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Abstract

Myeloproliferative Neoplasms (MPNs) are hematological malignancies that result from acquired driver
mutations in hematopoietic stem cells (HSCs), causing overproduction of blood cells and an increased
risk of thrombo-hemorrhagic events. The most common MPN driver mutation affects the JAK2
gene (JAK2V 617F ). Interferon alpha (IFNα) is a promising treatment against MPNs by inducing
a hematological response and molecular remission for some patients. Mathematical models have been
proposed to describe how IFNα targets mutated HSCs, indicating that a minimal dose is necessary for
long-term remission. This study aims to determine a personalized treatment strategy. First, we show
the capacity of an existing model to predict cell dynamics for new patients from data that can be easily
obtained in clinic. Then, we study different treatment scenarios in silico for three patients, considering
potential IFNα dose-toxicity relations. We assess when the treatment should be interrupted, depending
on the response, the patient’s age, and the inferred development of the malignant clone without IFNα.
We find that an optimal strategy would be to treat the patients with a constant dose so that the
treatment could be interrupted as fast as possible. Higher doses result in earlier discontinuation but
also higher toxicity. Without knowledge of the dose-toxicity relationship, trade-off strategies can be
found for each patient. A compromise strategy is to treat patients with medium doses (60-120 µg/week)
for 10-15 years. Altogether, this work demonstrates how a mathematical model calibrated from real
data can help build a clinical decision-support tool to optimize long-term IFNα therapy for MPN
patients.

Significance statement

Myeloproliferative Neoplasms (MPNs) are chronic blood cancers. Interferon alpha (IFNα) is a promis-
ing treatment with the potential to induce a molecular response by targeting mutated hematopoietic
stem cells. MPN patients are treated over several years, and there is a lack of knowledge concerning
the posology strategy and the best timing for interrupting therapy. The study opens avenues for ra-
tionalizing how to treat MPN patients with IFNα over several years, promoting a more personalized
approach to treatment.
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1 Introduction

BCR-ABL negative myeloproliferative neoplasms (MPNs) are hematological malignancies that include
essential thrombocythemia, polycythemia vera and primary myelofibrosis leading to overproduction
of myeloid cells (red cells, platelets and granulocytes). These diseases are clonal due to the expan-
sion over decades of a hematopoietic stem cell (HSC) that has undergone the acquisition of a genetic
abnormality [Williams et al., 2022, Van Egeren et al., 2021, Hermange et al., 2022]. Following homol-
ogous recombination, homozygous malignant clones can develop in parallel to heterozygous clones.
The mutations affect JAK2, calreticulin (CALR), and the thrombopoietin receptor (MPL) genes, with
JAK2V 617F being the most prevalent in more than 95% of polycythemia vera and around half of es-
sential thrombocythemia and primary myelofibrosis. All these mutations are gain-of-function leading
to constitutive activation of the JAK2/STAT pathway [Vainchenker et al., 2011].
The thrombo-hemorrhagic complications are the main comorbidities even if the transformation into
secondary leukemia of dismal prognosis occurs in a significant fraction of cases, between 5% to 20%.
The clinicians generally treat MPN patients to normalize the blood parameters and/or to improve
symptoms, mainly using aspirin, cytoreductive treatment (hydroxyurea) and JAK1/2 inhibitors (rux-
olitinib and inrebic). However, neither of these treatments impacts the malignant clone selectively, and
the only curative option is bone marrow allogeneic transplantation in the most severe myelofibrotic
patients. In this context, Peg-IFNα2a (IFNα) is a promising treatment. When used, IFNα is mainly
a second-line therapy. It harbors high rates of hematological responses in JAK2V 617F MPN patients
and some molecular responses, including high molecular responses (HMR), even after treatment ar-
rest [Mascarenhas et al., 2022, Gisslinger et al., 2020, Kiladjian et al., 2008]. In clinic, the molecular
response refers to measuring the variant allele frequency (VAF) in mature cells and quantifying how
the VAF decreases over the therapy. Despite these positive effects, some JAK2V 617F MPN patients
do not respond to IFNα, and HMR is only observed in ≈20% of JAK2V 617F patients. Long-term
treatment of 2-5 years is required to obtain HMR. Additionally, toxicity increases with the IFNα
dose [Yamane et al., 2008], resulting in the choice of dose de-escalation in many patients after one
year, potentially jeopardizing the success of long-term HMR [Mosca et al., 2021]; all of which result in
decision-making challenges for clinicians. Therefore, this therapy could be improved and optimized to
increase the molecular response while limiting toxicity.
Previously, it has been shown that the IFNα targets the JAK2V 617F HSCs in a preclinical mouse
model [Hasan et al., 2013, Austin et al., 2020, Mullally et al., 2013]. Due to the difficult access to hu-
man HSCs by biological methods, the effect of IFNα on the mutated human HSC dynamics was investi-
gated using a tailor-made compartmental mathematical model calibrated with data from a prospective,
observational, and longitudinal cohort of treated patients. Our objective with this model was to quan-
tify not only the molecular response among mature cells, but also the response at the stem cell level.
We inferred that the IFNα slowly targets human JAK2V 617F HSCs, and the higher the dose, the better
the response [Mosca et al., 2021]. The latter mathematical model was then extended to account for the
dose variations during the treatment when the mutated HSCs were targeted [Hermange et al., 2021].
This model is used in this present work to develop a clinical decision-support tool for predicting the
response of MPN patients to IFNα and optimizing their long-term therapy. First, we verify that
we can get accurate predictions from the model, clinical observations from a new patient, and prior
knowledge from a cohort of patients. Then, we explore several therapeutical strategies to find which
one would minimize the IFNα toxicity until the end of the treatment. Finally, combining the previous
mathematical model with another one describing how JAK2V 617F mutated HSCs - when not treated -
expand over time [Hermange et al., 2022], we assess when the therapy could be interrupted depending
on how the patient responds to IFNα, their age, and the proportion of homozygous and heterozygous
JAK2V 617F HSCs (that is, the zygosity).
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2 Materials and Methods

2.1 Experimental and clinical data

The experimental and clinical data used in this study are those of 19 JAK2V 617F patients from [Mosca et al., 2021].
For each patient of this cohort, we have:

• Their age at the beginning of the treatment.

• Measurements of the VAF in mature cells (in granulocytes) at different time points during the
treatment. We define them as clinical data since these observations are molecular biology data
obtained during routine clinical exams.

• Observations of the clonal architecture (that is, measurement of the heterozygous and homozy-
gous Clonal Fractions - CF) at different time points during the treatment. We define them as
experimental data since they are obtained in biology research laboratories.

• The variations of the dose they received over time.

We display the experimental and clinical data of patient #32 and those of each patient (Fig. 1 and
Supp. Fig. A.1-19). We denote by D the dataset for all 19 patients (see Supplemental Methods A:
Data and observation model).

Figure 1: Longitudinal observations of patient #32. The x-axis corresponds to the time from the start of the
IFNα therapy. Clinical data consist of measurements of the VAF in mature cells (black squares), experimental
data consist of measurements of the heterozygous (green circles) and homozygous (blue triangles) CF in
progenitor cells. The shaded beige areas correspond to the weekly dose of IFNα received over time.

2.2 Predicting the long-term dynamics

The model studied in [Mosca et al., 2021] (see Fig. 2 and Supplemental Methods B: Model) was
calibrated from observations on 19 MPN patients having the mutation JAK2V 617F . A hierarchical
Bayesian inference method was used to estimate the parameters of each individual in addition to a

population effect, thus reducing the risk of overfitting. Then, the minimal IFNα dose d
(i)
inf required

for a patient i to reach long-term remission was estimated (Supp. Methods C.2.4). Our objective is
now to demonstrate how the model could be used as a clinical decision-support tool. In clinical rou-
tines, trimestrial measurements of the clonal architecture of progenitor cells are not feasible. However,
the clonal architecture of heterozygous and homozygous mutated immature cells (i.e. the measure-
ment of CF) yields essential information which determines the response to the treatment as shown
in [Tong et al., 2021]. In terms of cost, time, and human resources, it can be considered reasonable
to measure the CF twice for each patient: one just before they start their therapy and one afterward
(generally after about 300 days of therapy; we explore the impact of this choice in the Supplemental
Methods F: Estimating the best timing for measuring the clonal architecture). The VAF in mature
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Figure 2: Schematic representation of the model for one cell population (for example, mutated JAK2V 617F

heterozygous cells). Quiescent HSCs can exit quiescence at a rate γNq(t) with Nq(t) the number of quiescent
HSCs at time t. Active HSCs can become quiescent at a rate βNa(t) or be recruited to divide at a rate
αNa(t) with Na(t) the number of active HSCs at time t. In the latter case, an HSC could divide symmetrically
- producing two HSCs - with probability (w.p.) p2, asymmetrically w.p. p1, or produce two immature cells
(progenitors) w.p. p0. ∆ = p2−p0 corresponds to the balance between symmetrical and differentiated division.
Progenitor cells expand with a rate constant κi and become mature cells with a rate constant δi. Mature cells
expand with a rate constant κm and die at a death rate δm.

cells can easily be measured during routine clinical follow-up.
If the model were to be used by physicians, then we would have to evaluate its capacity to predict cell
dynamics for new patients for whom such data can be easily obtained in clinical routines. Yet, we do
not have access to patients outside the cohort of Mosca et al. to study the predictive capabilities of the
model and then to study different dose strategies. Therefore, we choose to consider our 19 JAK2V 617F

mutated MPN patients from which we will remove one individual (leave-one-out) and for whom we
will perform data assimilation (Fig. 3-i and Supplemental Methods C: Parameter estimation).
We denote D−i = D \ D(i) the dataset for all patients except individual i (Table 1 summarizes the
main notations).

In this article, we will consider three individuals who were each in turn excluded from the cohort:
patients #12, 18, and 32. These three patients are chosen because several observations of their response
before t = 300 days of treatment are available, which is only the case for a few patients in the cohort
(see Supp. Methods A). Furthermore, each of the three patients exhibits a distinctive type of response
to IFNα, making their study interesting: patient #12 has mostly homozygous cells, and they seem
to be slowly but steadily targeted over the treatment; patient #18 presents both homozygous and
heterozygous mutated cells initially, in the same proportions, and only the homozygous clone is targeted
during the treatment; and patient #32 responds with a so-called ”bell curve”, meaning that their VAF
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Notation Meaning
D Dataset of the 19 considered JAK2V 617F patients
i Index of the patient
t Time
T Assimilation time (until which observations are considered for calibrating the model)
τ Patient’s age at which the treatment could be interrupted

D(i) Dataset of patient i
D−i Data of all patients except patient i

D(i)
T Observations of patient i, before time T , used for calibrating the model

D(i)
c Observations of patient i not used for the model calibration
d Normalized dose of IFNα (between 0 and 1; 1 corresponding to 180 µg/week)

z(d) IFNα toxicity (as a function of the dose d)
M(τ) Amount of IFNα administered over [T, τ ] (when penalizing for high dose)

Table 1: List of the main notations.

and CF first strongly increases at the beginning of the treatment and then decreases.
We run three hierarchical estimation procedures (Supp. Methods C.1) corresponding respectively to
the datasets D−12, D−18 and D−32. Of these three calibrations, we will retain only the estimate of
the population distribution (Fig. 3-ii), that will be used as prior distribution to predict the response
of the left-apart patient i. The progressive inclusion of observations for this patient (through what is
called in Bayesian statistics the likelihood) will allow the updating of the previous distribution (i.e.,
the prior). We refer to this statistical process as ”data assimilation” in this article (Fig. 3-iii) (Supp.
Methods C.2). Let T ∈ {300, 600, 1000} [days] be the times (of assimilation) until which we consider
the observations of patient i. The dataset of patient i used for the model calibration will be denoted by:

D(i)
T . Note that this dataset includes all VAF measurements before time T and only two measurements

of the clonal architecture. The other observations of the CF among progenitor cells will not be used for
estimating the model parameters. Indeed, in clinical routines, we cannot have repeated measurements
of the progenitor clonal architecture. Thus, we choose to use only some of the observations available
for progenitor cells before the assimilation time to treat the patient’s data as if they were obtained
from realistic processes in clinical routine. We consider the observation of the progenitor CF at the
start of the therapy and about 300 days afterward.
For patient i, for the assimilation time T ∈ {300, 600, 1000}, we will then estimate the posterior

distribution of each parameter from the prior distribution and the observations D(i)
T . The parameters

will then be used to infer the on-treatment dynamics of the VAF in the mature cells as well as the
heterozygous and homozygous CF in the progenitors and the HSCs (Fig. 3-iii).
The confrontation of the predicted values with the observations not used for the model calibration will
allow us to evaluate the quality of the predictions (Fig. 3-iv). The control dataset for assessing the
quality of the predictions will be denoted:

D(i)
c = D(i) \ D(i)

T

This control dataset includes all observations made after time T as well as the observations of the CF
among progenitors that were not used for estimating the model parameters.
To quantify how well the model fits the observations, either those used to estimate the model parameters

(D(i)
T ) or those used as control (D(i)

c ), we will compute the mean square error (MSE) (See Supp.
Methods C.2.5). In particular, we will check how MSEV AF

pred - which confronts the predicted VAF values
to the ones truly observed after the assimilation time T (i.e., not used for the model calibration) -
evolves for higher T values.
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Figure 3: Illustration of the method for predicting the long-term cell dynamics over IFNα therapy. Removing
one patient from the cohort (i), we run a hierarchical Bayesian inference procedure using the data of the
remaining patients (ii). That is, for each model parameter (here, for example, ∆hom), we estimate its probability
density (pdf) for each patient (blue lines) as well as for the patients’ population (black line). The latter will
be retained as prior knowledge. The data D(i) of the excluded patient from the initial cohort consists of VAF
measurements in mature cells (black squares) and CF in progenitor cells, here homozygous CF (blue triangles),
over time t. We also have the information on the dose of IFNα d(t) the patient received (in brown). We split

their dataset into two parts, the first one D(i)
T corresponding to observations before a time T (that we call

assimilation time), and the second one D(i)
c to the observations after that time. Based on the dataset D(i)

T

and the prior obtained from the remaining cohort of patients, we infer the dynamics of the mutated cells on
treatment (iii). The black line corresponds to the dynamics of the VAF, and the blue one to the dynamics
of the homozygous CF. To evaluate the capacity of the model to predict the long-term dynamics correctly,
we compare the model predictions and the control dataset D(i)

c that was not used for estimating the model
parameters.
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Figure 4: Illustration of the method for optimizing the IFNα therapy. Considering the observations for a
patient until time T and their model parameters estimated, we can obtain the dynamics of the mutated cells
(here, for example, the CF of homozygous progenitors in blue) over time t, for a given dose d(t). We can then
consider different therapeutic strategies, that is, different ways d(t) will evolve for t ≥ T (i). Here, for example,
we illustrate a therapeutic strategy that is periodic. We can estimate the dynamics of the mutated cells for
this new posology and assess the time τ when the CF will be low enough so that, after treatment interruption,
the further clonal expansion will not lead to the onset of MPN symptoms before the patient is 90 years old
(ii). Note that the illustration is done considering progenitor cells but that in our calculations, we estimate τ
based on the inferred CF among HSCs. We then consider one scenario for the increase of IFNα toxicity z with
the dose d (here, convex) (iii). Finally, we can compute M(t) for T ≤ t ≤ τ , which describes the amount of
IFNα administered over the time interval [T, t] when penalizing for high doses (iv). The quantity of interest
is M(τ), which we want to minimize across different therapeutic strategies and for which we want to evaluate
the impact of the dose-toxicity relation.
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2.3 Optimizing the therapy

Once we have evaluated the ability of the model to predict the long-term response from data potentially
available in clinical routines, we can explore different therapeutic strategies (§ 2.3.2) and find the
optimal one (Fig. 4). The optimality will be defined as the minimal dose of IFNα administered until
treatment interruption (§ 2.3.1) when penalizing higher doses associated with higher risks of toxicity
(§ 2.3.3). The complete method is presented in the Supplemental Methods E: Optimizing the therapy,
while the focus here is on the most important aspects for understanding the article.

2.3.1 Assessing when to interrupt the treatment

IFNα therapy against MPN is a long-term therapy. It has been proven to induce, in some cases, an
HMR, which is an undetectable level of JAK2V 617F mutated cells in peripheral blood [Kiladjian et al., 2008].
However, we cannot clinically assess whether all mutated HSCs have been completely eradicated and
whether a relapse might occur in the future. JAK2V 617F positive MPN are hematological malig-
nancies that develop over decades before the onset of the symptoms, as shown recently in different
studies [Williams et al., 2022, Van Egeren et al., 2021, Hermange et al., 2022]. It was shown that het-
erozygous (het) JAK2V 617F mutated HSCs, when escaping stochastic extinction, would expand on
average according to the following dynamics [Hermange et al., 2022]:

Ñhet(t) = Ñ0,het exp (shet(t− t0)) (1)

with a fitness estimated to be equal to shet = 20.4%/year, and Ñhet(t) corresponding to the total
number of mutated heterozygous HSCs over time t, during the MPN development in the absence of
IFNα therapy.
The dynamic of the homozygous clonal expansion was not studied in [Hermange et al., 2022]. Here,
we generalize previous findings and assume that the homozygous clone would grow exponentially like
the heterozygous one, but with a higher fitness shom > shet, as shown by [Williams et al., 2022]. We
estimate shom = 1.21× shet (Supp. Methods D.3).
It is further assumed that the clonal expansion given by eq. (1), inferred from individuals before they
received IFNα, will also be valid after they interrupt the treatment. Then, when inferring the CF
of heterozygous and homozygous mutated HSCs from the model, at any time during the therapy, we
could estimate using eq. (1) what would be the future development of the malignant clones after a
treatment interruption at time τ . We can thus deduce the time t > τ at which the VAF among HSCs
would exceed 7.5%. This value corresponds to the classical risk threshold above which it is considered
that there could be a risk of thrombosis or cardiovascular events, that is to say, a reappearance of
the disease [Dupont et al., 2007]. The later this time, the better for the patient. Ideally, the therapy
should be stopped at a time τ so that the relapse does not occur during the patient’s life. In practice,
considering a life expectancy at 65 years old, equal to 90 [Kontis et al., 2017], we will consider inter-
rupting the treatment of a patient at an age τ such that the VAF among HSCs stays below 7.5% when
the patient is under 90.
Thus, the criterion to interrupt the treatment depends on the age of the patients, the way they respond
to the treatment, and their zigosity.
In this study, mutations associated with MPN - such as DNMT3A, TET2, TP53 - which could poten-
tially undergo a clonal expansion independent of the JAK2V 617F clonal dynamics, are not considered.
In the Supplemental Methods D: Interrupting the therapy, we detail the choice of the criterion for
the treatment interruption (Supp. Methods D.1), the model used for describing the clonal expansion
(Supp. Methods D.2), and the estimation of the homozygous JAK2V 617F fitness (Supp. Methods
D.3).

2.3.2 Therapeutic strategies

If we can correctly estimate the model parameters of a new patient (and thus correctly predict their
mutated cell dynamics when they receive the dose d(t) for t ≥ T , with T the assimilation time), we
could explore alternative therapeutic strategies to those currently used by the clinicians. In practice,
clinicians generally increase the dose until they observe a hematological response and then de-escalate
the dose, as it was observed on the cohort of Mosca et al. [Mosca et al., 2021]. However, this strategy
might not be optimal since it can lead to early relapse.
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Figure 5: Illustration of the three different therapeutic strategies we consider. On the left, a constant dose
over time (here, d̄ = 0.6). In the middle, a periodic strategy (here, d̄ = 0.6, L = 4 months, and dinf assumed
to be equal to 0.1). On the right, a decreasing strategy (here, d̄ = 0.8, L = 3 months, and λ = 0.7).

In this article, different treatment strategies are studied, all of which will involve some parameters to
optimize (§ 2.3.3). Then, the strategies can be compared and the best one can be chosen (according
to a criterion that we define later).
The list of strategies studied in this article is far from exhaustive, and we stick to simple ones that
clinicians could employ easily. It is considered that the strategy will be set up from the assimilation
time T to the interruption time τ . Before time T , the clinician might have treated the patient with a
dose-escalation allowing an assessment of the patient’s tolerance to the treatment. During the period
from the start of the therapy to T , measurements are made and will allow the estimation of the model
parameters.
The three different treatment strategies studied are the following (Fig. 5):

• constant:
d(t) = d̄ for t ∈ [T, τ ]

• periodic:

d(t) =

{
d̄ for t ∈ [T + 2kL, T + (2k + 1)L], k ∈ N
dinf for t ∈ [T + (2k + 1)L, T + (2k + 2)L], k ∈ N

• decreasing:

d(t) =

{
d̄ for t ∈ [T, T + L],
λd(t− L) for t ∈ [T + L, τ ]

The first strategy involves only one parameter d̄ to optimize, the second strategy two parameters (d̄
and the period L), and the last, three parameters, namely d̄, λ and the period L. This third strategy
is the one often implemented in practice. Note that in the equation above, the expression of the
decreasing function d is recursive (see Supp. Methods E.3 for another way to express the decreasing
strategy).
dinf corresponds to the minimal personalized dose that can be computed from the estimated parameter
vector (Supp. Methods C.2.4). For all strategies, we consider d̄ ≥ dinf , λ ∈]0, 1[. We also want L ≥ 3
months to avoid too frequent changes of posologies (regarding the treatment duration of generally
many years). Besides, for too-high values of L, the decreasing and periodic strategies are equivalent to
the constant one. To avoid finding ourselves in that case, the following condition is set: L ≤ 2 years.
In addition, λ is constrained to be inferior to 0.95 to avoid the case where the decreasing strategy
would approach the constant one when λ → 1. The optimal parameters will be estimated by doing a
grid search (Supp. Methods E.1).
To note, we voluntarily choose not to consider stop-and-go strategies. Indeed, patients might need
some time to tolerate the treatment; therefore, it should not be stopped to be resumed later to avoid
this adaptation phase unless, of course, the interruption is permanent.
The periodic strategy - as defined by imposing the minimal dose to be equal to dinf - is then the
strategy that is the closest to the stop-and-go strategy.

2.3.3 Minimizing drug-related toxicity during the treatment

The main objective of the study is to optimize the IFNα therapy against MPN. For that purpose,
several potential therapeutic strategies were considered in § 2.3.2. We should define the clinically
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Figure 6: The four different scenarios we consider for modelling the way the IFNα toxicity may increase with
the dose.

relevant quantity that has to be optimized. Intuitively, we want the treatment to be as short as
possible. With the considered model, the corresponding optimization problem would be solved by
choosing to give the maximal IFNα dose of 180µg/week. However, the toxicity of IFNα is known
to increase with the dose [Yamane et al., 2008], so optimizing only the duration of treatment would
result in high-toxicity strategies. Thus, a penalty has to be applied for high doses. Toxicity includes
everything harmful to the patient, either hematological or not. In particular, IFNα is known to be
associated with side effects such as depression [Lotrich et al., 2007, Trask et al., 2000], flu symptoms,
or thrombocytopenia. Since no data exist to quantify the dose-toxicity relation, we will consider several
hypothetical scenarios and evaluate their impact on the results. We define z(d) the drug toxicity as a
function of the dose and consider four potential behaviours for the dose-toxicity relation (see Fig. 6):

• Linear: z(d) = 2d

• Convex: z(d) = 3d2

• Concave: z(d) = 3
2

√
d

• Composite : z(d) = 5
√
5

9

√
d− 0.1 1d∈[0.1,0.55] +

5
4
√
5

1√
1−d

1d∈[0.55,1]

For normalization, the average toxicity is set to one for the four formulations:

1∫
0

z(d) dd = 1

For the composite relation, we assume that there is no toxicity below a low threshold of 0.1 (corre-
sponding to 18 µg/week), then a concave behavior for d ∈ [0.1, 0.55] followed by a convex one where
the toxicity tends to infinity for d → 1. The value delimiting both behaviors - that is, d = 0.55 - is
chosen so that the derivative of z is continuous over ]0.1, 1[. More details concerning the construction
of the composite relation are provided in the Supplemental Methods E.4.

M(t) is defined as the toxicity-related amount of IFNα administered over [T, t]:

M(t) =

t∫
T

z(d(u)) du (2)

where d (as a function of time) is assumed to be either constant, periodic, or decreasing, and z (as a
function of d) is either linear, convex, concave, or composite. Then, the quantity to minimize is M(τ).
In the linear scenario, M(τ) would then correspond to the total amount of IFNα administered between

10



T and τ . To note that, in eq. (2), we do not consider the interval [0, T ] since we only want to optimize
the treatment from t = T .
We study for patients #12, 18, and 32 three therapeutic strategies and four scenarios of dose toxicity,
that is, twelve different conditions. For each of them, we will estimate the parameters related to the
therapeutic strategy that minimize the quantity M(τ) (Supp. Methods E.1). The strategies are then
compared based on this value, for a given hypothetical scenario of toxicity, to find the optimal one.
Moreover, in the absence of prior knowledge on how IFNα toxicity increases with the dose, a trade-off
strategy can be proposed (Supp. Methods E.2).

3 Results

3.1 Minimal observations are sufficient to predict the long-term mutated
cell dynamics

First we investigated whether some measurements of the VAF and only two measurements of the
progenitor clonal architecture were sufficient to predict the long-term response to the treatment. To
present the results in this section, we will focus on patient #18 (All our results are details in the
Supplemental Material G: Detailed Results; the results for patients #12 and #32 concerning the
prediction part are detailed in Supp. Material G.1). The cell dynamics observed during IFNα therapy
for patient #18 are interesting since they initially presented both heterozygous and homozygous clones
(and in the same proportions), but the homozygous clone was targeted during the treatment when
the heterozygous one continued to expand. Such dynamics might be challenging to predict when the
parameter estimation is mainly based on VAF measurements.
For patient #18, we assess whether we could predict the evolution of their VAF correctly, but also
both their heterozygous and homozygous CF in progenitors (Fig. 7), from:

1. only two measurements of the clonal architecture in immature cells (at the start of the treatment
and 248 days afterward),

2. several measurements of the VAF before a time T ∈ {300, 600, 1000} [days], and

3. the prior knowledge obtained from the remaining patients.

By progressively adding more information on the VAF dynamics (that is, increasing the assimilation
time), we increase the confidence in our predictions. It is particularly true for the VAF and the
homozygous CF. As early as T = 300 days, when only four VAF measurements are used for the
parameter estimation, we observe a good agreement between the predicted values, both for the VAF
and the CF, and the experimental values not used for estimating the model parameters.
MSEV AF

pred - quantifying the error between the observed and predicted VAF for different assimilation
times T - is equal to:

• 6.6 · 10−3 for T = 300 (10 VAF measurements used for computing MSEV AF
pred )

• 5.8 · 10−4 for T = 600 (6 measurements used for computing this MSE)

• 5.2 · 10−4 for T = 1, 000 (3 measurements used for computing this MSE)

We show that adding more observations for the VAF improves the quality of our prediction. However,
the (median) inferred dynamics for the mutated heterozygous progenitors are closer to the observations
for T = 600 days than T = 1, 000, resulting for the latter to a higher MSE on the heterozygous CF
measurements not used for the inference (Supp. Table G.2). For T = 1, 000, we overestimate the
heterozygous CF, illustrating the difficulty in correctly predicting both the dynamics of heterozygous
and homozygous cells when the inference is mainly based on the VAF measurements.

For patient #12, we also observe a good agreement between the predicted VAF and the observed
ones, with a MSEV AF

pred of 1.1 · 10−3 and 1.5 · 10−3 for T equal to 300 and 600, respectively. However,
we systematically underestimate the true homozygous CF (Supp. Material G.1.1, Supp. Fig. G.1,
and Supp. Table G.1). For patient #32, we obtained good predictions, both for the VAF and the
homozygous CF (patient #32 has almost no heterozygous clones) for T = 300 or 1,000 days (with
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Figure 7: Data assimilation results for patient #18. From left to right, the assimilation times are T = 300,
600, and 1,000 days (vertical dash line). At the top, we present the predicted dynamics. In black are shown
the inferred VAF (median value and 95% credibility interval) and in green and blue, the inferred CF (median
values) of heterozygous and homozygous mutated progenitors, respectively. The squares correspond to the
clinical data, and the circles and triangles to the experimental data, either used to calibrate the model (dark

colors, D(i)
T ) or to control the quality of the predictions (light colors - control dataset D(i)

c ). We represent
the IFNα dose variations during treatment (in µg/week) in brown. The MSE displayed just below the VAF
dynamics, is computed on the VAF measurements not used for the calibration (i.e., the VAF measurements
after the assimilation time T ), such that MSEV AF

pred quantifies the predicted error on the VAF. At the bottom,
we compare the inferred values (median values, on the y-axis) with those observed (on the x-axis). The error
bars correspond to the 95% credibility intervals.

MSEV AF
pred respectively equal to 2.17 · 10−2 and 2.35 · 10−2), but, surprisingly, poor predictions for

T = 600 days (MSEV AF
pred = 0.25) (Supp. Material G.1.3, Supp. Fig. G.5, and Supp. Table G.3).

But, if instead of considering the measurement of the clonal architecture at time t = 392, we chose to
take the observation at t = 508, we observed that the predictions for T = 600 days were far better
(MSEV AF

pred = 7.5 · 10−3) (Supp. Material G.1.4, Supp. Fig. G.6, and Supp. Table G.4), illustrating
the importance of the experimental design to make accurate predictions. We explore this question in
the Supplemental Material G.3.

From the results on the three patients considered in this study, we conclude that it is possible to
make predictions senseful of the mutated cell dynamics from VAF observations and two measurements
of the CF among progenitor cells, but that the choice of the time point for the clonal architecture
matters, raising the concern of how the observation time should be chosen. After 300 days of treatment,
it is possible to get good predictions of the cell dynamics and, after 600 days, to have good confidence
in our predictions.

3.2 The dose should be kept constant until the treatment is stopped

We studied whether other therapeutic strategies could lead to better results - faster molecular response
while limiting the potential IFNα toxicity. To evaluate these strategies, we focused on patient #32
(results for patients #12 and #18 are detailed in the Supplemental Material G.2). For this patient, the
model predicts that a decrease in the dose after 2,000 days of therapy might slow down the molecular
response, and even induce a risk of relapse (Supp. Fig. G.6). The way the patient was treated, with
a dose escalation over the first three years of therapy up to the maximal dose of 180µg/week, then a
de-escalation, is also characteristic of the strategies applied in clinical routine and already observed
in [Mosca et al., 2021].

We consider T = 600 days. Using the observations before that time (5 VAF observations, two
clonal architectures: one at t = 0, the second one at t = 508) and the prior knowledge obtained from
the 18 remaining patients, we estimated the posterior distribution of the model parameters and showed
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that we obtain good predictions (Supp. Material G.1.4).
We now consider that the actual parameter vector is the estimated one (mean of the posterior distri-
bution) and study how different dose strategies impact the response of the treatment after T = 600
days. With the estimated parameter vector, the minimal dose - under which the treatment would not
target sufficiently the mutated HSCs, resulting in a relapse - is estimated to dinf = 0.345, that is,
62 µg/week. We consider different scenarios for how the drug toxicity increases as a function of the
dose, as presented in Fig. 6. For each scenario, we study the three therapeutic strategies - presented
in § 2.3.2 - for which we find the parameters (e.g. the choice of the dose d̄) that minimize the value
of M(τ). This latter value corresponds to the toxicity-related amount of IFNα administered from T
to the time τ when the therapy could be interrupted (§ 2.3.1). We can compare the three therapeutic
strategies for a given drug-toxicity relation and select the one with the best (i.e., the lowest) value
for M(τ). Results are presented in Fig. 8. It turns out that the constant strategy is the optimal one
among the four studied scenarios, also for patients #12 (Supp. Fig. G.8) and #18 (Supp. Fig. G.9).
With the two other strategies, namely the periodic and the decreasing one, we obtain at the optimum
lower values of M(τ)/(τ − T ) (that we interpret as values of the yearly toxicity-related amount of
IFNα) compared to the constant strategy. However, having periods with low doses or decreasing the
dose over time also delays treatment interruption. Therefore, these two strategies are less effective in
terms of treatment duration.

However, the choice of the optimal dose highly depends on how the IFNα toxicity increases with
the dose. If there were a sharp increase in the toxicity for low doses, followed by a slower one (con-
cave scenario), we would recommend using high doses (about 180 µg/week for patient #32). Indeed,
only slightly decreasing the dose would not strongly impact the toxicity, while decreasing the dose
to a too large extent would delay the treatment interruption or even induce a relapse if the dose is
below a minimal value, as shown in [Hermange et al., 2021]. If, on the contrary, the toxicity would
only sharply increase for high doses (convex scenario), then we would recommend using medium doses
(about 90 µg/week for patient #32). Eventually, for the linear dose-toxicity relation (which is both
concave and convex), or for the composite relation (which is first concave, then convex), we find that
the recommended dose for patient #32 would be about 135 µg/week. Given the lack of existing data
quantifying the relationship between the dose and the toxicity of IFNα, we cannot conclude which dose
level would be optimal. Our results highlight the need to estimate such relations since we demonstrate
their importance in deciphering how MPN patients should be treated.

In the absence of prior knowledge on whether the dose toxicity would better be described by a
linear, concave, convex, or composite relationship, we can determine the strategy which - even if not
optimal - would be the best compromise. Finding a trade-off strategy is important since the best
strategy under the hypothesis that the dose-toxicity relation would be concave would be detrimental
under another hypothesis. We illustrate that point with patient #32. In the concave scenario, the best
strategy is to treat patient #32 at a constant dose of 180 µg/week over about five years. This value
would actually correspond to the highest dose considered in the study, that is, a very high dose. If the
dose-toxicity relation were actually not concave but linear, such a strategy would still be acceptable,
with a value for M(τ) equal to 4020, placing it in the top 3.4 percent and better than the best periodic
strategy. But, in the case where the dose-toxicity relationship was convex, treating patient #32 with
such a high dose would be harmful. Indeed, it turns out that the optimal strategy in the concave
scenario is also the worst one in the convex scenario.
Therefore, without having assessed in the first two years of the therapy how the patient responds to
the treatment or in the absence of data that would quantify the dose-toxicity relation for IFNα, the
best choice would be to select the trade-off strategy.
This strategy is the one that gives good results under the four hypothetical dose-toxicity relationships.
For patient #32, the trade-off would be to treat him with a constant dose of 115 µg/week over eight
years, until the treatment could be interrupted, here at age 62 (i.e., after about 10 years of IFNα
therapy since patient #32 begun the treatment at age 52). This trade-off strategy would be:

• in the top 1.7 percent if the dose-toxicity relation were linear,

• in the top 2.3 percent if the dose-toxicity relation were convex,

• in the top 2.9 percent if the dose-toxicity relation were concave,
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• and in the top 0.2 percent if the dose-toxicity relation were composite.

For patient #18, the trade-off strategy would also be the constant one, with d̄ = 61 µg/week, until
treatment discontinuation at the age of 72 (i.e., after about 15 years of IFNα therapy). For patient
#12, the trade-off strategy would be the decreasing one, with d̄ = 86 µg/week, λ = 0.45, and L = 16
months, until treatment discontinuation at the age of 77 (i.e., after about 14 years of IFNα therapy)
(Supp. Material G.2).
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Figure 8: Results of the treatment optimization for patient #32. Four hypothetical relationships between
IFNα toxicity and the dose are studied: linear (at the top), convex (on the second line), concave (third line),
and composite (at the bottom). For each of them, three therapeutic strategies - constant on the left, periodic
on the middle, and decreasing on the right - are optimized to minimize M(τ) (denoted by M on the figures),
which is the toxicity-related amount of IFNα administrated from T (vertical dashed line) to the treatment
interruption time τ (when the weekly dose of interferon - represented in beige - drops to zero). The dynamics
of the VAF (black line), the heterozygous CF (green line), and the homozygous CF (blue line) will differ for
t ≥ T according to how the doses vary (depending on the considered therapeutic strategy and its parameter
values). M values are only comparable for a given dose-toxicity relation; the lower, the better.
If the actual dose-toxicity relation were linear, the constant strategy would be optimal for d̄ = 135 µg/week
(with the associated age of treatment interruption τ = 61 years and an optimal value of M(τ) = 3763), the
periodic strategy would be optimal for d̄ = 153 µg/week and L = 22 months, and the decreasing one for
d̄ = 144 µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best. We
can see how the optimal parameters of the decreasing strategy actually tend to make it approach a constant
strategy, which would be the limiting case when λ −→ 1 and/or L −→ ∞. It is precisely to avoid finding
oneself in this limiting case that constraints were imposed on the parameters (Supp. Methods E.1).
If the actual dose-toxicity relation were convex, the constant strategy would be optimal for d̄ = 86 µg/week,
the periodic strategy would be optimal for d̄ = 90 µg/week and L = 23 months, and the decreasing one for
d̄ = 100 µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were concave, the constant strategy would be optimal for d̄ = 180 µg/week,
the periodic strategy would be optimal for d̄ = 180 µg/week and L = 20 months, and the decreasing one for
d̄ = 180 µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were composite, the constant strategy would be optimal for d̄ = 126 µg/week,
the periodic strategy would be optimal for d̄ = 137 µg/week and L = 2 years, and the decreasing one for
d̄ = 133 µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
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4 Discussion

We proposed a mathematical approach, combining modeling, statistical inference, and optimization,
to rationalize the manner in which we treat JAK2V 617F MPN patients in the long term using IFNα.
Clinicians often proceed to a dose de-escalation when they observe a hematological response. The
rationale behind this strategy is that IFNα is associated with general or hematological side effects,
such as depression [Lotrich et al., 2007, Trask et al., 2000], flu symptoms, or thrombocytopenia, and
the toxicity increases with the dose [Yamane et al., 2008]. In the absence of both data quantifying
the dose-toxicity relation and information on the response of mutated HSCs to the treatment, their
therapeutic strategy, albeit empirical, is relevant. However, as observed from the cohort of Mosca et
al. [Mosca et al., 2021], clinicians sometimes have to increase the dose again - after a treatment inter-
ruption or a strong decrease - when a relapse is observed. To avoid such behaviors that could harm
the patient, we explored which therapeutic strategy would be optimal given hypothetical dose-toxicity
relations. In particular, we estimated which dose level should be administered. We found that treating
the patients with a constant dose until the therapy is interrupted rather than decreasing or alternating
a low and a higher dose periodically should be more relevant. Even if not considered initially as a
selection criterion, the simplicity of the constant strategy - involving only one value to choose, that is,
the IFNα dose to be kept constant until the treatment interruption - makes it easy to deploy in clinics.
Such a simple strategy appears more optimal than more sophisticated ones. However, the number
of strategies we explored was far from exhaustive; thus, we could not exclude that MPN patients
could be treated more successfully with different strategies. In our mathematical approach, we do
not guarantee that, after interrupting the treatment, there will not be a relapse. On the contrary, we
quantified this risk and chose to interrupt the treatment so that the reappearance of the MPN disease
would not occur before the age of 90. This age threshold is based on the estimated life expectancy of
65-year-old individuals in developed countries [Kontis et al., 2017]. Increasing this age, thus reducing
the risk, would result in treating the patient for a longer time. It might also seem relevant to adjust
this criterion regarding the sex of the patient, given that women have a higher life expectancy than
men. Concerning the reappearance of the MPN disease, we considered that the relapse might occur
when the VAF in HSCs exceeds 7.5% [Dupont et al., 2007]. However, some patients with essential
thrombocythemia might exhibit lower VAF, while a higher VAF is necessary for others to get the
MPN symptoms. The choice of this value particularly matters when considering the problem of early
screening [Hermange et al., 2022]. In our case, however, the patients who have interrupted their treat-
ment would still be followed so that clinicians might detect quickly if and when a relapse occurs.
Given hypothetical dose-toxicity relations, we found that treating a patient with a constant dose is
optimal. However, the value of the dose depends on how IFNα toxicity increases with the dose. High
doses should be recommended if the patient tolerates the treatment well; medium or low doses other-
wise. No data quantify, in the general case, what the dose-toxicity relation could be. Such a relation
could be actually patient-dependent. In our approach, we looked for the best therapeutic strategy
once the patient had already been treated for 600 days. Therefore, we could already get prior in-
sight into how the patient responded to a dose escalation. In other words, the clinician might provide
information on the potential dose-toxicity relation, so we could recommend the constant dose value
to administer to the patient. Involving the clinicians in getting such prior information would benefit
our method, which could, in return, provide more relevant guidelines on how it might be optimal to
treat the patient. Without such dose-toxicity relation, we can find a trade-off strategy. This strategy
is such that the dose-toxicity-related quantity of IFNα administered to the patient would be as little
as possible for all the four scenarios of dose-toxicity we considered. It is worth noting that, for op-
timizing the therapy, we only considered minimizing a quantity related to the drug toxicity and did
not account for economic criteria, for example. The issue of the economic cost of the therapy was
studied by [Pedersen et al., 2020]. We also limit ourselves to four potential dose-toxicity relations,
where the toxicity would strictly increase with the dose. It should not be excluded that more com-
plex relations might exist and that the toxicity could, for example, reach a plateau. With the four
dose-toxicity relations we considered, we found that the trade-off strategy would also be when the
dose is maintained at a constant value for two of the three patients studied. For the third patient,
the decreasing strategy was found to be the best compromise; our results are patient-dependent, and
more patients should be studied to identify general patterns. In particular, the dose level is specific to
each patient and, more precisely, to how they respond to the treatment. For the two patients whose
trade-off strategy was the constant one, we found different optimal values of 61 and 115 µg/week.
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Our study considered any potential dose between 0 and 180µg/week. In practice, clinicians can in-
ject 135 or 180 µg of IFNα. By choosing the period between two medication intakes, we can have
a range of potential doses, but some dose values would still not be clinically relevant. Furthermore,
when the frequency of IFNα injection is low, below one every ten days [Xu et al., 1998], the modeling
assumption that the dose input is a piece-wise constant function might not be justified. It would
then be worth studying pharmacokinetic/pharmacodynamic (PK/PD) models (for a review, see, for
example, [Gabrielsson and Green, 2009]).

Our mathematical approach focuses on the mutated JAK2V 617F HSCs: how IFNα targets them
and then how they expand after the treatment interruption. The fact that HSCs cannot be observed
in vivo justifies using mathematical models to infer their dynamics. Here, we combined two models:
one that describes the dynamics of mutated cells during the therapy [Mosca et al., 2021] and one that
describes the clonal expansion of the mutated cells in the absence of IFNα [Hermange et al., 2022].
We assumed that the stochastic effect could be neglected. However, when the treatment lasts for
a long time, the number of mutated cells might reach a low value, so deterministic models might
not be appropriate anymore. It would then be relevant to propose a stochastic model for how IFNα
would selectively target a few mutated HSCs within a large pool of wild-type (normal) HSCs. Con-
cerning the wild-type HSCs, our model is based on the hypothesis that their number stays con-
stant, even during disease development. Alternative models could also be proposed, either for the
effect of the treatment [Pedersen et al., 2021, Ottesen et al., 2020] or the clonal expansion without
IFNα [Van Egeren et al., 2021, Williams et al., 2022]. In particular, the model from Pedersen, Otte-
sen et al. [Pedersen et al., 2021, Ottesen et al., 2020] presents the advantage of having been initially
designed for calibration from VAF measurements; thus, it might be more relevant for use in clinical
routine. The counterpart is that they do not account for the zygosity, which is a determinant of the re-
sponse to IFNα [Tong et al., 2021, Mosca et al., 2021]. A roundabout way exists to access information
on zygosity in mature cells from a VAF measurement: using the 46/1 haplotype [Hasan et al., 2014]
for patients heterozygous for this polymorphism (it would also be possible to determine other polymor-
phisms as informative). Indeed, it has been shown that generally, in the case of mitotic recombination
by which a heterozygous JAK2V 617F mutated cell gives a homozygous mutated cell, the cell will also
become homozygous for the 46/1 haplotype. Thus, measuring the VAF for this haplotype will tell
us the proportion of homozygous mutated cells. Even if the model from [Mosca et al., 2021] was not
originally calibrated from data that could be easily obtained in clinical routine, we showed that having
only two observations of the progenitor clonal architecture would be sufficient to get accurate predic-
tions when having some prior information on the parameter distribution. This prior knowledge came
from a hierarchical Bayesian inference when using all available information about the heterozygous
and homozygous CF dynamics in progenitor cells (and not only two measurements of the clonal ar-
chitecture) from other patients. Still, the prediction quality is uneven depending on the timing for
measuring the clonal architecture. Poor predictions also mean that our recommendations for treat-
ing the patient could not be adapted. This is why we explored the issue of optimal experimental
design: how to choose the best timing for measuring the clonal architecture, i.e., the one leading
to the most accurate inferences. Intensive in silico investigations have shown that the time for the
second CF measurement is important, but a search for any systematic was inconclusive (Supp. Ma-
terials F and G.3). It turned out that the best timing for a given patient might not be the best for
another, preventing us from finding a general pattern on when it would be optimal to measure the
CF among progenitor cells for a new patient. Thus, it might be worth adding more patients to the
study. In addition, the experimental design question could be extended to the dates at which the
VAF should be measured. We only superficially addressed the issue of experimental design, which
deserves to be studied in more detail. However, if clinicians can easily use our model-based predictions
and treatment recommendations, it would be more complicated to make recommendations on when
they should collect patient blood samples. Indeed, the timing for collecting patient observations is
subject to scheduling constraints over which we have no influence. It would be difficult to impose the
dates when the patient should have an appointment with their clinicians. For that reason, we limited
ourselves to the experimental design study and only considered the question of the best timing for
the second measurement of the progenitor clonal architecture. Even if we could not conclude when it
would be optimal for a new patient to get that measurement, we showed that not all choices were equal.
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Finally, we demonstrated how a mathematical model calibrated from real data could predict MPN
patients’ response to IFNα and optimize their long-term therapy. The proposed methods were de-
signed to be easily applied as a decision-support tool in clinical routine. Our mathematical approach
can be extended to study other drugs against MPN, such as Ropeg-IFNα2b [Gisslinger et al., 2020,
Barbui et al., 2020, Mascarenhas et al., 2022], which is a different pegylated IFNα from the one stud-
ied in this article, or even its combination with ruxolitinib [Kiladjian et al., 2022]. Furthermore, our
methods could be applied more broadly to studying other chronic hematological malignancies.
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