N

N

CERBERE: Cybersecurity Exercise for Red and Blue
team Entertainment, REproducibility
Pierre-Victor Besson, Romain Brisse, Hélene Orsini, Natan Talon,
Jean-Francois Lalande, Frédéric Majorczyk, Alexandre Sanchez, Valérie Viet

Triem Tong

» To cite this version:

Pierre-Victor Besson, Romain Brisse, Héléne Orsini, Natan Talon, Jean-Francois Lalande, et al.. CER-
BERE: Cybersecurity Exercise for Red and Blue team Entertainment, REproducibility. CyberHunt
2023 - 6th Annual Workshop on Cyber Threat Intelligence and Hunting, Dec 2023, Sorrento, Italy.
pp-2980-2988, 10.1109/BigData59044.2023.10386953 . hal-04285565

HAL Id: hal-04285565
https://centralesupelec.hal.science/hal-04285565

Submitted on 14 Nov 2023

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est

archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

https://centralesupelec.hal.science/hal-04285565
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

CERBERE: Cybersecurity Exercise for Red and
Blue team Entertainment, REproducibility

Pierre-Victor Besson
CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
pierre-victor.besson @inria.fr

Hélene Orsini
CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
helene.orsini @irisa.fr

Jean-Frangois Lalande
CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
jean-francois.lalande @irisa.fr

Alexandre Sanchez
CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
alexandre.sanchez @inria.fr

Abstract—Experimenting in cybersecurity requires manipu-
lating reliable and realistic data. In particular, labelled data
derived from the observation of a complete campaign is rarely
available, due to its high sensitivity and the difficulty of accurately
labelling datasets. This situation harms the reproducibility of
research results and therefore to their impact. In this article,
we present the CERBERE project that addresses this issue
through a reproducible attack-defense exercise and a labelled
dataset usable for research purposes. The attack-defense exercise
is first composed of an exercise for red teamers automatically
deployed with variable attack scenarios. Second, an exercise for
blue teamers can be operated using the system and network logs
generated during the attack phase. We provide with this article,
the software to rebuild the infrastructure for red teamers. We
share a labelled dataset where we spot the ground truth, i.e. the
log lines that have been involved in the attacker’s actions.

Index Terms—cybersecurity, red / blue teams, cyber training

I. INTRODUCTION

Cybersecurity includes a vast array of specialized fields,
ranging from intrusion detection and penetration testing to
remediation, mitigation, and digital forensics. These diverse
facets of cybersecurity operate in synergy. At the core of
this discipline lies the concept of information systems se-
curity. Information systems security, encompasses networks,
databases, and applications. It aims to identify attack surface
and create a resilient defence against diverse threats, making

979-8-3503-2445-7/23/$31.00 ©2023 IEEE

Romain Brisse
Malizen, CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
romain @malizen.com

Natan Talon
Hackuity, CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
ntalon @hackuity.io

Frédéric Majorczyk
DGA, CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
frederic.majorczyk @intradef.gouv.fr

Valérie Viet Triem Tong
CentraleSupélec, Inria, Univ. Rennes, CNRS, IRISA
Rennes, France
valerie.viettriemtong @centralesupelec.fr

it an essential aspect of cybersecurity strategy. Despite its im-
portance, the pursuit of realistic information systems security
solutions remains a challenge. The scarcity of authentic archi-
tectures is still an obstacle for researchers and practitioners:
mimicking real infrastructures can notably disclose sensitive
data, increasing the scale of cyberranges is costly, simulating
legitimate user behaviors is difficult in randomly generated
infrastructures [1].

One of the main academic issues is the lack of data [2].
Cybersecurity suffers from data scarsity for good reasons such
as the sensitivity of security data, the high cost and low
reliability of data anonymization, the difficulty of capturing,
storing and releasing data to the public [3]. As a result, many
different initiatives have been taken to produce the data needed
to evaluate their work. Other researchers even tried to produce
data for everyone to use such as the datasets produced by
the Canadian Institute for Cybersecurity [4], SOCBED [5],
or SecGen [6]. However, despite the merits of all these
previous approaches, they present important flaws [7] due to
the complexity of the task. First, the presented architectures
are rigid and difficult to change. Then, the management of
the attack surface is complex, and must be handled with
care because of potential side effects. Indeed, implementing
a vulnerability often implies installing older package versions
or modifying rights, creating a significant probability to open
more than one way for attackers to get inside the system.
Finally and most of all, all previously presented architectures

Pentesting exercise

Scenario
template

Scenario
generation
for each user

Q{gmus

Cluster of

containers Pentest

Redirecting the AT
user to a container)

=0

@

Deployment

Red Team

Wb browser

|
|

|

|

|

'

i

|

— ;

logs !

% D |

Attack Traces

Investigation exercise

¥
Ground truth

CERERE dataset

R Investigating =
‘ ; 1 Instance %’
y . g \\.‘G

Raw dataset
Blue Team

T ——
Post-processing
+

publication

Enriched dataset

Fig. 1. Overview of CERBERE architecture

rarely promote more than one side of cybersecurity when in
reality red teams, blue teams are all intricately linked.

In this article, we describe the CERBERE project that
stands for Cybersecurity Exercise for Red and Blue team
Entertainment, REproducibility. It is more than just a tradi-
tional Capture-the-Flag (CTF) challenge conceived to train
security teams attacking an IT infrastructure. The CERBERE
exercise is composed of two parts: a first CTF-type exercise
in which a player must attack an infrastructure that has been
generated in order to guarantee its uniqueness. During this
exercise, player’s actions are monitored from three angles:
their pentesting activities performed in their web browser,
their network activity, and their activity on host operating
systems. This data allows a second hunting phase in which a
player must reconstruct all the stages of an attack scenario by
exploring the logs. In order to adapt to the skills of the players,
the CERBERE exercise is derived into several instances for
which we control the difficulty.

Additionally, this article presents the CERBERE dataset
containing all the logs produced during the CERBERE ex-
ercise. The dataset has been generated with the participation
of 22 players: 13 red players and 9 blue players with three
levels of difficulty. We explain how this dataset was labelled,
enabling us to reconstruct the evolution of the players.

Several outputs are distributed with this publication ':

o The software for generating the infrastructure and execut-
ing these instances on a regular Linux operating system.

Uhttps://gitlab.inria.fr/cidre-public/cerbere-dataset/

The software for deployment on a cluster is not given as
it is too specific.

o The raw dataset of the logs of each red team player that
can be used for.

e The enriched dataset containing labels for the logs to
highlight the evidences of intrusion.

In the following sections, we go into further detail regarding
CERBERE. Section II presents the methodology employed
for building our red/blue team exercise. In particular, we
give details about the pentesting scenario and the information
collected during a pentest. Section III presents how we con-
ducted red team and blue team experiments with the players.
Finally, Section IV details the labelling of the logs to form the
CERBERE dataset. Section V concludes the article.

II. THE CERBERE PROJECT

CERBERE is designed as a cybersecurity exercise in two
parts where we successively conduct two phases: pentesting
a group of vulnerable infrastructures using a similar attack
scenario and investigating the logs of said pentest. Figure 1
summarizes the global architecture of the project.

A. Overview

The first phase of the CERBERE exercise is the attack
phase. Each player (represented in red) obtains his or her own
target instance: a virtual infrastructure hosting the 3 machines
to be attacked. All the instances are automatically deployed
starting from a generic description of the attack scenario
and closely monitored in order to gather data. Each instance
deploys a variation of the generic scenario: instances differ

TABLE I
LIST OF PROCEDURES AVAILABLE FOR EACH TECHNIQUE IN CERBERE.

Technique Procedures Detection rules
- m1: Website with command injection (easy) Access to alice’s home repository
Tol’?i 9_ 0 mo: Website with command injection (medium) Chmod in images directory, commands executing .jpg files
m3: Django directory traversal rewarding ssh key Not detectable through system logs
1= 74: Vulnerable sudo version (CVE-2019-14287) Command containing ~-u#-1"
T1068 75: Vulnerable pkexec process Command executing the pkexec process directly
T2,6 = T6: Passwords in .bash_history Command accessing the .bash_history file
T1552 7r7: Password in .txt file Command accessing the important.txt file
Ta,6 = m9: SSH Access from key SSHD user_login
T1021 m10: SQL server rewarding a flag Command related to the psql executable

pO: attacker, superuser

To: T1190: Exploit Public-Facing Application

p1l: zagreus, alice p3: hades, bob

l‘l: T1068: Exploitation for Privilege Escalation

Ty: T1552: Unsecured Credentials

p2: zagreus, superuser) Rewards:['zagreus_secret']

T3: T1190: Exploit Public-Facing Application
Requires:['zagreus_secret'|Rewards:[*hades_secret']

T4: T1021: Remote Services
Requires:[*hades_secret']

T1552: Unsecured Credentials

b Te
p4: hades, superuser) R’ewards:[‘melmce_db_password‘]

Tg: T1021: Remote Services
Requires:['melince_db_password']Rewards:['melinoe_flag']

p5: melinoe, postgres

Fig. 2.

from each other by the involved operating systems, installed
software and their vulnerabilities. Each instance in the CER-
BERE exercise was unique to each participant allowing him to
discover its own way of performing the attack campaign. These
aspects are presented in more details in Section II-B. To these
instances, two more machines implementing the GHOSTS
framework 2 were deployed in order to generate fake life on
the infrastructure. However, we don’t represent as they are not
relevant to the attack scenario.

In the second phase of the CERBERE exercise, new players
(the blue team) receives the logs associated to a pentest session
of the first phase, except browser logs that would not be avail-
able during a real investigation. The logs have been acquired
from several monitors, as described later in Section II-C.
Blue teamers investigate the logs in a platform developped
by Malizen® and are expected to flag assets corresponding to
attacker actions.

Finally, once the exercise has been played, we gather all
the generated data and perform some post-processing actions
described in Section IV in order to detect and label the log
lines which identify the attacks.

B. Variation of attack scenario for each player

Each instance of this scenario is generated from a template
scenario. For this experiment, the CERBERE template sce-
nario consists of three hosts named zagreus, hades and melinoe
inside a local network. This scenario is meant to be played
linearly: information stored on zagreus is required to progress

Zhttps://github.com/cmu-sei/GHOSTS
3https://www.malizen.com/

CERBERE scenario

to hades for instance. Zagreus and hades are both vulnerable
to procedures linked to misconfigured websites, while melinoe
hosts a PostgreSQL database. The goal of the attacker is to
reach this database, which hosts a flag.

A graphical representation of the overall scenario is avail-
able in the Figure 2. Attacker positions are represented as
tuples of (host, user), and transitions are labelled with the
required MITRE ATT&CK technique*. As previously men-
tioned, instances of this scenario will differ on a procedural
level. Table I details available procedures for each technique.
All credentials were also randomized for each instance. The
second part of the table, detection rules, will be detailed later
in Section III-D.

This experiment was designed to be played by a group
of participants with heterogeneous attacker skill levels and
in a short period of time (two hours). In order to make it
possible for every participant to make some progress while
maintaining some depth for the more skilled participants we
chose to make CERBERE a network of a few hosts with varied
challenges, as opposed to a single but more resilient host.
Furthermore, in order to increase the range of difficulty offered
by CERBERE, instances of the scenario will differ from each
others. Indeed, each procedure may have several variations
of different difficulties. For instance, in order to perform
privilege escalation on a host, one instance might present
a vulnerability in its sudo package [8], while the other is
vulnerable to the pwnkit exploit [9]. It is to be noted however
that the overall path of attackers, i.e which sessions they
log in and how they progress through the network, remains

“https://attack.mitre.org/

consistent throughout all instances. An additional benefit is
that participants cannot easily copycat actions of others. To
implement these variations, we used the URSID automatic
vulnerable architecture generation tool [10], which aims to
convert high-level scenario descriptions into low level virtual
host configuration files.

Finally, we required a combination of network and system
activities in order to get valuable logs for the blue team. This
remark led to the design of an attack scenario where attackers
gain shell accesses by exploiting website vulnerabilities but
also use system vulnerabilities to get new credentials or roles.

Finally, we describe globally the expected solution of this
scenario:. The red player should:

o Exploit the website hosted on zagreus by performing a
command injection in a poorly configured search bar.
Two levels of difficulty are available: some instances limit
how many characters could be inputted in the search bar,
leading to attackers having to use the upload function of
the website to execute their script instead of typing it
directly. This exploit leads them to obtain a shell as user
alice.

o Perform a privilege escalation by exploiting one of the
two vulnerabilities [8], [9] (randomly selected).

o Harvest credentials present in the superuser directory
(which requires root access). Those credentials hint that
they are linked to the host hades.

e Use those credentials to log as an admin on a Django
website hosted on hades. Once this is achieved, acquire
an SSH key stored in the /notes directory of the website,
which hints that this key is linked to a user named
superuser.

o Use this key to log in through SSH as superuser. The IP
could be found by installing network scanning tools on
the host zagreus using sudo privileges.

« Harvest credentials again, which hints that they are linked
to the host melinoe.

« Use those credentials to access the PostgreSQL instance
on melinoe and recover the flag, thus ending the scenario.

C. Exercise monitoring at multi-level

During the CERBERE exercise, the activities of the red
teamers are monitored at three different levels. First, all their
actions at the browser level are recorded such as filling and
sending forms, clicking buttons, checking cookies values.
Second, we monitor their actions at operating system level,
especially actions occurring in a shell session. Finally, network
traffic is recorded in the virtual environment.

a) Browser monitoring: To monitor the attacker activity
at browser level, we took advantage of the Chrome Devtools
Protocol (CDP). This protocol is an interface that allows to
instrument, inspect, debug and profile Blink-based browsers
such as Chromium and Google Chrome. We developed a
tool to connect with the CDP and a script that we injected
directly in the browser to record what CDP did not provide
us. More precisely, we recorded the Page and Network domain
of the CDP to gather navigation information and pages events

induced by pentester actions. Then, the injected script captures
information that help us differentiate those events, that is
which button was clicked or which form was submitted and
with which inputs, as inputs may be transformed by Javascript
before being sent. The script was also responsible for tracking
cookie changes manually done by the pentester as no event
from the CDP allows it. All gathered information was pro-
cessed and recorded in a Mongodb database as specific actions
of the attacker: accessing a web page, sending an HTTP form,
setting cookies, managing alerts, clicking elements and the
different API calls that may come with it.

b) System-level monitoring: We used the auditd tool
for monitoring the three GNU/Linux hosts. The logged data
includes sensitive file access permissions (read, write, exe-
cute), user commands that modify critical system components,
services related to time management, automation, and connec-
tions. Additionally, we incorporated information monitoring
redundancy by logging all system calls of specific types, such
as read/write operations and memory allocations for all the
processes already monitored. That way, even if an attacker
messes with the logging functionality of a process at the
application level, the information will still be logged at the
system level.

c) Network monitoring: We used Suricata to collect the
network traffic. This open-source software enables us to collect
the data by adding alerts, statistics, and choices on storage. We
gather data in pcap format, recording all the exchanges, and
then we add a step to transform data in the netflow format to
have a condensed version of the data. For devops reasons, we
have such monitoring in all machines in the scenario.

III. EXPERIMENTS WITH CERBERE

15 instances were generated on a single server of 36 cores
and 80 GB of RAM. Each instance had five hosts in total:
zagreus, hades, melinoe, the gateway host and the Suricata
host. For the first phase of the exercise, there were 13 partici-
pants. They were given roughly one hour to succeed is as many
exploits as possible due to logistics constraints, however, since
the instances were available through the Internet we let them
continue the attacks for as long as they wanted. For the blue
team phase, 9 participants investigated the logs for one hour
each as well. It is interesting to note that red team exercise
being more common than blue team exercises, we can observe
more appeal for the first phase.

A. Red team experiment

Since participants required remote access to the instances
- as they were all working on their personal computer -
all hosts were made available through the Internet. Their
entry point was however only accessible through specific
URLSs with custom port, in order to avoid the instances being
compromised by attackers outside the experiment connecting
to the port 80. This was achieved by carefully configuring
network rules, a custom DNS server and a gateway host used
by participants to be connected to the Internet.

The first phase of the exercise was the red team exercise.
We requested that the participants come with Docker installed
on their computer so that we can record actions coming from
the Chrome web browser. Then each participant was given a
URL pointing to a specific instance to attack. This way, the
attacks performed by one participant could not disturb others.
Participants started the exercise with very limited knowledge
of the architecture they were attacking.

Participants were told that three hosts are involved in total.
We gave them two URLSs: one pointing to the website hosted
by their specific zagreus host, and one for hades. They were
instructed to first start with zagreus, and only move on to hades
when they find direct clues about how to attack it. This was
done due to our short time constraints for the experiment (2
hours), in order to avoid participants spending too much time
trying to brute-force hades. Hints were occasionally provided
to struggling participants in order to improve their learning
experience.

B. Blue team experiment

Following the first phase of the exercise, we organized a
second phase consisting of a blue team exercise. For this part
of the project, each participant was given access to a log
investigation platform. This platform allows the visualization
of the data from the first phase. It aggregates the fields
contained inside each line of log in order to visualize them
using various charts. It helps in getting a better idea of the data
while allowing the analyst to easily spot the abnormal values.
Once the platform as well as the context of the exercise were
presented to the participants, they were each given one hour to
investigate and find as many steps of the scenario as possible.

The result of these investigations are stored under the shape
of user action and associated context. Because this data is very
specific to the graphical tool, it would be useless to publish the
raw data associated to user’s actions. Nine investigations were
conducted, for a total of 2706 user actions recorded, allowing
us to map exactly the progress of every analyst during the blue
team part of the exercise. This exercise helps to evaluate the
quality of the data recorded from a security standpoint.

C. Data quality

We manually investigated the data collected during the two
exercises for all participants. Our goal is to be able to post-
process the logs to quantify 1) how many steps of attacks have
been achieved by a red teamer; 2) how many steps of attacks
have been correctly investigated by blue teamers. This post-
processing is presented in the next section and requires that
the relevant information have been correctly logged.

When building our post-processing program, we observed
the following points about the data. No logs are missing
for one of the steps of attacks, whatever the variation is.
Nevertheless, the nature of the log is heterogeneous and
contains format variations. Despite monitoring systems or
networks with only one probe each, we gather data that is
very different and difficult to mix. The system data coming
from auditd was notably complicated to explore and reuse as

TABLE II
SUCCESSFUL ATTACKS (RED TEAM) AND DISCOVERIES (BLUE TEAM)
Red team Blue team
exploitation discovery
[Total nb players 13 7
Scenario Mitre ATT&CK
step Technique
To T1190 7 5
T T1068 7 5
T2 T1155 7 3
T3 T1190 4 2
Ty T1021 3 2
Ts T1552 3 2
Te T1021 3 0

is due to a lack of standardization in the data. Some log lines
were recorded over multiple lines some not. Sometimes certain
fields seemed to contain one nature of data but depending on
the captured log line, this nature could change. However, all
the important information to detect and understand the attack
is present, it is even redundant and can be followed through
the flow of the attack.

D. Discussion

This section discusses how players behaved during the red
and blue team exercises. In particular, we explain the reasons
behind some players failing to complete the whole red team
scenario. As presented in Figure 2, the scenario is composed
of 7 steps and 6 different attack techniques. In Table II we
report how players progressed in both parts of the exercise
and we explain below the reasons why some red and blue
teamers could not succeed in completing their variation of the
scenario.

The first two columns of Table II shows which step and
technique is related to the scenario for further technical ref-
erences. The third column shows how many red teamers have
managed to successfully conduct each step of the scenario.
The fourth column shows how many blue teamers uncovered
this step of the attack during the investigation.

Regarding the red teamers, it appears that the first exploit
(finding a command injection within a website in order to
create a reverse shell) was a roadblock for almost half of the
participants. This does track with the expected difficulty of the
scenario, as this website had a decent amount of functionalities
and pages not relevant for the intended exploit, which could act
as diversions for the participants. Once the attackers found the
location of the command injection, they still had to properly
initiate a reverse shell. Depending on the scenario variation,
the difficulty of this step may vary because some variations
required to upload and update the execution permission for
their payload. The combination of (relative) difficulty and
multistep nature of the exploit may thus explain this result,
and it appears that attackers who managed to pass this step
had no issues exploring the rest of the zagreus host.

The next roadblock appears to be accessing the second
host, hades. Logging as superuser is not trivial because it
required several steps. First attackers had to properly reuse the

pO: attacker, superuser

To: Exploit Public-Facing Application
Website with command injection (medium)
0

Executed at: [16:57:20]
I pl: zagreus, alice I

r1: Exploitation for privilege escalation
Vulnerable pkexec process

Executed at: [17:15:24]

p3: hades, bob

) 4

Tp: Unsecured Credentials
p2: zagreus, superuser Passwords in .bash_history
Executed at: [17:22:24]

13: Exploit Public-Facing Application
Django directory traversal rewarding ssh key (ubuntu)

T%: Remote Services
SSH Access from key

Executed at: [17:56:20]

T5: Unsecured Credentials
Passwords in txt file

Executed at: [17:57:08]

p4: hades, superuser

Tg: Remote Services
SQL server rewarding a flag
Executed at: [18:00:20]

\ 4

l p5: melinoe, postgres I

Fig. 3.

Attack path through instance 6. Red transitions were detected using Zircolite rules. Transition 3 for attacker position (hades, bob) is not detectable

through auditd logs, but the linear structure of the scenario ensures that it was compromised as well.

credentials acquired in zagreus on the website hosted on hades,
successfully find an SSH key hidden in one of the pages,
format it properly, then use it from their reverse shell acquired
in the host zagreus. Time constraints also started ticking at
this step for participants who spent a long time on the first
host. In particular, we observed in the logs that the volatile
and primitive nature of the shell acquired on zagreus (through
the combination of a reverse shell + exploit) meant attackers
sometime accidentally closed it and had to redo the previous
steps. Finally, attackers who managed this step appeared to
have no trouble with the last step, as it simply required to
gather credentials similarly to previous steps and to connect
to a Psql service, whose IP is found by scanning the network.

We manually analyzed the logs to understand the reasons
behind each missing step of an attack. 2 transitions (both for
the initial website exploitation 70) were undetected as the
attackers used unorthodox methods. For instance for procedure
m9, we expected attackers to upload a reverse-shell script
using the website image upload function and execute it.
However, one of the participants instead recognized that the
host naturally had python installed and used that to directly
download and execute a script instead. In these two cases the
red teamer found an alternative method to the one we prepared
for in order to exploit the vulnerability. If we refer to Table I, it
means the detection rules corresponding to these exploits were
not triggered and the attackers evaded our monitoring. A most
interesting result concerning the management of attack surface
during the exercise. Nonetheless, in these cases, we assumed
that the attacker achieved initial access anyway when the next
steps were found in the logs: for instance acquiring credentials
as (zagreus, superuser) requires the attacker to have accessed
machine zagreus in the first place. The Figure 3 showcases one
of those results for the instance number 6. Complete results
for all participants are available in the dataset, as presented
later in Section IV.

Regarding the blue teamers, the first thing we noted during
the analysis of the data is that not all blue teamers reported
on their results as was advised during the presentation of the
tool. Unfortunately, two out of the nine participants did not
register any findings and thus could not be included in these

results. However, we get very interesting feedbacks from the
seven remaining participants. First, we note that the web part
of the scenario is the most commonly discovered step of the
scenario. This can be explained because such attacks produce
a lot more noise in the logs and because analysts are used to
search for attackers coming from the Internet and are likely
to search that part of the dataset first. Another interesting
observation we made is that the participants discover groups
of steps rather than a single one. Almost all the participants
that have made a first discovery were able to discover directly
related steps. Directly related steps are the main parts of the
scenario: Ty, 11,15, T3, and Ty, Ts,Ts. The difficulty lied in
jumping from phase to phase since hopping from one host to
another was not directly linked in the scenario. A final remark
is that no participant was able to find the last exploit: the
database access. This can be explained by the fact that it was
done legitimately since the attackers had legitimate credentials
at that point. Indeed, the last access to the database on the third
machine (74) is done using legitimate credentials found during
the previous step. Added to the time constraint we put on the
exercise, no participant reached this last discovery.

IV. CERBERE DATASET

With this article, we provide the CERBERE dataset®. The
dataset contains the raw logs from red teamers and the ground
truth about these logs: we automatically labelled the logs
to spot the lines that are related to successful attacks of
the red teamers. Our goal is to make available a dataset
that can be reused in new works related to attack detection.
Additionally, the CERBERE dataset also contains the scenario
for ensuring the reproducibility of the exercise using the
URSID generation tool [10]. The monitoring configuration is
also available, enabling future work to extract logs similarly to
what has been done during our experiments. As presented in
Table I, we designed detection rules to decide if a procedure
was successfully employed by an attacker. Depending on the
procedure, a detection rule may be implemented at different
log levels: system, network, browser. This section discusses
the design of these rules to obtain ground truth labels.

Shttps://gitlab.inria.fr/cidre-public/cerbere-dataset/

A. System logs labelling

System logs created by auditd were extracted from every
instance at the end of the exercise. Detection rules have
been designed using Zircolite [11], a python SIGMA-based
detection tool. These rules were manually crafted based on our
personal experience and log results from playing the scenario
and overall rely on the detection of specific commands or
access to files corresponding to the evolution of the attacker
in the scenario. For instance, exploiting CVE-2019-14287 [8]
requires the attacker to use the command sudo with either the
flags -u#-1 or -u#4294967295. Since our auditd was configured
to register this kind of command executed by users, we can
detect the exploitation of this specific CVE with the following
rule :

SELECT * FROM logs WHERE ((type = 'EXECVE'))
— (al LIKE '-u#-1%' OR al LIKE '-u#4294967295")

AND

This rule is similar to the ones present in professional security
projects such as SIGMA [12]. Every possible procedure -
with the exception of the ones associated to 74 as it was not
detectable through system logs.

These rules were then used on all extracted system logs
and correlated with the description of each scenario in order
to evaluate the participant’s path through each of them. In
total, out of the 15 instances planned for this exercise, 7 show
at least a sign of compromise and 3 were entirely played
out, meaning that the attacker reached the last host. Among
these instances, a total of 28 transitions were detected using
our rules, out of the 30 we expected to recognize based on
attacker performance at the end of the exercise. The 2 missing
were due to unexpected attacker actions as discussed before
in Section III-D.

B. Network logs labelling

Network traffic recorded by Suricata was extracted in pcap
and netflow format to give two detailed traffic levels. The
pcap format provides a complete version of the traffic within
packets. In contrast, the netflow structure offers a condensed
version of traffic gathered in communications. These com-
munications contain only meta-data information (without the
payload). This format is studied in the intrusion detection field
as it can reduce the quantity of data and eliminate the payload,
which could be nonsensical (if encrypted, for example).

We provide ground-truth labels for each packet/communica-
tion. Each packet/communication that belongs to a successful
attack is labelled as an attack, with the corresponding MITRE
ATT&CK techniques (Table I). The other packets/communica-
tions that do not participate in a successful attack in a scenario
are considered as attempts. For each instance, the packets/com-
munications of a successful attack are identified with the attack
path’s timestamps and a baseline. The timestamp comes from
the previous labelling process of system logs (Section IV-A)
and indicates where to look in the network logs. The baseline
is a pcap/netflow file that recorded a perfect player playing
the instance, thus generating the minimal number of network

lines for completing the scenario. The baseline helps us to
review manually and decide if the found network logs should
be labelled or not.

For example, let us focus on instance 7 and machine
melinoe. We want to identify the access to the SQL server
of the procedure T1021. The technique for procedure T1021
occurs at 7¢=15:45:03 for the baseline. For instance 7, as seen
in Figure 5, we deduce from the previous analysis of system
logs that it happened at 17:33:36. With theses timestamps, we
compare the two lines for pcap files as represented in Figure
4. We also can compare netflows as represented in Listing 1
and Listing 2. The attack label is finally manually added in
the netflow of Figure 4 because ports and protocols obviously
match, IP source and destination are the same and the length
of the flow is comparable.

{
"StartTime": "15:45:03.794101",
"Dur": 0.009609,
"Proto": "tcp",
"SrcAddr": "192.168.56.3",
"Sport": 39486,
"Dir": "->",
"DstAddr": "192.168.56.4",
"Dport": 5432,
"State": "RST",
"sTos": O,
"dTos": O,
"TotPkts": 30,
"TotBytes": 4014,
"SrcBytes": 1651,

Listing 1: Example of netflow from baseline

"StartTime": "17:33:36.832586",
"Dur": 0.02053,

"Proto": "tcp",
"SrcAddr": "10.35.56.12",
"Sport": 55976,

"Dir": "->",

"DstAddr": "10.35.56.13",
"Dport": 5432,

"State": "RST",

"sTos": O,

"dTos": 0,

"TotPkts": 27,
"TotBytes": 4239,
"SrcBytes": 1875,
"Label": "Attack",

"Label description": "T1021"

Listing 2: Example of netflow for the instance 7

C. Browser logs labelling

Attacker’s actions were recorded by the browser monitor-
ing tool into a Mongo database. We recorded the actions
performed in the web browser by players and the visited
web pages. Nevertheless, the labelling uses only the recorded
actions. In this labelling process, some attack steps can be
labelled and others cannot. Indeed, if the attacker setups a
reverse shell even not ciphered, the new established connection
is external to the web browser. As a consequence, only the
command injection of step TO.

3,.. 192.168.56.3 192.168.56.4 TCP 68 39486 - 5432 [ACK] Seq=1 Ack=1 Win=64256 Len=8 TSval

15:45:03,.. 192.168.56.3 192.168.56.4 PGSQL 76 >
i 192.168.56.3 TCP 68 5432 + 39486 [ACK] Seq=1 Ack=9 Win=65152 Len=@ TSval
192,168.56.3 PGSQL 69 <
192.168.56.4 TCP 68 39486 -+ 5432 [ACK] Seqe9 Ack=2 Win=64256 Len=@ TSval
192.168.56.4 TLSv1.3 351 Client Hello
192.168.56.3 TCP 68 5432 + 39486 [ACK] Seq=2 Ack=292 Win=64896 Len=0 TSv.
192.168.56.3 TLSv1.3 167 Hello Retry Request, Change Cipher Spec
3, 192.168.56.3 192.168.56.4 TCP 68 39486 » 5432 [ACK] 5eq=292 Ack=101 Win=64256 Len=0 T
15:45:83,.. 192.168.56.3 192.168.56.4 TLSv1.3 398 Change Cipher Spec, Client Hello
15:45:03,.. 192.168.56.4 192.168.56.3 TCP 68 5432 - 39486 [ACK] S5eq=101 Ack=614 Win=64540 Len=8 T

66 55976 = 5432 [ACK] Seqel Ack=l Win=64256 Len=8 TSval:
74 >
66 5432 + 55976
67 <
66 55976 + 5432

349 Client Hello

36- 10.35.56.12
17:33:36- 10.35.56.12
17:33:36~ 10.35.56.13
17:33:36- 10.35.56.13
17:33:36- 10.35.56.12
17:33:36. 10.35.56.12

[ACK] Seq=1 Ack=9 Win=65152 Len=@ TSval:

[ACK] Seq=9 Ack=2 Win=64256 Len=@ TSval:

17:33:36- 10.35.56.13 10.35 TCP 66 5432 = 55976 [ACK] Seq=2 Ack=292 Win=64896 Len=0 TS
17:33:36. 10.35.56.13 10.35.56.12 TLSv1.3 165 Hello Retry Request, Change Cipher Spec
17:33:36- 10.35.56.12 10.35.56.13 TCP 66 55976 + 5432 [ACK] Seq=292 Ack=101 Win=64256 Len=0 T!

17:33:36- 10.35.56.12
17:33:36. 10.35.56.13

388 Change Cipher Spec, Client Hello
66 5432 + 55976 [ACK] Seq=101 Ack=614 Win=64649 Len=o T.

Fig. 4. Wireshark screenshot of melinoe pcap (left: baseline, right: instance 7) In instance 7: IP 10.35.56.13 is melinoe, IP 10.35.56.12 is Hades. In baseline:

IP 192.168.56.4 is melinoe, IP 192.168.56.3 is Hades.

Y

p4: hades, superuser

Tg: Remote Services
SQL server rewarding a flag
Executed at: [17:33:36]

Fig. 5. Attack path extract from instance 7.

Similarly to network logs, we consider malicious the suc-
ceeding actions that lead to the exploitation of the command
injection. The other lines of the logs were labelled as attempts
because it corresponds to research of vulnerabilities, attempts
of attacks or documentation. Depending on the scenario, the
command injection was either directly exploitable or needed
to be prepared by uploading a binary and executing it. As a
consequence, depending on the variation of scenario, one or
two lines are labelled as a successful attack.

A labelled action is a JSON object that contains the type of
action, the argument of the action and our label. For example
in Listing 3, the JSON object shows the executing of an
injection command using a call to the python interpreter. We
can observe the script used by the attacker in the argument of
the command.

V. CONCLUSION

Throughout this paper we have presented the CERBERE
cybersecurity exercise and its resulting dataset. CERBERE has
the particularity of offering both a red team and a blue team
exercise with a variety of difficulty levels. The scenario and
architecture of this exercise are given and can be modified
for generating a new playground. Three types of logs can
be automatically extracted from a played exercise which is
particularly for intrusion detection evaluations.

Along with the exercise itself, we provide the dataset
resulting from the first edition of the exercise. This dataset
contains the logs of the 13 red teamers for the three types of
captured logs. Additionally, we labelled the dataset after the

"at_time_stamp": "1681310750.539",

"by_user": "649984c67£6052c4c05c9486",
"from_page": "649984c07£6052c4c05c9484",
"type": "SendHTTPForm",
"args": |
{

"name": "inputs",

"value": {

"g": "hop | python3 -c \"import socket,os,pty;

s=socket.socket (socket .AF_INET, socket.
SOCK_STREAM) ; s.connect ((\\\"7.tcp.eu.
ngrok.io\\\",11162));o0s.dup2 (s.fileno(
os.dup2(s.fileno(),1);o0s.dup2(s.fileno(
pty.spawn (\\\"/bin/sh\\\")\""

0

,0)
)i 2) i

"name": "xpath",
"value": "/html/body/main/div/div/div[2]/div[1l
/div[2]/form"
}
1,
"Label": "Attack"

}

Listing 3: Example of web action for a command injection

exercise in order to spot the ground truth about line logs that
are successful attacks and make it as usable as possible for
future research, regardless of the application.

In the future, we wish to work on one particular area that
would help us make the exercise even more realistic: fake life.
We have implemented basic behaviours for this edition, but it
was easy to spot and get around.

REFERENCES

[1]1 S. Floyd and V. Paxson, “Difficulties in simulating the internet,”
IEEE/ACm Transactions on Networking, vol. 9, no. 4, pp. 392-403,
2001.

I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization,”
in ICISSP, 2018.

M. Lanvin, P.-F. Gimenez, Y. Han, F. Majorczyk, L. M¢, and E. Totel,
“Errors in the cicids2017 dataset and the significant differences in
detection performances it makes,” in Risks and Security of Internet
and Systems, S. Kallel, M. Jmaiel, M. Zulkernine, A. Hadj Kacem,
F. Cuppens, and N. Cuppens, Eds. Cham: Springer Nature Switzerland,
2023, pp. 18-33.

Canadian Institute for Cybersecurity, “Canadian institute for
cybersecurity datasets,” 2023. [Online]. Available: https://www.unb.ca/
cic/datasets/index.html

R. Uetz, C. Hemminghaus, L. Hackldnder, P. Schlipper, and M. Henze,
“Reproducible and adaptable log data generation for sound cybersecurity
experiments,” in Annual Computer Security Applications Conference,
2021, pp. 690-705.

[2]

[3]

[4]

[5]

[6]

[7]
[8]

Z. C. Schreuders, T. Shaw, M. Shan-A-Khuda, G. Ravichandran,
J. Keighley, and M. Ordean, “Security scenario generator (SecGen): A
framework for generating randomly vulnerable rich-scenario VMs for
learning computer security and hosting CTF events,” in 2017 USENIX
Workshop on Advances in Security Education (ASE 17). Vancouver,
BC: USENIX Association, Aug. 2017. [Online]. Available: https://www.
usenix.org/conference/ase 1 7/workshop-program/presentation/schreuders
G. Engelen, V. Rimmer, and W. Joosen, “Troubleshooting an intrusion
detection dataset: the CICIDS2017 case study,” in SPW, 2021, pp. 7-12.
N. L. of Standards and Technology. (2019) Cve-2019-14287. [Online].
Available: https://nvd.nist.gov/vuln/detail/CVE-2019- 14287

[9]
(10]

[11]

[12]

——. (2021) Cve-2021-4034. [Online]. Available: https://nvd.nist.gov/
vuln/detail/cve-2021-4034

P-V. Besson, V. Viet Triem Tong, G. Guette, G. Piolle, and
E. Abgrall, “Ursid: Using formalism to refine attack scenarios
for vulnerable infrastructure deployment,” 2023. [Online]. Available:
https://arxiv.org/pdf/2303.17373.pdf

wagga40. (2021) Zircolite. [Online]. Available: https://github.com/
waggad0/Zircolite

F. Roth. (2019) Sudo privilege escalation cve-2019-14287. [Online].
Available: https://github.com/SigmaHQ/sigma/blob/master/rules/linux/
process_creation/proc_creation_Inx_sudo_cve_2019_14287.yml

