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Abstract

The Beurling–Selberg extremal approximation problems are classics in functional analysis
and have found applications in numerous areas of mathematics. In this work, Vaaler’s extremal
approximation theory of function of bounded variation is harnessed to frame the extremal
singular values of weighted non-harmonic Fourier Matrices, where rows are scaled by arbitrary
complex numbers. Such matrices are of great interest to many inverse problems, including
super-resolution. However, those solutions have non-derivable Fourier transforms, which impedes
their use in a stability analysis of the super-resolution problem. In addition, a novel second-order
extension of the Beurling–Selberg problems is proposed, where the approximation residual to
functions of bounded variation (BV) is constrained to faster decay rates in the asymptotic,
ensuring the smoothness of their Fourier transforms. A link between the distance achieved by
the approximation residuals and the minimal eigenvalue of the Fisher information matrix (FIM)
of the super-resolution problem is established. This enables the derivation of a simple universal
minimal resolvable distance, which depends only on the properties of the point-spread function,
above which stability of super-resolution can be guaranteed.

Contents

1 Introduction 2
1.1 Contributions and Organization of the Paper . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Notation and Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Extremal Singular Values of Weighted Non-Harmonic Fourier Matrices 4
2.1 Beurling–Selberg Approximation of BV functions . . . . . . . . . . . . . . . . . . . . 4
2.2 Condition Number of Weighted Non-Harmonic Fourier Matrices . . . . . . . . . . . . 5

∗Maxime Ferreira Da Costa is with the Laboratory of Signals and Systems (L2S), CNRS at CentraleSupélec,
Université Paris–Saclay in Gif-sur-Yvette, France. Email: maxime.ferreira@centralesupelec.fr.

This work was supported in part by ANR PIA funding: ANR-20-IDEES-0002.

1



3 Higher-Order Beurling–Selberg Approximation 7
3.1 Higher-Order Beurling Majorant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.2 One-Sided Approximations of BV Functions . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Condition number of non-harmonic Fourier matrices with derivatives . . . . . . . . . 12

4 Application to the Stability of Super-Resolution 12
4.1 Observation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.2 Stability of Super-Resolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

5 Conclusion and Future Work 15

1 Introduction

In the late 1930s, Beurling considered the problem of finding a function F (t) that majorizes the
signum function sgn(t)1 and with a Fourier transform having compact support in the interval [−1, 1],
while minimizing the integral of the residual F (t) − sgn(t) ≥ 0. He successfully showed that the
function

B0(t) = (1 + 2t) sinc2(πt) +
∞∑

k=−∞
sgn(k) sinc2 (π(t − k)) , (1)

also called the Beurling majorant, is extremal in the sense that any bandlimited majorant F of the
signum function verifies∫ ∞

−∞
(F (t) − sgn(t))dt ≥

∫ ∞

−∞
(B0(t) − sgn(t))dt = 1. (2)

Furthermore, equality in the above inequation happens if and only if F (t) = B0(t). Although
Beurling’s study was originally motivated by proving uniform bounds on the derivatives of almost-
periodic functions, the Beurling majorant is a versatile functional analysis tool that found usage
in numerous areas of mathematics, including probability, dynamical systems, combinatorics, and
sphere packing, and sampling theory (see [1] and references therein).

More relevant to the context of this paper, Selberg used Beurling’s extremal function to construct
extremal lower and upper bandlimited approximations of the rectangle function [2], [3]. This result
pave the way for tight derivations of the large sieve inequalities [4], [5], which, in short, frame
the total energy of a periodic function with the energy of its non-uniform samples. Among other
applications, the large sieve inequalities provide sharp bounds on the extremal singular values of
non-harmonic Fourier matrices, i.e. Vandermonde matrices with nodes on the unit circle. The
conditioning of such matrices plays a critical role in the sampling, observability, and identification
of shift-invariant systems and in the super-resolution of complex exponentials [6], also known as the
line spectral estimation problem [7], [8].

1Herein, we adopt the convention sgn(0) = 0.
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The Beurling–Selberg approximation problems were later extended to arbitrary functions of
bounded variation (BV) [9], at the cost of a possible loss of extremality. In this paper, we exploit
this result to propose novel bounds on the extremal singular values of the broader class of weighted
non-harmonic Fourier matrices, whose rows are weighted by arbitrary complex coefficients. Those
matrices are of practical interest to model the Fourier domain measurements of the convolution of a
stream of Dirac impulses from an arbitrary point-spread function (PSF), which is ubiquitous in
system, imaging sciences, and telecommunication. Additionally, when dealing with noisy observations,
infinitesimal variations have to be considered for a perturbation analysis of the super-resolution
problem. The lack of derivability of the Fourier transform of the solutions to the original Beurling–
Selberg problems prevents their application in that context. We palliate this issue by introducing
higher-order extensions to the Beurling–Selberg problems. We explore their properties and leverage
them to study the stability of super-resolution under Gaussian noise, which we quantify in terms of
the minimal eigenvalue of its associated Fisher information matrix (FIM) [10].

1.1 Contributions and Organization of the Paper

In Section 2, recalls the Beurling–Selberg approximation theory of functions of bounded variations
(BV). A connection between the solution to that problem and the extremal singular values of
weighted non-harmonic Fourier matrices is establised in Theorem 1. In particular, the condition
number of those matrices is bounded as a simple function of the minimal separation between the
nodes and of the total variation of the autocorrelation of the weights.

In Section 3, novel extensions to the classical Beurling–Selberg extremal approximations problems
are defined, which we call of higher-order, and where the approximation residuals are required
to have faster decay rates, ensuring the smoothness of their Fourier transform. We specifically
focus on the second-order case. Theorem 2 proposes an approximant of the signum function
with a twice differentiable Fourier transform. Building on this first result, Theorem 4 proposes a
construction of bandlimited minorants and majorants of arbitrary BV functions. Additionally, the
approximation error of the solutions is controlled by a quantity that depends on the total variation
of the approximated BV function and of the approximation bandwidth.

Section 4 recalls the formulation of the super-resolution problem from a bandlimited point-spread
function (PSF). Considering the case where the minimal separation between the sources is inversely
proportional to the number of acquired moments, we investigate the stability of the problem in the
lense of the degeneracy of its FIM [10], when the minimal eigenvalue of the FIM is not asymptotically
vanishing. We leverage the properties of the higher-order approximants constructed in Section 3 to
provide a lower bound on the minimal eigenvalue of the FIM and show it remains bounded away
from 0 as long as the separation parameter is greater than a quantity that depends only on the
autocorrelation of the PSF. This result provides a novel, simple, and insightful relationship between
the BV norms of the Fourier transform of the autocorrelation and the associated stable resolution
limit.Numerical experiments are presented to highlight our theoretical findings.

Finally, conclusions and future works are drawn in Section 5.
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1.2 Notation and Definitions

Vectors of CN and matrices of CN×r are denoted by boldface letters a and capital boldface letters
A, respectively. The minimal (resp. maximal) eigenvalues of a Hermitian matrix A are denoted
λmin(A) and λmax(A), respectively. For any function F ∈ L2(R), we denote by F̂ its continuous
time Fourier transform, defined almost everywhere as

F̂ (u) =
∫
R

F (t)e−i2πutdt, ∀u ∈ R. (3)

A function F ∈ L2(R) is said to be β-bandlimited if for all u such that |u| > β, we have F̂ (u) = 0.
For any β > 0, we write Fβ(t) = βF (βt). We highlight that if F is 1-bandlimited, then Fβ is
β-bandlimited. F ∈ BV means that F is of bounded variation. In that case, we denote by dF its
derivative in the weak sense, and write by VF =

∫∞
−∞ |dF | its total variation over R.

We let T = R/Z be the unidimensional torus. When N = 2n + 1 is an odd number, we write by
v0(τ),v1(τ) ∈ CN the vectors given by

v0(τ) = 1√
N

[
e−i2π(−n)τ , . . . , e−i2πnτ

]⊤
(4a)

v1(τ) = 1√
N

[
−i2π(−n)e−i2π(−n)τ , . . . , −i2πne−i2πnτ

]⊤
, (4b)

for any τ ∈ T. For any vector τ ∈ Tr, we define by V0(τ ),V1(τ ) ∈ CN×r, the generalized
Vandermonde matrices

V0(τ ) = [v0(τ1), . . . ,v0(τr)] , (5a)

V1(τ ) = [v1(τ1), . . . ,v1(τr)] , (5b)

and write W (τ ) = [V0(τ ),V1(τ )] ∈ CN×2r their concatenation. Finally, the wrap-around distance
∆(τ ) is defined by the minimal distance between two pairs of points in τ over the torus, i.e.
∆(τ ) ≜ minℓ̸=ℓ′ infj∈Z |τℓ − τℓ′ + j|.

2 Extremal Singular Values of Weighted Non-Harmonic Fourier
Matrices

2.1 Beurling–Selberg Approximation of BV functions

Definition 1 (Beurling–Selberg minorant and majorant sets). Given a function G ∈ BV and β > 0,
we let E−

β (G) and E+
β (G) the second-order minorant and majorant sets, respectively, which we define

as follows.
Minorant set: F ∈ E−

β (G) if and only if

1. F is β-bandlimited;
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2. F minorizes G, i.e. F (t) ≤ G(t) for all t;

3.
∫∞

−∞ (G(t) − F (t)) dt < ∞.

Majorant set: F ∈ E+
β (G) if and only if

1. F is β-bandlimited;

2. F majorizes G, i.e. F (t) ≥ G(t) for all t;

3.
∫∞

−∞ (F (t) − G(t)) dt < ∞.

2.2 Condition Number of Weighted Non-Harmonic Fourier Matrices

Theorem 1. Let G(t) ∈ L2([−1
2 , 1

2 ]). For any N = 2n + 1, define by g ∈ CN the sample vector with
entry gk = k

N for k = −n, . . . , n. Then the following inequality holds

σmin (diag(g)V (τ )) ≥
√∫ 1/2

−1/2
K(t)dt − 1

2 (N∆(τ ))−1 VK (6a)

σmax (diag(g)V (τ )) ≤
√∫ 1/2

−1/2
K(t)dt + 1

2 (N∆(τ ))−1 VK (6b)

Proof. We focus on proving that (6a) holds, as (6b) can be derived in an analogous manner. We
consider a vector τ ∈ Tr of an arbitrary number r of elements. Let β = N∆(τ ). For any β > 0,
the set E−

β (K) is not empty, and we let K−
β ∈ E−

β (K) be a function in the set E−
β . We start by

introducing the auxiliary function φ(·) defined for all y ∈ R by

φ(y) = 1√
N

r∑
ℓ=1

u0,ℓe
−i2πτℓy, (7a)

and let by S(ℓ, ℓ′) the sum of the series

S(ℓ, ℓ′) =
∞∑

k=−∞
K−

β

(
k

N

)
e−i2πk(τℓ−τ ′

ℓ). (8)

Given these definitions, we can introduce K−
β to minorize the quantity ∥diag(g)V (τ )u∥2

2 as follows

∥diag(g)V (τ )u∥2
2 =

n∑
k=−n

|gk|2 |φ(k)|2

=
n∑

k=−n

∣∣∣∣G( k

N

)∣∣∣∣2 |φ(k)|2

=
∞∑

k=−∞
K

(
k

N

)
|φ(k)|2

≥
∞∑

k=−∞
K−

β (k∆(τ )) |φ(k)|2 = 1
N

r∑
ℓ=1

r∑
ℓ′=1

uℓuℓ′S(ℓ, ℓ′), (9)
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where the first inequality stems from the fact that k∆(τ ) ∈ [−1/2, 1/2] if and only if |k| ≤ n, and
the second because K−

β (t) ≤ K(t) for all t ∈ R by assumption. Moreover, the terms of the series
S(ℓ, ℓ′) are equivalent to the function h : x 7→ K−

β (x)e−i2πx(τℓ−τℓ′ ) when the argument is an integer.
By the third assumption in Definition 1, the functions h are absolutely summable with continuous
time Fourier transform ĥ(u) = K̂−

β (N(u−τℓ +τℓ′)), which is of finite support by the first assumption
and bounded by the third one, therefore also absolutely summable. Hence, the Poisson summation
formulae can be applied on the series S(ℓ, ℓ′). They yield for all pairs (ℓ, ℓ′) ∈ {1, . . . , r}2 and all

S(ℓ, ℓ′) =
∞∑

j=−∞
K̂−

β (N(j − τℓ + τℓ′)) . (10)

By our assumption on the separation, we have that N(j − τℓ + τℓ′) ≥ N∆(τ ) > β for any j ∈ Z and
any pair (ℓ, ℓ′) unless ℓ = ℓ′ and j = 0. As K−

β is β-bandlimited, we conclude that the terms on the
right hand side of (10) are all 0 unless ℓ = ℓ′ and j = 0. Thus, (10) reduces for p = 0, 1, 2 to

S(ℓ, ℓ′) =

K̂−
β (0) if ℓ = ℓ′,

0 otherwise.
(11)

Substituting (11) into (9) yields

∥diag(g)V (τ )u∥2
2 ≥ K̂−

β (0) ∥u∥2
2 . (12)

Finally, the definition of the singular value and (12) imply

σmin(diag(g)V (τ ))2 = min
∥u∥2

2=1
∥diag(g)V (τ )u∥2

2

≥ K̂−
β (0)

=
∫ +∞

−∞
K−

β (t)dt

=
∫ +∞

−∞
K(t)dt −

∫ +∞

−∞
K−

β (t)dt −
∫ +∞

−∞

(
K(t) − K−

β (t)
)

dt

=
∫ 1/2

−1/2
K(t)dt −

∫ +∞

−∞
K−

β (t)dt −
∫ +∞

−∞

(
K(t) − K−

β (t)
)

dt. (13)

From [11], there exists a function F ∈ E−
β (K) such that

∫+∞
−∞

(
K(t) − K−

β (t)
)

dt ≤ 1
2β−1VK which

yields with (13) our desired statement.
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3 Higher-Order Beurling–Selberg Approximation

3.1 Higher-Order Beurling Majorant

Although the function B0 realizes the best possible 1-bandlimited majorization of the signum
function in the L1-sense, the residual R0(t) = B0(t) − sgn(t) decays quite slowly as O(|t|−1) in the
limit |t| → ∞. One consequence is that the Fourier transform R̂0 and B̂0 will not be differentiable.

We define the mth-order Beurling approximation problem as the problem of majorizing the
signum function with a 1-bandlimited function Bm for which the Fourier transform of the residual
Rm(t) = Bm(t) − sgn(t) has an at least m-times differentiable Fourier transform R̂m [12]. The
sequel focuses on the case of m = 2, and we define the 2nd order Beurling majorant set as follows.

Definition 2 (2nd order Beurling majorant set). We let B2 the set of functions F : t 7→ F (t)
satisfying the following properties:

1. F is 1-bandlimited;

2. F majorizes sgn, i.e. F (t) ≥ sgn(t) for all t ∈ R;

3.
∫∞

−∞ 4π2t2 (F (t) − sgn(t)) dt < ∞.

The set B2 differs from Beurling’s original formulation only in the third assumption, which
implies the residual is at least twice differentiable. Additionally, it is easy to verify B0 /∈ B2 from (1).
The central question is to find functions F that belong to B2 and realize a “sufficiently good”
approximation of the signum function. The following result expresses one function B2 ∈ B2.

Theorem 2 (2nd order Beurling majorant). Define the two auxiliary functions K(t) and L(t) as

K(t) = sinc4
(

πt

2

)
(14a)

L(t) =
(

π2 + 3
9 t + π2

6 t3
)

K(t) +
∞∑

k=−∞
sgn(2k)

(
1 + π2

6 (t − 2k)2
)

K(t − 2k), (14b)

and let B2(t) = K(t) + L(t). Then, B2 ∈ B2 and∫ ∞

−∞
(B2(t) − sgn(t)) dt = 4

3 (15a)∫ ∞

−∞
4π2t2 (B2(t) − sgn(t)) dt = 16. (15b)

Proof. We start the proof by recalling that the functions t 7→ tm sinc4 (π
2 t
)

are 1-bandlimited for
m ∈ {0, 1, 2, 3}, and so are there time-domain translations. Hence the function B2 proposed is also
1-bandlimited.

Secondly, we note that, since K(t) is an even function, the function L(t) defined in Equation 14
is odd. This implies that∫ ∞

−∞
(L(t) − sgn(t)) = 0,

∫ ∞

−∞
4π2t2 (L(t) − sgn(t)) = 0. (16)
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Figure 1: (a) The graphs of the functions B0(t) (in blue) and B2(t) (in red).
(b): The graphs of the residuals functions B0(t) − sgn(t) (in blue) and B2(t) − sgn(t) (in red).

Hence, we may write∫ ∞

−∞
(B2(t) − sgn(t)) dt =

∫ ∞

−∞
K(t)dt +

∫ ∞

−∞
(L(t) − sgn(t)) dt (17)

=
∫ ∞

−∞
K(t)dt = 4

3 < ∞. (18)

Similarly, it yields∫ ∞

−∞
4π2t2 (F (t) − sgn(t)) dt =

∫ ∞

−∞
4π2t2K(t)dt +

∫ ∞

−∞
4π2t2 (L(t) − sgn(t)) dt

=
∫ ∞

−∞
4π2t2K(t)dt = 16 < ∞, (19)

and we conclude both that B2 verifies the second condition of Definition 2 of the set B2 and on the
Equations (15).

It remains to show that B2 verifies the third condition of Definition 2 to conclude on the desired
statement. To that hand, we rely on the following lemma, which extends the Whitaker–Shannon
interpolation formula for the reconstruction of bandlimited functions involving its uniform samples,
and the uniform samples of its 3 first derivatives [13], [14]. The following Lemma specifies this
formula when p = 3.
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Lemma 3 (Higher-order interpolation formula [14]). If F is a continuous 1-bandlimited then for
any t ∈ R we have that

F (t) =
∑
k∈Z

(
F (2k) + F ′(2k)(t − 2k) +

(
F ′′(2k) + π2

3 F (2k)
)

(t − 2k)2

2

+
(

F ′′′(2k) + π2

3 F ′(2k)
)

(t − 2k)3

6

)
sinc4

(
π

2 (t − 2k)
)

. (20)

Applying Lemma 3 on the constant function F (t) = 1 for all t ∈ R yield the identity

1 =
∑
k∈Z

(
1 + π2

6 (t − 2k)2
)

sinc4
(

π

2 (t − 2k)
)

. (21)

The definition of B2(t) and (21) yield

B2(t) − 1

= K(t) + L(t) − 1

=
(

1 + π2 + 3
9 t + π2

6 t3
)

K(t) +
∞∑

k=−∞
(sgn(k) − 1)

(
1 + π2

6 (t − k)2
)

K(t − 2k)

=
(

1 + π2 + 3
9 t + π2

6 t3
)

K(t) +
∞∑

k=−∞
(sgn(k) − 1)

(
1 + π2

6 (t − k)2
)

K(t − 2k)

=
(

π2 + 3
9 t − π2

6 t2 + π2

6 t3
)

K(t) − 2
∑
k<0

(
1 + π2

6 (t − k)2
)

K(t − 2k). (22)

For any function f , we denote by ∆{f(t)} the negative discrete increment ∆{f(t)} = f(t) −
f(t + 2).With a direct calculation, we can show that for all t ∈ R. By linearity of ∆{·}, a direct
calculation yields

∆{B2(t)} = ∆{B2(t) − 1}

= ∆
{(

π2 + 3
9 t − π2

6 t2 + π2

6 t3
)

K(t)
}

− 2∆

∑
k<0

(
1 + π2

6 (t − k)2
)

K(t − 2k)


= ∆

{(
π2 + 3

9 t − π2

6 t2 + π2

6 t3
)

K(t)
}

− 2
(

1 + π2

6 (t + 2)2
)

K(t + 2)

=
( 2

π
sin
(

π

2 t

))4 p(t)
t3(t + 2)4 , (23)

where p(t) is a second-degree polynomial given for all by

p(t) = 8
3
(
π2 + 3

)
t2 +

(32
9
(
π2 + 3

)
− 8

3π2
)

t + 16
9
(
π2 + 3

)
. (24)
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One may verify that p(t) is non-negative on the real line, i.e. p(t) > 0 for all t ∈ R. This implies
with Equation (23) that ∆B2(t) ≥ 0 for t ≥ 0 and ∆B2(t) ≤ 0 for t < 0.

Let R2(t) = B(t) − sgn(t). As we have that B2(t + m) tends respectively to 1 and −1 as m

tends to ±∞ for any real t, we have the identity

R2(t) =


∑

m≤0 ∆B2(t − m) for t ≥ 0,

−
∑

m≥1 ∆B2(t − m) for t < 0.
(25)

It follows from the previous finding on the sign of ∆{B2(t)} that R2(t) ≥ 0 for any real t. This
implies that B2(t) ≥ sgn(t) for any t ∈ R, and B2(t) verifies the third condition of Definition 2.
Hence B2 ∈ B2 and we conclude on the desired statement.

An identification of the terms in (20) with the expression of B2 proposed in Theorem 2 yields
B(0) = 0 and

B(2k) = sgn(2k), B(ℓ)(2k) = 0. (26)

for ℓ = 1, 2, 3 and k ∈ Z\{0}. The previous relations suggest that B2(t) interpolates the signum
function with vanishing derivatives up to the third order at every non-zero even integer. This foresees
the quality of the one-sided approximation of the signum function realized by B2(t). The graphs of
the function B2(t) and of its residual with the signum function R2(t) are plotted in Figure 1. As
shown, the decay rate of the residual R2(t) has a faster rate than the one of R0(t). However, this
benefit comes at a price of slightly greater L1-norm, as confirmed by comparing the error metrics (2)
and (15). Investigations on the extremality of B2(t) within the set B2 are left for future work.

3.2 One-Sided Approximations of BV Functions

Selberg used the Beurling majorant to construct extremal bandlimited majorization and minorization
of the rectangular function [2], [3]. This result was further generalized to arbitrary BV functions [9].
Likewise, this subsection is dedicated to higher-order bandlimited one-sided approximations of
arbitrary BV functions by exploiting the function B2 constructed in Theorem 2. We start by defining
the approximation sets of interest in the following.

Definition 3 (2nd-order minorant and majorant set).
Given a function G ∈ BV and β > 0, we let E−

β,2(G) and E+
β,2(G) the second-order minorant

and majorant sets, respectively, which we define as follows.
Minorant set: F ∈ E−

β,2(G) if and only if

1. F is β-bandlimited;

2. F minorizes G, i.e. F (t) ≤ G(t) for all t;

3.
∫∞

−∞ 4π2t2 (G(t) − F (t)) dt < ∞.

10
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Figure 2: Graphs of the bandlimited majorants and minorants proposed by Theorem 4 for different
BV functions: (a) the rectangle function; (b) the semi-circle function t 7→

√
1 − 4t2 over [−1

2 , 1
2 ]; (c)

the triangle function t 7→ max{0, 1 − 2|t|}; (d) the Gaussian function t 7→ exp(−t2/2), for different
values of the bandlimit β. In blue: β = 1; In red: β = 4; In yellow: β = 16. Majorants are in plain
lines, minorants are in dot-dashed lines, and the target function is in a dashed black line.

Majorant set: F ∈ E+
β,2(G) if and only if

1. F is β-bandlimited;

2. F majorizes G, i.e. F (t) ≥ G(t) for all t;

3.
∫∞

−∞ 4π2t2 (F (t) − G(t)) dt < ∞.

Similarly to Definition 2 for the set B2, the third assumption implies that the residual functions
of elements in E−

β,2(G) and E+
β,2(G) have a Fourier transform that is at least twice differentiable. In

the sequel, we denote J(t) = 1
2L′(t) where, L is the auxiliary function defined in (14b). The next

theorem proposes a generic construction of a pair of functions in those two sets by harnessing the
properties of the function B2 constructed in Theorem 2.

Theorem 4 (Bandlimited approximation of BV functions).
Let G ∈ BV. For any β > 0 the two functions

G−
β (t) = G ∗ Jβ(t) − (2β)−1 (dVG) ∗ Kβ(t) (27a)
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G+
β (t) = G ∗ Jβ(t) + (2β)−1 (dVG) ∗ Kβ(t), (27b)

are well-defined, β-bandlimited, and G−
β ∈ E−

β,2(G) and G+
β ∈ E+

β,2(G). Moreover, the two integral
identities,

∫ ∞

−∞

(
G+

β (t) − G(t)
)

dt =
∫ ∞

−∞

(
G(t) − G−

β (t)
)

dt =
(3

2β

)−1
VG, (28a)∫ ∞

−∞
4π2t2

(
G+

β (t) − G(t)
)

dt =
∫ ∞

−∞
4π2t2

(
G(t) − G−

β (t)
)

dt =
(1

8β

)−1
Vt7→4π2t2G(t).

hold for any β > 0.

The proof of the above is skipped and is inspired by [9, Theorem 11]. Of particular importance
in the previous is that both functions G−

β and G+
β converge to G when we allow the bandwidth β of

the approximants to tend to infinity. Figure 2 shows the graphs of the approximants proposed by
Theorem 4 for four different BV functions G and for different approximation bandwidth β. It shows
that increasing approximation bandwidth β results in tighter approximation which corroborates
with the results.

3.3 Condition number of non-harmonic Fourier matrices with derivatives

Theorem 5. Let G(t) ∈ L2([−1
2 , 1

2 ]). For any N = 2n + 1, define by g ∈ CN the sample vector with
entry gk = k

N for k = −n, . . . , n. Then the following inequality holds

σmin (diag(g)W (τ )) ≥ min
{√∫ 1/2

−1/2
K(t)dt − 1

2 (N∆(τ ))−1 VK ,√∫ 1/2

−1/2
K(t)dt − 3

8(−K ′′(0)) (N∆(τ ))−3 Vt→4π2t2K(t)

}
(29a)

σmax (diag(g)W (τ )) ≤ max
{√∫ 1/2

−1/2
K(t)dt − 1

2 (N∆(τ ))−1 VK ,√∫ 1/2

−1/2
K(t)dt + 3

8(−K ′′(0)) (N∆(τ ))−3 Vt→4π2t2K(t)

}
(29b)

4 Application to the Stability of Super-Resolution

4.1 Observation Model

Super-resolution is a fundamental signal processing problem consisting of recovering a stream
of point-sources from their convolution with a known point-spread function, assumed to be 1

2 -
bandlimited, up to a rescaling. A classical approach [7], [8], [15], [16] supposes measurements to be
taken in the Fourier domain, either because of the physical nature of the measurements [17]–[19],
or through transforms posterior to acquisition [7], [20]. We assume an odd number N = 2n + 1 of
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spectral measurements and a ground truth composed of r many sources with r ≤ n to ensure the
uniqueness of the solution with r components in the absence of noise [21]. Super-resolution boils
down to recovering the amplitudes c ∈ Cr and the locations τ ∈ Tr of the point-sources from the
noisy observation y ∈ CN of the form

y = diag(h)
r∑

ℓ=1
cℓv0(τℓ) + w = diag(h)V0(τ )c + w, (30)

where hk = H
(

k
N

)
corresponds to the trigonometric moments of the PSF. The noise w ∼

N
(
0, σ2IN

)
is assumed to be white Gaussian noise with variance σ2. Additionally, up to scaling, it

is assumed that 1 ≤ |cℓ| ≤ κ of any ℓ = 1, . . . , r, where κ is the dynamic range of the problem.
We write G = |H|2 and let gk = G( k

N ). As the vectors c and τ are of different units, and since
the statistical error of an estimator of τ is expected to be inversely proportional to the number
of measurement N , we denote by τ̃ = τ/Ĝ(0) the normalized location of the points. We seek to
recover, without loss of generality, the set of parameters θ = {c, τ̃}.

4.2 Stability of Super-Resolution

An important statistical problem for super-resolution is to guarantee its stability. There are various
definitions in the literature to characterize the stability of the super-resolution problem. Some
stability criteria are algorithm-specific. In particular several super-resolution algorithms such as
MUSIC [22], [23], ESPRIT [24], matrix-pencil [3], [25], or total-variation minimization methods [26]–
[29] comes with provable stability guarantees. On the other hand, stability can be defined under
various statistical and algorithm-independent metrics [30]–[32]. Nonetheless, all are related to the
separation parameter N∆(τ ) between the sources, as empirically established by Rayleigh (see
e.g. [10], [33]). Here, we relate stability with the property of the Fisher information matrix (FIM)
J(θ) that its smallest eigenvalue is strictly bounded away from 0, by extending the FIM stability
definition introduced in [10] to the case of an arbitrary PSF.

Definition 4 (Stability of the Fisher Information Matrix). The super-resolution problem is said
to be stable for a separation parameter β and a dynamic range κ if and only if there exists a
constant CG(β, κ) > 0 independent of N such that for any set of parameters θ with N∆(τ ) ≥ β

and 1 ≤ min{c} ≤ max{c} ≤ κ

λmin (J(θ)) ≥ σ−2CG(β, κ), (31)

where the FIM J(θ) under observations (30) reads [34], [35],

J(θ) = σ−2 diag(1, c)HW (τ )H diag(g)W (τ ) diag(1, c). (32)

The Beurling extremal function, and in particular Selberg approximation of the rectangle, can be
used to bound, in a fairly elegant manner, the singular values of Vandermonde matrices of the kind
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Figure 3: Theoretical lower bounds on the quantity λmin(JG(θ)) for three different PSF: In blue:
ideal-low pass; In red: circular low-pass; In yellow: triangular low-pass. The lower bounds become
non-negative when β = N∆(τ ) is greater than 3.4, 3.9, and 4.7, respectively, up to a 10−1 imprecision.
Herein, we set the dynamic range κ = 1.

V0(τ ) for any τ as a sole function of the separation parameter N∆(τ ) [3], [6]. In our setting, the
FIM (32) reads as the Gramian of a weighted generalized Vandermonde matrix W (τ ), which cannot
directly be tackled with classical Beurling–Selberg approximants. The next theorem concludes on
the stability of super-resolution by building a relationship between the bandlimited approximations
proposed in Theorem 2 and smallest eigenvalue of the FIM (32).

Theorem 6 (Conditioning of the FIM via Bandlimited Functions). Suppose that G ∈ BV. If the
separation parameter N∆(τ ) verifies

N∆(τ ) > max
{

2VG

3
∫∞

−∞ G(t)dt
,

8Vt7→4π2t2G(t)∫∞
−∞ 4π2t2G(t)dt

}
(33)

then super-resolution is stable in the sense of Definition 4.

Theorem 6 provides a generic and simple evaluation criterion to check the stability of the FIM of
the super-resolution problem (30). Additionally, this result enables the derivation of lower bounds
on the quantity λmin (J(θ)) as a function of the Fourier transform of autocorrelation function G of
the PSF, of the dynamic range κ, and of the separation parameter β = N∆(τ ). Figure 3 plots this
quantity and the associated stability bounds when the PSF is an ideal-low pass filter, a circular
low-pass filter, and a triangular low-pass filter.
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5 Conclusion and Future Work

In the present work, we introduce an extension of the Beurling–Selberg bandlimited approximation
problem by building one-sided approximants of BV functions with smooth Fourier transforms. We
propose an application of our theoretical findings to the stability of the Fisher information matrix of
the super-resolution problem from an arbitrary PSF whose Fourier transform is of bounded variation.
In the regime where the separation between the sources is inversely proportional to the number
of measurements, the results reveal the existence of the separation parameter, depending on the
mass and second-order moments of the variations of the PSF, above which super-resolution is stable
in a Fisher sense. We leave for an extended version of this work a complete demonstration of our
results, a study of the extremality of the function B2, and an exploration of the applicability of our
higher-order bandlimited approximation theory to system identification. Additionally, extensions of
the presented Beurling approximation problems with an arbitrary order m will be investigated.
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