 0 and C0x0 = 0. We have Re(s) ≤ σ̄

(
A0

)
< λ.

Using now the linear transformation T from (1) to (2) in Remark 3 and considering x = T −1

(
[ x0
0 ]
(0)

)
, we obtain

1

|Re(s)|2
∥(sI −A)x∥2 + 1

|Re(s)− λ|
|Cx|2 =

1

|Re(s)− λ|2

∥∥∥∥T −1

([
(sI−A0)x0

0

]
(0)

)∥∥∥∥2 + 1

|Re(s)− λ|
|C0x0|2 = 0.

The inequality (5) cannot be satisfied. Thus, the pair (C,A) cannot be observable and the proof is concluded.
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2.3 Motivating examples

2.3.1 ODE-transport interconnection

Consider an ODE interconnected with the transport equation
d
dtx(t) = Ax(t) +Bz(t, 0) +Buu(t),

∂tz(t, θ) =
1
h∂θz(t, θ), ∀θ ∈ (0, 1),

z(t, 1) = Cx(t),

y(t) = Cyx(t).

(6)

where matrices A ∈ Rnx×nx , B ∈ Rnx×1, Bu ∈ Rnx×nu , C ∈ R1×nx , Cy ∈ Rny×nx and h > 0.

Lemma 2. The generalized characteristic functions of system (6) form a Riesz basis for H := Rnx×L2(0, 1). Moreover,
system (6) satisfies Assumption 1.

Proof. See [37, Lemma 2.4.6]. Indeed, solving the characteristic equation of system (6), the characteristic functions
(vk)k∈N associated to {sk}k∈N are given by

vk(θ) =

[
adj(skI −A)B

Cadj(skI −A)B exp (hsk(θ − 1))

]
∈ Cnx+1. (7)

According to [37, Theorem 2.5.10], this sequence of functions (vk)k∈N is a Riesz basis in H. Assumption 1 is fulfilled
as shown in [38, Lemma 4.2].

2.3.2 ODE-reaction-diffusion interconnection

Consider an ODE interconnected with the reaction-diffusion equation via Neumann inputs and Dirichlet output

d
dtx(t) = Ax(t) +B∂θz(t, 1) +Buu(t),

∂tz(t, θ) = (ν∂θθ + λ)z(t, θ), ∀θ ∈ (0, 1),[
z(t,0)
z(t,1)

]
=
[
Cx(t)

0

]
,

y(t) = Cyx(t).

(8)

where matrices A ∈ Rnx×nx , B ∈ Rnx×1, Bu ∈ Rnx×nu , C ∈ R1×nx , Cy ∈ Rny×nx , ν > 0 and λ ∈ R.

Lemma 3. The generalized characteristic functions of system (8) form a Riesz basis for H := Rnx×L2(0, 1). Moreover,
system (8) satisfies Assumption 1.

Proof. See [39, Lemma 2]. Indeed, solving the characteristic equation of system (6) as in [39, Appendix A], the
characteristic functions (vk)k∈N associated to {sk}k∈N are given by

vk(θ) =

 adj(skI −A)B sinh
((

sk−λ
ν

) 1
2

)
Cadj(skI −A)B sinh

((
sk−λ

ν

) 1
2 (1− θ)

)
 ∈ Cnx+1. (9)

Applying the modified Bari’s theorem [30, Theorem 6.3], we show that the sequence of functions {vk}k∈N forms a
Riesz basis for H. Assumption 1 is fulfilled as shown in [40, Proposition 1].

Remark 4. Note that Assumption 2 is not discussed for these two motivating examples. Indeed, to prove exact
controllability and observability of linear infinite-dimensional systems is a tough task. Few results exist and concern
only approximate controllability and observability, as in [37, Theorem 4.2.10] for ODE-transport interconnection. In
practice, we will directly check the controllability and observability of the pairs of matrices (A0, B0) and (C0, A0).

2.3.3 On the construction of the system data

For the two above ODE-PDE interconnected systems, a projection into the Riesz basis generated by the generalized
characteristic functions {vk}k∈N allows us to write the system dynamics under the form of (2). Indeed, defining (ξk)k∈N
as follows

ξk(t) =

∫ 1

0

v∗k(θ)

[
x(t)
z(t, θ)

]
dθ ∈ C,
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with {v∗k}k∈N satisfying
∫ 1

0
v∗k(θ)vi(θ)dθ =

{
1 if k = i,
0 otherwise,

we obtain


d

dt
ξk(t) = skξk(t) +

∫ 1

0

v∗k(θ)

[
Bu

0

]
dθu(t),

y(t) =
[
C 0

]∑
k∈N

ξk(t)vk(θ)

Ordering the eigenvalues by decreasing real parts and bearing in mind that in practice the eigenvalues are alge-
braically simple in most cases, we can compute for a given order n ∈ N the following model

[
A0 0
0 A1

]
=

[
s0 0 0

0
. . . 0

0 0 sn

]
∈ Cn×n,

[
B0

B1

]
=


∫ 1

0
v∗1(θ)dθ
...∫ 1

0
v∗n(θ)dθ

[Bu

0

]
∈ Cn×nu ,

[
C0 C1

]
=
[
C 0

] [
v1(θ) · · · vn(θ)

]
∈ Cny×n.

(10)

and (ai), (bi), (ci) are the remaining terms corresponding to the other eigenvalues.

Remark 5. Similarly to Remark 3, the bijective linear transformation from
[ x
z(θ)

]
towards (ξk) being continuous,

the exponential stability of the two above ODE-PDE interconected systems in terms of H : Rnx × L2(0, 1) norm is
equivalent to the one which is regarded in terms of ℓ2(N) norm.

Remark 6. In simulation, the solution is displayed using the relation[
x(t)
z(t, θ)

]
=
∑
k∈N

ξk(t)vk(θ).

For computational issues, these infinite-dimensional models are truncated at a sufficiently large order N ≫ n, which
explains the name of high-dimensional systems.

3 Synthesis of the controller

In this section, we assume that the system operators (A0, A1, B0, B1, C0, C1) are perfectly known.

3.1 Controller data

The adopted control strategy consists of designing a state-feedback augmented with a Luenberger observer on the
finite dimensional part of the system of dimension n that describes the state variables x0 and x1 from (2). More
precisely, we consider 

d

dt

[
x̂0(t)
x̂1(t)

]
=
[
A0 0
0 A1

][ x̂0(t)
x̂1(t)

]
+
[
B0

B1

]
u(t) +

[
G0
0

]
(ŷ(t)− y(t))

ŷ(t) = [C0 C1 ]
[
x̂0(t)
x̂1(t)

]
,

u(t) = K0x0(t),

(11)

for some suitable control gains K0 ∈ Rnu×n0 and observation gains G0 ∈ Rn0×ny to be fixed later. Hence, the above
finite-dimensional controller can be written as (3) with matrices

L =

[
A0 +G0C0 G0C1

0 A1

]
, M =

[
−G0

0

]
, N =

[
B0

B1

]
, K =

[
K0 0

]
. (12)

For later analyses, we divide the above controller structure (11) into two parts while including the errors of
estimation of the observer.
The first part is composed of the reconstructed state x̂0 ∈ Rn0 and the error e0 = x0 − x̂0 ∈ Rn0 . It follows the
dynamics

d

dt

[
x̂0

e0

]
= F0

[
x̂0

e0

]
+

[
−G0

G0

]
C1e1 +

[
−G0

G0

]∑
i∈N

cizi, (13)
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with F0 =

[
A0 +B0K0 −G0C0

0 A0 +G0C0

]
.

The second part is composed of the reconstructed state x̂1 ∈ Rn−n0 and the error e1 = x1 − x̂1 ∈ Rn−n0 , it follows
the dynamics

d

dt

[
x̂1

e1

]
=

[
A1 0
0 A1

] [
x̂1

e1

]
+

[
B1K0

0

]
x̂0. (14)

Under Assumption 2, the pair (A0, B0) is stabilizable and the pair (C0, A0) is detectable. Therefore, for any δ > 0,
the gains (K0, G0) can be selected such that there exists a symmetric positive matrix P0 ∈ Rn0×n0 which satisfy the
Lyapunov inequality

P0F0 + F ∗
0 P0 ≺ −2δP0. (15)

Under Assumption 1, the remaining system is inherently exponentially stable with a decay rate δ. Therefore,
for any fixed integer n, there exists a symmetric positive definite matrix P1 ∈ Rn−n0×n−n0 such that the following
Lyapunov inequality holds

P1A1 +A∗
1P1 ≺ −2δP1. (16)

3.2 Lyapunov functional

For some scalars α, β, γ > 0, consider the following Lyapunov functional

V(x̂0, e0, x̂1, e1, zi) = α

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
︸ ︷︷ ︸

=V0(x̂0,e0)

+

[
x̂1

e1

]∗ [
βP1 0
0 γP1

] [
x̂1

e1

]
︸ ︷︷ ︸

=V1(x̂1,e1)

+ ∥(zi)∥2︸ ︷︷ ︸
=V2(zi)

, (17)

where the matrices P0, P1 are fixed in accordance with (15)-(16).

Computing the time derivative of this functional along the trajectories of the closed-loop system (2)-(3) yields

d

dt
V0(x̂0, e0) = 2α

[
x̂0

e0

]∗
P0

(
F0

[
x̂0

e0

]
+

[
−G0

G0

]
C1e1 +

[
−G0

G0

]∑
i∈N

cizi

)
,

d

dt
V1(x̂1, e1) = 2βx̂∗

1P1 (A1x̂1 +B1K0x̂0) + 2γe∗1P1A1e1,

d

dt
V2(zi) = 2

∑
i∈N

Re(ai)|zi|2 + 2
∑
i∈N

z∗i biK0x̂0.

Using Jordan’s sorted form Re(ai) ≤ σ
(
A1

)
< 0 and applying the Lyapunov inequalities (15)-(16) leads to

d

dt
V0(x̂0, e0) ≤ −2αδ

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
+ 2α

[
x̂0

e0

]∗
P0

[
−G0

G0

](
C1e1 +

∑
i∈N

cizi

)
,

d

dt
V1(x̂1, e1) ≤ −2δ

[
x̂1

e1

]∗ [
βP1 0
0 γP1

] [
x̂1

e1

]
+ 2βx̂∗

1P1B1K0x̂0,

d

dt
V2(zi) ≤ −2|σ

(
A1

)
|∥(zi)∥2 + 2

∑
i∈N

z∗i biK0x̂0.

where the scalar δ satisfies (16). The three quadratic terms are all negative. The three crossed terms are then
distributed on the quadratic terms. Applying Young’s inequality gives rise to the upper bounds

2

[
x̂0

e0

]∗
P0

[
−G0

G0

](
C1e1 +

∑
i∈N

cizi

)
≤ δ

2

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
+

4

δ

∣∣∣∣P 1
2
0

[
−G0

G0

]
C1e1

∣∣∣∣2 + 4

δ

∣∣∣∣∣P 1
2
0

[
−G0

G0

]∑
i∈N

cizi

∣∣∣∣∣
2

,

2x̂∗
1P1B1K0x̂0 ≤ δx̂∗

1P1x̂1 +
1

δ

∣∣∣P 1
2
1 B1K0x̂0

∣∣∣2 ,
2
∑
i∈N

z∗i biK0x̂0 ≤ (|σ
(
A1

)
| − δ)∥(zi)∥2 +

1

|σ
(
A1

)
| − δ

∑
i∈N

|biK0x̂0|2
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for any δ such that |σ
(
A1

)
| − δ > 0 and δ > 0, as it happens the scalar δ satisfying (16). By collecting the above

inequalities, the Lyapunov derivatives dV
dt is bounded by

d

dt
V(x̂0, e0, x̂1, e1, zi) ≤ − 3

2
αδ

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
+

(
β

δ
σ̄
(
K∗

0B
∗
1P1B1K0

)
+

1

|σ
(
A1

)
| − δ

∑
i∈N

σ̄
(
K∗

0 b
∗
i biK0

))
|x̂0|2

− δ

[
x̂1

e1

]∗ [
βP1 0
0 2γP1

] [
x̂1

e1

]
+ 4

α

δ
σ̄
(
C∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C1

)
|e1|2

+

(
−δ − |σ

(
A1

)
|+ 4

α

δ

∑
i∈N

σ̄
(
c∗i
[−G0

G0

]∗
P0

[−G0

G0

]
ci
))

∥(zi)∥2.

(18)

In the next paragraph, these calculations are used to demonstrate stability through the Lyapunov theorem. The
weighting α, β, γ are selected in a way to obtain a negative upper bound and satisfy dV

dt ≤ −δV.

3.3 Stability analysis

In this subsection, we prove that our finite-dimensional controller (12) stabilizes system (2). More precisely, based on
the previous Lyapunov functional, if the ratio between the upper bound of the input and output operators and the
square of the lower bound of the state operator is bounded, then the closed-loop system (2)-(3) is exponentially stable.

Theorem 1. Let δ > 0. Under Assumptions 1 and 2, if there exists an integer n ≥ n0 + n1 such that

ϱn :=
16
∑

i∈N σ̄
(
K∗

0 b
∗
i biK0

)∑
i∈N σ̄

(
c∗i
[−G0

G0

]∗
P0

[−G0

G0

]
ci
)

δ2σ
(
P0

)
(|σ
(
A1

)
| − δ)|σ

(
A1

)
|

≤ 1, (19)

where K0, G0, P0 are given by (15), then, the closed-loop system (2)-(3) with (K,L,M,N) in (12) is exponentially
stable with decay rate δ.

Proof. Take the Lyapunov functional V defined by (17) with the weights

α=
4

δ

∑
i∈N σ̄

(
K∗

0 b
∗
i biK0

)
σ
(
P0

)
(|σ
(
A1

)
| − δ)

, β=
δ
∑

i∈N σ̄
(
K∗

0 b
∗
i biK0

)
(|σ
(
A1

)
| − δ)σ̄

(
K∗

0B
∗
1P1B1K0

) , γ=
4ασ̄

(
C∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C1

)
δ2σ
(
P1

) ,

where the series introduced here exist by boundedness of operators B and C. This Lyapunov functional is framed by

min(ασ
(
P0

)
, βσ

(
P1

)
, γσ

(
P1

)
, 1) ≤ V(x̂0, e0, x̂1, e1, zi)

|x̂0|2 + |e0|2 + |x̂1|2 + |e1|2 + ∥(zi)∥2
≤ ασ̄

(
P0

)
+ βσ̄

(
P1

)
+ γσ̄

(
P1

)
+ 1.

Under Assumptions 1 and 2, the inequality (18) with the scalars (α, β, γ) above rewrites as follows

d

dt
V(x̂0, e0, x̂1, e1, zi) ≤ −δ α

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
︸ ︷︷ ︸

V0(x̂0,e0)

+

(
−α

δσ
(
P0

)
2

+ 2

∑
i∈N σ̄

(
K∗

0 b
∗
i biK0

)
|σ
(
A1

)
| − δ

)
|x̂0|2

− δ

[
x̂1

e1

]∗ [
βP1 0
0 γP1

] [
x̂1

e1

]
︸ ︷︷ ︸

V1(x̂1,e1)

+
(
−γδσ

(
P1

)
+ 4

α

δ
σ̄
(
C∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C1

))
|e1|2

+−δ ∥(zi)∥2︸ ︷︷ ︸
V2(zi)

+

(
−|σ

(
A1

)
|+ 4

α

δ

∑
i∈N

σ̄
(
c∗i
[−G0

G0

]∗
P0

[−G0

G0

]
ci
))

∥(zi)∥2,

≤ −δV(x̂0, e0, x̂1, e1, zi)− (1− ϱn)|σ
(
A1

)
|∥(zi)∥2.

Note that α and γ can also be selected larger and that β can be selected smaller. Then, from inequality (19), we
can apply the Lyapunov theorem and obtain the exponential convergence of the state (x̂0, e0, x̂1, e1, zi) with the decay
rate δ. At the price of a change of variable, we prove that there exists κ ≥ 1 such that

|x(t)|2 + |x̂(t)|2 + ∥zi(t)∥2 ≤ κ exp(−δt)
(
|x(0)|2 + |x̂(0)|2 + ∥zi(0)∥2

)
and conclude on the exponential convergence toward the equilibrium with a decay rate of δ.
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An interpretation of the limitations imposed by the inequality (19) is proposed and discussed in the following.

Corollary 1. Let δ > 0. Under Assumptions 1 and 2, if the sorted eigenvalues {λi}i∈N of the operator A satisfy
Re(λi) −→

i→∞
−∞, then there exists a sufficiently large order n such that the closed-loop system is exponentially stable

with a decay rate δ.

Proof. Fix matrices P0,K0, G0 with respect to the order n0, independently of n. The boundedness of the operators B
and C guarantees the existence of a scalar k > 0 independent of n such that

ϱn =
16
∑

i∈N σ̄
(
K∗

0 b
∗
i biK0

)∑
i∈N σ̄

(
c∗i
[−G0

G0

]∗
P0

[−G0

G0

]
ci
)

δ2σ
(
P0

)
|Re(λn)| (|Re(λn)| − δ)

≤ k

|Re(λn)| (|Re(λn)| − δ)
.

Setting the order n sufficiently large order n yields ϱn ≤ 1 and Theorem 1 concludes the proof.

Remark 7. Note that inequality (19) alleviates the asymptotic condition on the eigenvalues of the operator A. Indeed,
it suffices to have a ratio between the upper bound of the input and output operators and the square of the lower bound of
the state operator which is smaller than one. This trade-off between input-output gain and decay rate of the remaining
part is not totally new, remembering that we neglect fast in front of slow dynamics in perturbation theory.

4 Synthesis of the controller with uncertainties

In this section, the state, input and output operators (A0, A1, B0, B1, C0, C1) are subject to uncertainties and the
matrices (Â0, Â1, B̂0, B̂1, Ĉ0, Ĉ1) are chosen so that the pair (Â0, B̂0) is controllable and the pair (Ĉ0, Â0) is observable.
It will serve as our knowledge model.

Remark 8. There are many reasons for this extension to the uncertain case. Indeed, as soon as the eigenvalues are
known to within one error, we find ourselves in this configuration. This is often the case when we need to solve the
characteristic equation numerically. Moreover, we can also imagine dealing with robustness problems such as the case
of a reaction-diffusion equation with a constant but uncertain reaction coefficient. In the longer term, it would also be
worth looking at the question of uncertain eigenstructures.

4.1 Controller data

In presence of uncertainties, the same control strategy is adopted by replacing the exact model with the approximate
model. More precisely, we consider

d

dt

[
x̂0(t)
x̂1(t)

]
=
[
Â0 0

0 Â1

][
x̂0(t)
x̂1(t)

]
+
[
B̂0

B̂1

]
u(t) +

[
G0
0

]
(ŷ(t)− y(t))

ŷ(t) = [ Ĉ0 Ĉ1 ]
[
x̂0(t)
x̂1(t)

]
,

u(t) = K0x0(t),

(20)

for some suitable control gains K0 ∈ Rnu×n0 and observation gains G0 ∈ Rn0×ny to be fixed later. Hence, the above
finite-dimensional controller can be written as (3) with matrices

L =

[
Â0 +G0Ĉ0 G0Ĉ1

0 Â1

]
, M =

[
−G0

0

]
, N =

[
B̂0

B̂1

]
, K =

[
K0 0

]
. (21)

Here, the dynamics of the reconstructed state (x̂0, x̂1) and the estimation error state (e0, e1) = (x0 − x̂0, x1 − x̂1)
of the observer (20) satisfy

d

dt

[
x̂0

e0

]
= (F̂0 + F̃0)

[
x̂0

e0

]
+

[
−G0

G0

]
C1e1 +

[
−G0

G0

]
C̃1x̂1 +

[
−G0

G0

]∑
i∈N

cizi.,

d

dt

[
x̂1

e1

]
=

([
A1 0
0 A1

]
+

[
−Ã1 0

Ã1 0

])[
x̂1

e1

]
+

[
B̂1K0

B̃1K0

]
x̂0,

(22)

where

F̂0 =

[
Â0+B̂0K0 −G0Ĉ0

0 Â0+G0Ĉ0

]
, F̃0 =

[
−G0C̃0 −G0C̃0

Ã0+B̃0K0+G0C̃0 Ã0+G0C̃0

]
,

Ã0 = A0 − Â0, Ã1 = A1 − Â1, B̃0 = B0 − B̂0, B̃1 = B1 − B̂1, C̃0 = C0 − Ĉ0, C̃1 = C1 − Ĉ1.
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Assuming that the pairs (Â0, B̂0) and (Ĉ0, Â0) are controllable and observable, the gains K0 and G0 can be selected
such that there exists a symmetric positive matrix P0 ∈ Rn0×n0 which satisfy the Lyapunov inequality

P0F̂0 + F̂ ∗
0 P0 ≺ −2δP0. (23)

In the next paragraph, Lyapunov analysis is performed to provide the stability result.

4.2 Stability analysis

In this subsection, we prove that our approximated finite-dimensional controller (21) stabilizes system (2). More
precisely, based on the Lyapunov theorem, if the approximation error is sufficiently small and if the ratio between the
upper bound of the input and output operators and the square of the lower bound of the state operator is bounded,
then the closed-loop system is exponentially stable.

Theorem 2. Let δ > 0 and assume that Assumption 1 holds and that the pairs (Â0, B̂0) and (Ĉ0, Â0) are controllable
and observable. If there exists an integer n ≥ n0 + n1 such that

ϱ̂n :=
16
∑

i∈N σ̄
(
K∗

0 b
∗
i biK0

)∑
i∈N σ̄

(
c∗i
[−G0

G0

]∗
P0

[−G0

G0

]
ci
)

δ2σ
(
P0

)
(|σ
(
A1

)
| − δ)|σ

(
A1

)
|

≤ 1, (24)

and if the model uncertainties satisfy
η := max(η0, η1, η2) < δ, (25)

where 

η0 = 2
√
σ̄
(
F̃ ∗
0 F̃0

)
+ σ̄

(
C̃∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C̃1

)
+

γσ̄
(
K∗

0 B̃
∗
1P1B̃1K0

)
ασ
(
P0

) ,

η1 =

(
2 +

γ

β

)√
σ̄
(
Ã∗

1Ã1

)
+

ασ̄
(
C̃∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C̃1

)
βσ
(
P1

) ,

η2 = σ̄
(
K∗

0 B̃
∗
1P1B̃1K0

)
+
√
σ̄
(
Ã∗

1Ã1

)
.

(26)

with K0, G0, P0, P1 are given by (16) and (23) and α, β, γ in (27), then, the closed-loop system (2)-(3) with (K,L,M,N)
in (21) is exponentially stable with the decay rate δ − η.

Proof. Consider the Lyapunov functional defined by (17) with matrices P0, P1 fixed in accordance with (16) and (23).
Using Jordan’s sorted form Re(ai) ≤ σ

(
A1

)
< 0 and applying the Lyapunov inequalities (16) and (23), we obtain

d

dt
V0(x̂0, e0) ≤ −2αδ

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
+ 2α

[
x̂0

e0

]∗
P0F̃0

[
x̂0

e0

]
+ 2α

[
x̂0

e0

]∗
P0

[
−G0

G0

](
C1e1 + C̃1x̂1 +

∑
i∈N

cizi

)
,

d

dt
V1(x̂1, e1) ≤ −2δ

[
x̂1

e1

]∗ [
βP1 0
0 γP1

] [
x̂1

e1

]
+ 2

[
x̂1

e1

]∗ [−βP1Ã1

γP1Ã1

]
x̂1 + 2

[
x̂1

e1

]∗ [
βP1B̂1K0

γP1B̃1K0

]
x̂0,

dV2

dt
(zi) ≤ −2|σ

(
A1

)
|∥(zi)∥2 + 2

∑
i∈N

z∗i biK0x̂0.

As in the previous section (see proof of Theorem 1), the weights (α, β, γ) are selected in the adequate manner

α=
4

δ

∑
i∈N σ̄

(
K∗

0 b
∗
i biK0

)
σ
(
P0

)
(|σ
(
A1

)
| − δ)

, β=
δ
∑

i∈N σ̄
(
K∗

0 b
∗
i biK0

)
(|σ
(
A1

)
| − δ)σ̄

(
K∗

0 B̂
∗
1P1B̂1K0

) , γ=
4ασ̄

(
C∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C1

)
δ2σ
(
P1

) , (27)

to obtain

d

dt
V(x̂0, e0, x̂1, e1, zi) ≤

(
−δ + 2

√
σ̄
(
F̃ ∗
0 F̃0

))
α

[
x̂0

e0

]∗
P0

[
x̂0

e0

]
+

[
x̂1

e1

]∗ β(−δ + 2
√
σ̄
(
Ã∗

1Ã1

))
P1 0

0 −2γδP1

[x̂1

e1

]

+

(
−δ − |σ

(
A1

)
|+ 4

α

δ

∑
i∈N

σ̄
(
c∗i
[−G0

G0

]∗
P0

[−G0

G0

]
ci
))

∥(zi)∥2

+ 2α

[
x̂0

e0

]∗
P0

[
−G0

G0

]
C̃1x̂1 + 2γe∗1P1(Ã1x̂1 + B̃1K0x̂0).
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Then, we apply Young inequality and matrix supreme norms to the additional two crossed terms as follows

2α

[
x̂0

e0

]∗
P0

[
−G0

G0

]
C̃1x̂1 ≤ ασ̄

(
C̃∗

1

[−G0

G0

]∗
P0

[−G0

G0

]
C̃1

)([x̂0

e0

]∗
P0

[
x̂0

e0

]
+ |x̂1|2

)
,

2γe∗1P1(Ã1x̂1 + B̃1K0x̂0) ≤ γ
√
σ̄
(
Ã∗

1Ã1

)
(e∗1P1e1 + x̂∗

1P1x̂1) + γσ̄
(
K∗

0 B̃
∗
1P1B̃1K0

)
(e∗1P1e1 + x̂∗

0x̂0) ,

to get to
d

dt
V(x̂0, e0, x̂1, e1, zi) ≤ (−δ + η)V(x̂0, e0, x̂1, e1, zi)− (1− ϱ̂n)|σ

(
A1

)
|∥(zi)∥2,

where the substantial error η = max(η0, η1, η2). Then, from inequality (24), we can apply the Lyapunov theorem and
obtain the exponential convergence of the state (x̂0, e0, x̂1, e1, zi) with the decay rate δ − η. By variable changes, we
conclude on the exponential stability of system (2)-(3) in terms of variables (x, x̂, z) with the same decay rate.

An interpretation of the inequalities (24) and (25) is proposed and discussed in the following.

Corollary 2. Let δ > 0. Assume that, for any n ∈ N and ε > 0, there exists matrices (Â0, Â1, B̂0, B̂1, Ĉ0, Ĉ1) such
that

max(σ̄
(
Ã∗

0Ã0

)
, σ̄
(
Ã∗

1Ã1

)
, σ̄
(
B̃∗

0B̃0

)
, σ̄
(
B̃∗

1B̃1

)
, σ̄
(
C̃∗

0 C̃0

)
, σ̄
(
C̃∗

1 C̃1

)
) ≤ ε. (28)

Assume also that Assumption 1 holds and that the pairs (Â0, B̂0) and (Ĉ0, Â0) are controllable and observable. If the
sorted eigenvalues {λi}i∈N of the operator A satisfy Re(λi) −→

i→∞
−∞, then there exists a sufficiently large order n such

that the closed-loop system is exponentially stable.

Proof. The satisfaction of (28) guarantees that η < δ by manipulating matrix norm combinations . As for Corollary 1,
the boundedness of operators B and C and Re(λi) −→

i→∞
−∞ imply that the inequality (24) holds. The application of

Theorem 2 concludes the proof.

Remark 9. Two additional conditions appear in Theorem 2 (Corollary 2) compared to Theorem 1 (Corollary 1). First,
the pairs (Â0, B̂0) and (Ĉ0, Â0) must be controllable and observable, respectively. Second, we need to be able to make
the model errors σ̄

(
Ã∗

0Ã0

)
, σ̄
(
Ã∗

1Ã1

)
, σ̄
(
B̃∗

0B̃0

)
, σ̄
(
B̃∗

1B̃1

)
, σ̄
(
C̃∗

0 C̃0

)
and σ̄

(
C̃∗

1 C̃1

)
as small as needed. Fortunately,

for linear ODE-PDE coupled systems, classical numerical methods such as Padé rational approximation [41] or quasi-
spectral approximation [42] can be used to fulfill these requirements. When used on the right class of systems, they
allow to approximate as well as desired the eigenvalues (sk)k∈N in a bounded region of the complex plane. Using the
analytic expression of the eigenvectors (vk)k∈N with respect to the eigenvalues (see (7) or (9)), the input, output and
state approximated matrices are obtained while keeping the eigenstructure given by (10) with a sufficiently small model
mismatch.

5 Numerical applications

The stabilization of three high-dimensional systems are presented using Matlab, with a code is available online1.

5.1 Toy example

Consider the following system (2) with matrices

A0 =
[
0.5 2
−2 0.5

]
, A1 = diag(−1, . . . ,−n2

1), B0 = [ 11 ], B1 =

[
1
...
1

]
, C⊤

0 = [ 11 ], C
⊤
1 =

[
1
...
1

]
, ai = −(n1+i)2, bi = 1, ci = 1.

(29)
where n0 = 2 and n1 ∈ N.

Designing a control gain K0 such that

σ(A0 +B0K0) = −0.5± i, σ(A0 + C0G0) = −0.5± i. (30)

the inequality (19) is satisfied for orders n1 ≥ 2.
In Fig. 1a, we plot the norm of the solution of the closed loop system for orders n1 = {2, 3, 4}. We confirm the

system stabilizes from the order 2, as stated in Theorem 1 . In Fig. 1b, we illustrate the uncertainty case. Computing
the controller with uncertainties on A0, A1, B0, B1, C0, C1, to which we add a uniformly distributed random numbers
in [−0.1, 0.1] on each coefficients. It turns out that the stability properties are preserved as stated in Theorem 2.

1https://github.com/mat-bajo/control-id
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(b) Solution x(t) for ODE-reaction-diffusion case.

Figure 2: ODE-PDE interconnected systems

5.2 ODE-transport interconnection

Consider system (6) with A = 1, B = −2, C = 1, Bu = 1, Cy = 1 and h = 0.7.
The generalized characteristic values and vectors being difficult to given analytically, we opt for a numerical method

based on Padé’s approximation of the transport PDE part, associated to the transfer functionH(s) = e−hs [41]. Several
ways of constructing the approximated model are then possible and lead to the same result. For a given order N ∈ N,
the Padé approximation enables to estimate the eigenvalues (sk)k∈{1,...,N} and the eigenvectors (vk)k∈{1,...,N} applying

the formula (7). The matrices (Â0, Â1, B̂0, B̂1, Ĉ0, Ĉ1) can then be computed through (10). Another computational
way consists in using the rational Padé approximated transfer function HN (s) = CN (sIN −AN )−1BN +DN to build
the following approximated model ÂN =

[
A+BDNC BCN

BNC AN

]
, B̂u,N =

[
Bu
0

]
, Ĉ⊤

y,N =
[
Cy

0

]
, which can be set in the

complex Jordan form and give rise to the approximated matrices (Â0, Â1, B̂0, B̂1, Ĉ0, Ĉ1).
Let δ = − 1

2 . Once in the Jordan form, we have

Â0 =
[
0.1863−1.5555i 0

0 0.1863+1.5555i

]
, B̂0 =

[
0.1239+0.3596i
0.1239−0.3596i

]
, Ĉ⊤

0 =
[
2.2437−0.1003i
2.2437+0.1003i

]
. (31)

where n0 = 2. Since the inequality (24) seems to be satisfied for all orders n1 ≥ 0, we impose n1 = 0 and ma-
trices A1, B1, C1 are not taken into account. At the order N = 10, the Padé approximation introduces a model
error max(σ̄

(
Ã∗

0Ã0

)
, σ̄
(
B̃∗

0B̃0

)
, σ̄
(
C̃∗

0 C̃0

)
) which is smaller than the numerical accuracy on Matlab.

With the initial condition x(τ) = 1, for all τ ≤ 0, the instantaneous state of the open-loop system is plotted in
blue on Fig 2a. It is an unstable system. Designing the controller according to (30), we stabilize the system as proved
in Corollary 2. The solution is plotted in red on Fig 2a and converges exponentially fast to zero with a decay rate of
− 1

2 . We succeeded in stabilizing an unstable time-delay system with a finite-dimensional controller.

5.3 ODE-reaction-diffusion interconnection

Consider system (8) with for the ODE part

A =
[

0 1
−4 −4

]
, B = [ 03 ], C = [ 1 0 ], Bu = [ 01 ], Cy = [ 1 0 ],

and for the PDE part λ = ν = 1.
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As for the previous example, we design our controller in the light of a Padé approximated model. The PDE part,

represented by the irrational transfer function H(s) =

√
s−λ
ν

sinh(
√

s−λ
ν )

, is approximated by a rational transfer function at

order N = 10. This brings us to the estimated matrices (Â0, Â1, B̂0, B̂1, Ĉ0, Ĉ1) in the Jordan form.
Let δ = −1. We have

Â0 = 0.2483, B̂0 = 0.0233, Ĉ0 = 1.9172,

Â1 =
[−1.5811−1.5285i 0

0 −1.5811+1.5285i

]
, B̂1 =

[
0.0023−0.0345i
0.0023+0.0345i

]
, Ĉ1 = [−5.5760+1.2463i −5.5760−1.2463i ],

(32)

where n0 = 1 and n1 = 2. The model error is smaller than the Matlab precision.

In Fig. 2b, the stabilization effect of the finite-dimensional controller based on Padé approximation is illustrated.

From the initial condition
[

x(0)
z(0,θ)

]
=
[
[ 10 ]
0

]
, the blue plot represents the H = R2 × L2(0, 1) norm of the solution of

the open-loop system with respect to the time. It diverges exponentially fast with a divergence rate given by Â0 ≃ 1
4

(see [39, Section IV]). Designing the controller as described in Section 4 and selecting the gains (K0, G0) such that

Â0 + B̂0K0 = −1, Â0 +G0Ĉ0 = −1,

we corroborate Corollary 2 obtaining a stable closed-loop system. The red plot represents the H norm of the solution
of this closed-looop system with n1 = 0 or n1 = 2 resulting in an exponential convergence rate.

6 Conclusions
This article has explored the design of finite-dimensional dynamical controllers using partial pole placement techniques
for infinite-dimensional dynamical systems. Since the reduced model can accurately capture the essential dynamics
of the original system and under some assumptions, we have shown that it suffices to selectively place the unstable
poles. The novelty of our approach comes from the use of a Lyapunov functional which strikes a balance between
reduced-order modeling and control effectiveness. When properly designed and implemented, the robustness of the
closed-loop system with respect to model uncertainties has also been assessed. In conclusion, we have proposed a
synthesis method of reduced-order controllers for high-dimensional plants.
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