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Supplemental Materials and Methods

We present the data used in this work in section A, and our model in section B. Section C presents
the parameter estimation procedure that allows us to make long-term predictions of the effect of IFNα
therapy against MPN. In § C.1, we present how the hierarchical Bayesian estimation is performed, and
in § C.2, how we estimate the parameters for a new patient.
In section D, we describe how we model the expansion of the JAK2V 617F heterozygous and homozygous
mutated clones in the absence of IFNα, and then, the criterion for deciding at which age the therapy
could be interrupted.
In sections E and F, we detail the methods used for optimizing the therapy and the experimental
design, respectively.
The detail of our results is presented in section G. In § G.1, we detail the results of the prediction; in
§ G.2, those for the optimization; and in § G.3, those for the experimental design.
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A Data and observation model

The data we use in this study come from [15]. In particular, we consider the 19 JAK2V 617F MPN
patients studied in [9]. Observations originally consisted of the clonal architecture measurements of
progenitors and the proportion of mutated alleles (VAF - Variant Allele Frequency) in mature cells.
We denote byD = {Di}i∈{1,··· ,N} the dataset for allN = 19 patients. For a patient i, the data consist of

observations at different times t
(i)
k from the beginning of the therapy (t = 0). The VAF ŷ

(i)
k is measured

in peripheral blood, that is, among mature cells. Such a measurement can easily be obtained in clinical
routine. We consider that the measurements are noisy, and use the same observation model as Mosca
et al. [15]. For mature cells, it is assumed a Gaussian noise with a variance that depends on the true

VAF y
(i)
k ∈ [0, 1] at time t

(i)
k :

ŷ
(i)
k | y(i)k ∼ N

(
y
(i)
k , y

(i)
k

(
1− y

(i)
k

)
σ2
m

)
(A.1)

with σm to be estimated.

The clonal architecture of purified CD34+ progenitors is measured at different time points. To
determine this clonal architecture from a blood sample, several experimental steps are required, as
presented in [15]. Such measurements cannot be easily obtained in clinical routine, especially not

every three or four months. When measuring the clonal architecture at time t
(i)
k , we get n̂

(i)
k,wt, n̂

(i)
k,het,

and n̂
(i)
k,hom of wt (wild-type), heterozygous (het) and homozygous (hom) mutated progenitor cells,

respectively. From these values, we can compute the mutated heterozygous Clonal Fraction (CF):

ẑ
(i)
k,het =

n̂
(i)
k,het

n̂
(i)
k,wt + n̂

(i)
k,het + n̂

(i)
k,hom

as well as the mutated homozygous CF:

ẑ
(i)
k,hom =

n̂
(i)
k,hom

n̂
(i)
k,wt + n̂

(i)
k,het + n̂

(i)
k,hom

The uncertainty associated with the measured CF comes from the fact that only a limited number
of progenitor cells are sampled. Following what was done in Mosca et al. [15] (and also in [1]), we
consider that the observed immature cells are randomly sampled from an unknown but very large set
of immature cells so that the uncertainty might be modeled by a multinomial distribution:

P
[
n̂
(i)
k,hom = n1, n̂

(i)
k,het = n2, n̂

(i)
k,hom = n3 | zk,het, zk,hom

]
=

(n1 + n2 + n3)!

n1!n2!n3!
zn1

k,wtz
n2

k,hetz
n3

k,hom

where zk,wt, zk,het, and zk,hom are the true CF for wt, het, and hom progenitor cells, respectively (with
zk,wt = 1− zk,het − zk,hom).

Both the CF and the VAF are ratios whose values range between 0 and 1. The CF refers to a ratio
of mutated cells, while the VAF refers to a ratio of mutated alleles. Implicitly, the VAF and the CF
refer to mature and progenitor cells, respectively. We will explicitly specify when the VAF and the CF
refer to the HSCs.

Finally, I(i) corresponds to the set of observation times for patient i, and we have:

D(i) =
(
t
(i)
k , n̂

(i)
k,wt, n̂

(i)
k,het, n̂

(i)
k,hom, ŷ

(i)
k

)
k∈I(i)

Clinical and experimental data for each of the 19 JAK2V 617F MPN patients are represented in
Figures A.1 to A.19. The patients’ ids are those used by Mosca et al. [15]. In this article, we will focus
on the three patients presented in Tab. A.1. These are the patients that will be excluded from the
cohort of the 19 patients, each in turn, such that we could study for them:

• our capacity to predict their long-term responses to IFNα,



#12 #18 #32
Age at t0 [years] 63 57 52

Disease PV PMF PV
Sex F F M

Table A.1: List of the patients we focus on in this study. For each of them, we indicate their age at the beginning
of the therapy (t0), their disease (PV: polycythemia vera; PMF: primary myelofibrosis), and whether they are
a female (F) or a male (M). The patients’ numbers are the same as in the article of Mosca et al. [15]. More
information about the patients can be found in their study.

• how to optimize their therapy,

• and what would have been the optimal experimental design.

Suppose we consider, for example, patient #32. When we focus on this patient, we exclude them from
the cohort. Thus, we also do not consider all of their CF measurements, but only two of them: one
at the diagnostic time and one later. We exclude the other CF observations to mimic the fact that
this patient would be observed following a realistic clinical routine. The excluded data will be used to
assess the quality of the predictions. However, when we focus on another patient, for example, patient
#12, then patient #32 is part of the cohort. In this case, we consider all the observations for patient
#32.



Figure A.1: Longitudinal observations of patient #2. The x-axis corresponds to the time from the start of the
IFNα therapy (t = 0). Clinical data consist of the measurements of the VAF in mature cells (black squares),
Experimental data to the heterozygous (green circles) and homozygous (blue triangles) CF in progenitor cells.
The shaded beige areas correspond to the weekly dose of IFNα received over time. Some observations might
have been obtained before the start of the therapy.

Figure A.2: Longitudinal observations of patient #3.

Figure A.3: Longitudinal observations of patient #6.



Figure A.4: Longitudinal observations of patient #8.

Figure A.5: Longitudinal observations of patient #11.

Figure A.6: Longitudinal observations of patient #12.



Figure A.7: Longitudinal observations of patient #15.

Figure A.8: Longitudinal observations of patient #16.

Figure A.9: Longitudinal observations of patient #18.



Figure A.10: Longitudinal observations of patient #19.

Figure A.11: Longitudinal observations of patient #20.

Figure A.12: Longitudinal observations of patient #22.



Figure A.13: Longitudinal observations of patient #23.

Figure A.14: Longitudinal observations of patient #25.

Figure A.15: Longitudinal observations of patient #27.



Figure A.16: Longitudinal observations of patient #29.

Figure A.17: Longitudinal observations of patient #30.

Figure A.18: Longitudinal observations of patient #31.



Figure A.19: Longitudinal observations of patient #32.



B Model

The model on which we base this study was first proposed by Mosca et al. [15] to describe the dy-
namics of mutated cells over IFNα therapy and then extended in [9] to account for dose variations
during the treatment. In the original formulation from Mosca et al., three populations of cells were
considered according to whether the cells are wild-type (WT) or have the JAK2V 617F mutation in one
(heterozygous, subscript het) or two (homozygous, subscript hom) alleles. These three populations
were assumed to be independent. If we consider one of them (Fig. 2 - main article), their cell dynam-
ics were described by the following system of ordinary differential equations (for clarity, we omit the
subscript corresponding to the population):

Ṅq(t) = −γNq(t) + βNa(t)

Ṅa(t) = γNq(t) + (α∆− β)Na(t)

Ṅi(t) = α(1−∆)κiNa(t)− δiNi(t)

Ṅm(t) = δiκmNi(t)− δmNm(t)

(B.1)

where Nq(t), Na(t), Ni(t), and Nm(t) describe respectively the numbers of quiescent HSCs, active
HSCs, progenitors (that we also call immature cells) and mature cells. γNq(t) and βNa(t) correspond
to the rate at which HSCs become respectively active or quiescent, α is the division rate of active
HSCs, ∆ corresponds to the balance between differentiated and symmetrical division, κi and κm are
the proliferative rates of immature and mature cells, respectively, δi is the rate constant controlling
how progenitors exit their compartment to become mature cells with a death rate δm.
IFNα was found to act on the differentiation and quiescence exit of mutated stem cells, that is, on
parameters γ and ∆ [15]. In a previous study [9], after conducting a model selection procedure, we
found that an affine sigmoid relation can model the impact of the variations of IFNα dose d(t) on
parameters ∆het and ∆hom through:

∆het : d 7−→ −2

(
1

1 + e−ρhet·d
− 0.5

)
· (1 + δ0,het) + δ0,het (B.2)

and equivalently for homozygous cells. The dose d(t) ∈ [0, 1] is defined as the normalized weekly
averaged IFNα quantity administrated to the patient. For normalization, we divide by 180µg/week,
considered the maximally tolerated dose - this maximum value seems to be a consensus but not the
result of any clinical trial. d(t) is a piece-wise constant input function in our model. After several
biological assumptions detailed in [15, 9], the parameters to be estimated for each patient are the
following:

• ηhet and ηhom: the proportions of heterozygous and homozygous mutated HSCs, respectively, at
the beginning of the treatment,

• γhet and γhom: the rate constants of HSC quiescence exit during IFNα therapy,

• δ0,het, δ0,hom, ρhet and ρhom, which describe how parameters ∆het and ∆hom behave depending on
the IFNα dose (see eq. (B.2)). ∆het and ∆hom model to which extent mutated HSCs differentiate,
therefore leading to an exhaustion of the mutated stem cell pool,

• κm,het = κm,hom, which models the proliferative advantage of mutated cells at the last stages of
hematopoiesis.



C Parameter estimation

We have the data of N = 19 JAK2V 617F MPN patients, as presented in section A. We denote by D
the dataset for all 19 patients. Let us consider a patient i that we will focus on. We denote by D(i)

their dataset, and by D−i = D \ D(i) the dataset of all patients except individual i.

C.1 Hierarchical inference

The hierarchical Bayesian inference method is detailed in our previous study [9]. We provide here the
information necessary for a good understanding of the methods.
θ(−i) =

{
θ(j)

}
1≤j≤N,j ̸=i

denotes the set of all patient parameters - except patient i - with:

θ(j) =
(
θ
(j)
1 , · · · , θ(j)P

)
where P = 9 is the number of parameters to estimate. We assume that all (except ηhet and ηhom)
individual parameter vectors are realizations of the same random variable of a distribution of unknown
mean and variance:

∀1 ≤ j ≤ N, j ̸= i,∀k ∈ {1, · · · , P}, θ(j)k |τ (−i)
k , σ

2 (−i)
k ∼ Nc,k

(
τ
(−i)
k , σ

2 (−i)
k

)
(C.1)

where the population distribution for each component is a truncated Gaussian distribution Nc,k over a

range that depends on the considered parameter k (see next paragraph), and τ (−i) = (τ
(−i)
1 , · · · , τ (−i)

P )

and σ2 (−i) = (σ
2 (−i)
1 , · · · , σ2 (−i)

P ) are the hyper-parameters. The prior distributions of the hyper-

parameters τ
(−i)
k are chosen uniform, over the same ranges as for the parameters they are associated

with. For each k, σ
2 (−i)
k follows an improper prior distribution - namely, an inverse-gamma (0,0)

law. Then, we can estimate the joint posterior distributions of θ(−i) and hyper-parameters τ (−i) and
σ2 (−i), as done in [15] and detailed in [9] :

p
[
θ(−i), τ (−i),σ2 (−i) | D−i

]
∝ p

[
D−i | θ(1), · · · ,θ(i−1),θ(i+1), · · ·θ(N), τ (−i),σ2 (−i)

]
×

p
[
θ(1), · · · ,θ(i−1),θ(i+1), · · · ,θ(N), τ (−i),σ2 (−i)

]
∝

∏
1≤j≤N,j ̸=i

(
p
[
D(j) | θ(j)

]
p
[
θ(j) | τ (−i),σ2 (−i)

])
p[τ (−i)]p

[
σ2 (−i)

]
Then, we sample from the posterior distribution using a Markov Chain Monte Carlo (MCMC) method,
namely the Metropolis-Hastings within Gibbs algorithm [7, 3]. Conditionally on the hyper-parameters,
patients are independent, and their parameters can be sampled using a standard Metropolis-Hasting
scheme. The hyper-parameters are sampled using the Gibbs method, which consists of sampling from
the marginal conditional posterior distribution of the hyper-parameters. Details of the calculations
are presented in [9].
To initialize the MCMC chain, we first run an optimization algorithm - namely the CMA-ES [4, 5].
The CMA-ES is a stochastic algorithm that we use for looking at the estimator of the maximum a
posteriori. We then use this estimator for initializing the MCMC. Furthermore, the CMA-ES algorithm
also learns a covariance matrix that we choose (up to a multiplication factor) for our proposal in the
Metropolis-Hasting scheme. Model calibration was achieved by implementing the previous methods in
the Julia programming language. The framework used for parameter estimation is available at:

https://gitlab-research.centralesupelec.fr/2012hermangeg/bayesian-inference

We run our hierarchical inference method over 13 million iterations, with a burn-in length of 2 million,
until achieving convergence.

After running the estimation procedure, we have for τ
(−i)
k and σ

2 (−i)
k the estimate of their posterior

distribution from which we estimate the posterior mean, given the observations:

τ̄
(−i)
k = E[τ (−i)

k |D−i]

σ̄
2 (−i)
k = E[σ2 (−i)|D−i]

These latter values will be used as prior information when considering a new patient.



C.2 Parameter estimation for a new patient

Patient i has been excluded from the cohort of patients. This patient can therefore be considered a
new patient. As presented in section A, for them, we consider having only two observations of the
clonal architecture, similar to what could be obtained in clinical routines.

C.2.1 Prior

θ(i) is the parameter vector of patient i:

θ(i) =
(
θ
(i)
1 , · · · , θ(i)P

)
For ηhet (and ηhom) which correspond to the initial quantities of heterozygous (and homozygous)
mutated HSCs compared to the number of wild-type HSCs, we consider a prior uniform over [0, 3]
(unitless parameter). For the other parameters (index k), we consider a priori :

θ
(i)
k ∼ Nc,k

(
τ̄
(−i)
k , σ̄

2 (−i)
k

)
(C.2)

Nc,k is a truncated Gaussian distribution over a range that depends on the considered parameter :

• For parameters δ0,het and δ0,hom, the range is [0.0, 0.5] (unitless parameters),

• For ρhet and ρhom, the range is [0, 10] (unitless parameters),

• For km, the range is [1, 20] (unitless parameter),

• For 1/γhet and 1/γhom, the range is [10, 300] (in days).

C.2.2 Bayesian Inference

We denote by I(i)
T the set of observation times before the assimilation time T . The dataset of patient

i used for estimating their parameters is:

D(i)
T =

{
t
(i)
k , ŷ

(i)
k

}
k∈I(i)

T

⋃{
n̂
(i)
k=1,wt, n̂

(i)
k=1,het, n̂

(i)
k=1,hom

}⋃{
n̂
(i)
k′,wt, n̂

(i)
k′,het, n̂

(i)
k′,hom

}
with k′ corresponding to the index of the observation made at a time close to 300 days after treatment.
The posterior distribution is expressed by:

p[θ
(i)
T |D(i)

T ] ∝ p[D(i)
T |θ(i)

T ] p[θ
(i)
T ] (C.3)

with p[θ
(i)
T ] the prior expressed in the previous paragraph and p[D(i)

T |θ(i)
T ] the likelihood.

First, we find the parameter vector θ̂
(i)
T which maximizes the previous posterior. θ̂

(i)
T is estimated

using the CMA-ES algorithm [4]. Then, we run the Metropolis-Hasting algorithm, whose proposal is

set to the covariance matrix learnt using the CMA-ES, and the initial state set to θ̂
(i)
T . We run the

Bayesian inference method over 1 million iterations, and verify that we achieved convergence.

In the prediction part of this study, we will study the posterior distribution of θ
(i)
T according to

the value of the assimilation time T .
When studying the treatment optimization or the experimental design, we consider the assimilation

time T = 600 days, and we will set the parameter vector to the mean posterior value E[θ(i)
T=600|D

(i)
T=600].

C.2.3 Uncertainty propagation

In the prediction part of this study, we infer not only the parameter posterior distribution but also the
dynamics of the mutated cells (or, more precisely, the evolution of the VAF and the CF over time). For
this purpose, we sample from the posterior distribution some parameter vectors using a Monte-Carlo
method and propagate the uncertainty from the input parameters to the output of the model (that is,
the dynamics of the CF in each hematopoietic compartment).



C.2.4 Estimating dinf

In our model, the parameter ∆het depends on the dose d ∈ [0, 1] according to the equation (B.2):

∆het : d 7−→ −2

(
1

1 + e−ρhet·d
− 0.5

)
· (1 + δ0,het) + δ0,het

The same goes for ∆hom.
The parameter ∆het ∈ [−1, 1] corresponds to the balance between the differentiated and symmetrical
divisions of mutated HSCs. ∆het > 0 means that the mutated heterozygous clone continues to expand,
that is, to invade the stem cell pool. ∆het < 0 means that mutated HSCs encounter more differentiated
divisions than symmetrical ones, so the pool of mutated HSCs will be depleted.
The necessary condition for the pool of mutated heterozygous HSCs to be potentially totally eradicated
in the future is to use a dose d such that ∆het(d) < 0. According to our model, ∆het decreases with
the dose. Thus, there exists dinf,het such that:

∆het(dinf,het) = 0

∆het(d) > 0 for d < dinf,het

The same goes for homozygous cells. We define dinf = max(dinf,het, dinf,hom) as the minimal dose
to administer to the patient such that both the homozygous and heterozygous mutated cell could be
depleted.
dinf depends on parameters δ0,het, δ0,hom, ρhet, and ρhom. Therefore, dinf is patient-dependent.

C.2.5 Assessing the quality of the fits and predictions

For a given assimilation time T , we have estimated the model parameters (that is, their posterior

distribution) based on the observations included in the dataset D(i)
T . After having propagated the

uncertainties, we get the dynamics of the VAF among mature cells and the CF among progenitors.
That is, for a given time, we get a distribution of the values of the VAF, and the heterozygous and
homozygous CF, from which we compute (and display) the median. For each clinical and experimental
data (either a CF or a VAF measurement), observed at a time t, we can then confront the experimental
value to the theoretical one (i.e., the median value introduced above). For a given observation time,
the distance between the experimental and the theoretical value will be the quadratic error. This error
can be computed either for a VAF measurement, or an heterozygous CF, or an homozygous CF. When
considering several observations, the reported error will then be the mean square error (MSE). First,

the MSE could be computed based on the observations from D(i)
T . In that case, we asses how well the

model fits the data (used for its calibration). The MSE can also be computed based on observations

coming from the control dataset: D(i)
c = D(i) \ D(i)

T (which includes all observations not used for the
model calibration). In that case, we asses how well the models gives accurate predictions.



D Interrupting the therapy

This section considers the case when no IFNα is administered to the patient. It is the case when the
treatment has not yet started or has been interrupted.

D.1 Criterion

We aim at optimizing the therapy from a time T to a time τ ; this latter time corresponds to the
end of the treatment. IFNα therapy is a long-term treatment that clinicians do not want to prolong
indefinitely due to adverse effects in most cases. We aim to find a criterion for deciding when the
therapy could be stopped. Such a criterion should be acceptable both for clinicians and patients.
Since MPNs are diseases that develop over a long time [17, 16], it is reasonable to choose to stop
treatment even before complete eradication of the mutated HSCs, if there is a good reason to believe
that the clonal development following the discontinuation of treatment is unlikely to lead to the disease
recurrence (that is, the reappearance of the symptoms) during the patient’s lifetime. In this work, we
propose to determine, according to different criteria, when one could suggest to the clinician (and the
patient) to stop the treatment.
Unless complete remission is achieved (which is difficult, if not impossible, to estimate clinically), the
patient may still have several mutated stem cells prone to revert to clonal development leading to a
recurrence of symptoms. Nevertheless, because of the slow clonal expansion, it can be considered that
if the proportion of mutated cells remains below the threshold for symptom onset during the patient’s
lifetime, this will not be a problem. Of course, one cannot know how long the patient will live. One
can make a conservative choice by choosing an age limit beyond 100 years, for example, which would
mean wanting an almost zero risk of a possible relapse of the patient. However, such a choice might not
be relevant, given the life expectancy of individuals. We thus choose to set the age limit (below which
we do not want the threshold to be reached) at 90 years. This age corresponds to the life expectancy
of 65-year-old individuals in 2030 in developed countries [11].
Concerning the threshold of onset of the disease, we had assumed in a previous study [8] that the dis-
ease could appear for a CF of heterozygous mutated HSCs (in patients having no homozygous clones)
of 15%. That is, a VAF of 7.5% in HSCs. This latter threshold is based on the study by Dupont et
al. [2].

Considering a life expectancy, at 65 years old, equal to 90 [11], we will consider interrupting the
treatment of a patient at an age τ such that ϕτ (t = 90 years) = 7.5% with:

ϕτ (t) =
0.5Ñhet(t) + Ñhom(t)

Ñhet(t) + Ñhom(t) +NWT

=
0.5Ñhet(τ)e

shet(t−τ) + Ñhom(τ)eshom(t−τ)

Ñhet(τ)eshet(t−τ) + Ñhom(τ)eshom(t−τ) +NWT

which corresponds to the VAF, among HSCs, at time t, given the quantities (or the equivalent CF) of
mutated HSCs at time τ . NWT is the number of wild-type HSCs, assumed to be constant and equal
to 105 [12]. More details about the quantities involved in the expression of ϕτ (t) are presented in the
next paragraphs.

To sum up, we will choose to stop treatment at an age such that the subsequent clonal development
will not lead to a VAF of 7.5% (among HSCs) before the age of 90.

D.2 Model of the clonal expansion without IFNα

First, we consider a patient having only heterozygous JAK2V 617F clones. We assume that the clonal
development after interruption of the treatment follows the same dynamics as before the treatment
and that this dynamic is described by the model proposed in [8]. We assume that we remain in the case
where the number of mutated cells remains sufficient for the following deterministic approximation -
derived in [8] - to be valid:

Ñhet(t) = Ñ0,het exp (shet(t− t0)) (D.1)



where the fitness of the heterozygous clone was estimated to be equal to shet = 20.4%/year. Here,
Ñhet(t) = Ña,het(t) + Ñq,het(t) corresponds to the total number of heterozygous HSCs (active and
quiescent). Equation (D.1) is valid during the MPN development in the absence of IFNα therapy.
We use the tilde symbol ◦̃ to denote a variable which dynamics is studied when the patient is not
under treatment (that is, either before the start of the treatment, of after the patient has definitively
interrupted the therapy).
A sufficient condition for the validity of the deterministic approximation was shown to be Ñ0,het =

2, 000, but this latter choice was conservative in the sense that, even for lower values of Ñ0,het, the
approximation error was low [8].

Now, we consider the more general case of a patient having both heterozygous and homozygous
clones that can develop in parallel. In that case, the heterozygous CF among HSCs is defined by:

CFhet(t) =
Ñhet(t)

Ñhet(t) + Ñhom(t) +NWT

=
Ñq,het(t) + Ña,het(t)

Ñq,het(t) + Ña,het(t) + Ñq,hom(t) + Ña,hom(t) +NWT

(D.2)

And the VAF among HSCs:

V AF (t) =
0.5 Ñhet(t) + Ñhom(t)

Ñhet(t) + Ñhom(t) +NWT

(D.3)

In all this study, we consider that the number of the WT HSCs is constant and equal toNWT = 105 [12].
In particular, we do not assume that, during the clonal expansion, mutated cells might replace WT cells.
On the contrary, we consider that mutated HSCs expand in parallel to the WT, potentially conquering
other hematopoietic niches [6], such that the number of WT (normal) HSCs remains constant. To note
that the hypothesis of a constant number of WT HSCs during a clonal expansion of mutated HSCs was
also done by Michor et al. [14] when studying the dynamics of chronic myeloid leukemia. We assume
that the expansion of the malignant homozygous mutated cells will follow the same dynamics as the
heterozygous one:

Ñhom(t) = Ñ0,hom exp (shom(t− t0)) (D.4)

with a fitness shom higher than for the heterozygous case [17]. We estimate the value of the homozygous
fitness in the next section.
Then, we get the expression of the VAF among HSC over time t ≥ t0, given the values at time t0:

V AF (t) =
0.5 Ñhet(t0)e

shet(t−t0) + Ñhom(t0)e
shom(t−t0)

Ñhet(t0)eshet(t−t0) + Ñhom(t0)eshom(t−t0) +NWT

(D.5)

D.3 Estimating the fitness of the JAK2 V 617F homozygous clone

D.3.1 Approach

To describe the clonal expansion without IFNα, we use the model we previously studied in [8]. From our
previous work, we also estimated the fitness of the heterozygous clone to be equal to shet = 20.4%/year.
However, the study was not conducted for patients with homozygous clones, so we do not have an
estimation of shom. We expect to have shom > shet [17]. We consider that:

shom = β shet

with β > 1. To estimate shom (or, equivalently, β), we will use the data from Williams et al. [17]
(Fig. D.1). In their study, they had some patients with heterozygous mutated clones and some others
with homozygous mutated clones. Using a model they calibrated based on the whole genome sequencing
of progenitor cells and the subsequent construction of phylogenetic trees, they inferred the fitness Si

of mutated JAK2V 617F clones for different patients (index i). From their study, we can get their
estimated Si,het for 1 ≤ i ≤ nhet and Si,hom for 1 ≤ i ≤ nhom, with nhet and nhom the number

of heterozygous and homozygous patients they studied, respectively. If we note S̃het the median



Figure D.1: Data from Williams et al. [17]. From their article, we extracted the mean value of their so-called
S parameter, which corresponds to the fitness of a mutated clone. We display the value of S according to
whether it refers to a JAK2V 617F heterozygous clone or a homozygous one. There is a trend to have higher
fitness in the homozygous condition (p = 0.1535 with a Mann-Whitney test [13]).

heterozygous fitness and S̃hom the median homozygous fitness, we could compute β′ = S̃hom/S̃het,
and, in a naive approach, set β = β′. Yet, this first estimation of β would be too approximate since
their model differs significantly from ours. Indeed, Williams et al. assume the HSC pool to be of
constant size, and, therefore, that mutated cells take the place of WT cells during their expansion.
On the contrary, we assume in our model that we have a constant number of WT cells and that the
mutated cells expand without replacing the former. To circumvent the difficulty related to the fact
that our models are different, we will try to find a relation f : Shet,i 7−→ shet,i such that shet,i is
consistent with the fitness used in our model. Then, we could find a better estimation for β using:

β ≈ f(S̃het)

f(S̃hom)
(D.6)

D.3.2 Finding the relation f : Shet 7−→ shet

Here, we will approximate a relation that links the so-called ”fitness of clone” S of Williams et al. [17]
to our fitness s. In this paragraph, we consider the case of heterozygous mutated cells and omit the
subscript het for clarity. In Williams et al.’s model, the number of mutated cells N(t) follows the
differential equation:

dN

dt
= N(t)ας

(
1− N(t)

Ntot

)
(D.7)

and they define:
S = exp(ας)− 1

where ς is the selective advantage (in their paper, they note it actually s but, to avoid the confusion
with our fitness parameter, we note it ς), α corresponds to a division rate as in [8], and Ntot is the
total size of the HSC pool (WT and mutated) assumed to be constant. In our case, on the contrary,
we have Ntot = NWT +N(t) with N(t) the number of mutated cells. In our model, if we differentiate
equation (D.1), we get:

dN

dt
= s N(t) (D.8)

By equalizing equations (D.7) and (D.8), we get:

s = log(1 + S)

(
1− N(t)

Ntot

)



If we assume that the CF among HSCs N(t)/Ntot is approximately equal to the one among progenitors
η (that is, the CF that can be measured by Williams et al.), we get:

s ≈ log(1 + S)(1− η(t)) (D.9)

If we integrate the previous equation from the acquisition time to the sampling time, and assume a
linear clonal expansion (which we acknowledge is a rough approximation), we get:

s ≈ log(1 + S)

(
1− η̂

2

)
= f(S) (D.10)

with η̂ the CF among progenitor cells measured at the observation time.

D.3.3 Results

For each individual i from the cohort of Williams et al. [17], we have their estimate Si and we can
estimate the progenitor CF η̂i at sampling time by counting the numbers of mutated and WT individual
colonies at the tips of the phylogenetic tree branches. Below, we report the values from Williams et
al. that we use for this analysis. The data for the patients having heterozygous but no (or negligible)
homozygous clones are the following:

• PD6646: S = 119 %/year (clade JAK2, DNMT3A) - η̂ = 56.7%

• PD5179: S = 116 %/year (clade JAK2, 1q+, 9q-, 9+) - η̂ = 96.7%

• PD6629: S ≈ 66 %/year (clade DNMT3A, JAK2, TET2, and clade DNMT3A, JAK2) - η̂ =
43.8%

• PD7271: S = 73 %/year (clade JAK2) - η̂ = 21.6%

• PD9478: S = 71 %/year (clade JAK2, DNMT3A) - η̂ = 89.5%

• PD5163: S = 45 %/year (clade JAK2) - η̂ = 8.6%

• PD5117: S = 18 %/year (clade JAK2) - η̂ = 55.7%

For patient PD6629, Williams et al. have two estimations of S according to the considered clade (S
= 90 %/year for the clade DNMT3A, JAK2, TET2, and S = 41 for the clade DNMT3A, JAK2), we
consider the mean value.

For patients having homozygous clones but no (or negligible) heterozygous ones, the data are the
following:

• PD4781: S=114%/year (clade TET2, JAK2, 9pUPD, 7p-, 7p+) - η̂ = 97.44%

• PD5847: S ≈ 122.5 %/year (clade TET2, JAK2, 9pUPD and clade JAK2, 9pUPD) - η̂ = 80.2%

• PD5182: S = 132 %/year (clade 9pUPD, JAK2) - η̂ = 34.38%

For patient PD5847, Williams et al. have two estimations of S according to the considered clade (S =
187 %/year for the clade TET2, JAK2, 9pUPD, and S = 58 for the clade JAK2, 9pUPD), we consider
the mean value.

From the previous values and using eq. (D.10), we can compute a fitness si = f(Si) for each patient
i from Williams et al. [17]. Results are displayed in figure D.2.
Then, we estimate our parameter β by computing the ratio between the median of the s values for
homozygous patients (s̃hom = 47.9 %/year), and the median of the s values for the heterozygous
patients (s̃het = 39.6 %/year). We find β = 1.21.



Figure D.2: Estimation of a fitness value s for each patient from Williams et al. [17] using eq. (D.10).

E Optimizing the therapy

E.1 Grid search of the optimal parameters

For a given patient, we estimated their parameter vector θ as presented in § C.2.2, here with the
assimilation time T = 600 days. The parameter vector entirely describes the patient’s response to the
treatment, for any potential dose d(t) ∈ [0, 1] over time t. We consider three therapeutic strategies
(index s), as presented in §2.3.2 in the main text:

• s = 1 corresponding to the constant strategy,

• s = 2 corresponding to the periodic strategy,

• s = 3 corresponding to the decreasing strategy (see also § E.3).

We note X ∈ R3 the parameter vector of dimension 3 associated with the strategy:

X =
(
d̄, L, λ

)
As we have defined it - and without any constraints on parameters L and λ - the constant strategy
would be a special case of both the decreasing and periodic strategies. The constant strategy is the
limiting case of the decreasing strategy when λ = 1, and the limiting case of the periodic strategy for
L −→ +∞. In practice, given that we study times on the scale of human life, +∞ could be replaced
by any high enough time value so that we would still have X ∈ R3.
The choice of X entirely characterizes which dose would be administered to the patient for t ≥ T , if
the treatment were not interrupted. That is:

ds :

∣∣∣∣ R3 × [T,+∞[ −→ [0, 1]
(X, t) 7−→ ds(t)

Then, the values of θ and X entirely characterize the response to the treatment for any time t ≥ T .
In particular, we infer the dynamics of the VAF among HSCs. By applying the criterion presented in
§ D, we can estimate the time τ when the treatment could be interrupted. To note that, to apply this
criterion, we also need to know the age of the patient at the beginning of their therapy (see Tab. A.1).
The interruption time is thus a function:

τs :

∣∣∣∣ R3 −→ [T,+∞[
X 7−→ τ

We omit to precise that τ also depends on the patient’s parameter vector (and their age) since these
latter values are supposed to be known, and because they do not come into play in the optimization
problem we study here.

We consider four scenarios of dose-toxicity (index x) as presented in §2.3.3 in the main text:



• x = 1 corresponding to the linear relation,

• x = 2 corresponding to the convex relation,

• x = 3 corresponding to the concave relation,

• x = 4 corresponding top the composite relation (see also § E.4).

We define the toxicity as a function of the dose:

zx :

∣∣∣∣ [0, 1] −→ R+

d 7−→ zx(d)

Finally, we define the toxicity-related amount of IFNα administered from T to the end of the therapy:

Mx :

∣∣∣∣∣∣
R3 −→ R+

X 7−→
τs(X)∫
T

zx (ds(X, t)) dt
(E.1)

Our optimization problem to solve is to find the parameter vector X∗
x which minimizes the function

Mx for a given dose-toxicity scenario x.
First, we can split the problem according to the therapeutic strategy s. For a given therapeutic strategy
s, we denote by Ss ⊂ R3 the set of the authorized values, and we will look for:

X∗
s,x = argmin

X∈Ss

Mx(X) (E.2)

X∗
s,x corresponds to the optimal parameter vector of strategy s, for the dose-toxicity scenario x.

Previously, we stated that the constant strategy would be a special case of the decreasing or periodic
ones if there were no constraints on the parameters. Thus, we impose to have Si

⋂
Sj = ∅ for 1 ≤

i < j ≤ 3. We consider Ss as a discrete set of values rather than a continuous subspace of R3, so the
optimization problem to solve will consist of looking at all potential values X ∈ Ss to find the one
which minimizes Mx(X). We refer to this procedure as ”grid search”. It would have been feasible to
solve the optimization problem numerically even if Ss were continuous. Considering Ss as a discrete
set of values will be convenient for looking for a trade-off strategy, as explained in the next section.
Moreover, the parameter vector X characterizes a therapeutic strategy; it would not be relevant to
explore all potential values since the clinician could not apply exactly the dose strategy as we would
recommend it. For example, it would not make sense for the clinician to have a precision of the day
for the period L, or a precision of 1µg/week (i.e., 1/180 for the normalized dose) for the choice of the
dose d̄. We consider the following potential values:

d̄ = (dinf , dinf + 0.02, dinf + 0.04, · · · , 0.98, 1.0)

L = (30, 60, · · · , 24× 30)

λ = (0.05, 0.1, · · · , 0.90, 0.95)

To note that, already with the choice of d̄, we consider more values than can be used in clinical routine.
dinf is specific to the patient, that is, a function of θ, as presented in § C.2.4. The period L is in days.
We have S3 = d̄ × L × λ, S2 = d̄ × L × {1.0}, and S1 = d̄ × {+∞} × {1.0}. For this latter, the
singlet {+∞} could be replaced by any high enough value, for example, a time length that exceeds
the maximal possible lifetime.

Once we have found the parameter vector which minimizes Mx for a given dose-toxicity scenario x
and a given therapeutics strategy s, we can also look for the best strategy over the three considered.
That is, we look for the following:

X∗
x = argmin

X∈S
Mx(X) (E.3)

where S = S1

⋃
S2

⋃
S3. The corresponding optimal strategy index s is such that X∗

x ∈ Ss.
In this section, we only wanted to minimize the toxicity-related amount of IFNα given the dose-toxicity
scenario x. When this latter is not known in advance, we have to search for a trade-off strategy.



E.2 Trade-off strategy

The best strategy for one dose-toxicity scenario is unlikely to be the best one for another scenario.
Without prior knowledge of how IFNα toxicity increases with the dose, we must look for a compromise.
Values of the toxicity-related amount of IFNα, as given by (E.1), are not comparable for two different
toxicity relations. We consider S the set of all possible values for X, over the three therapeutic
strategies we consider. We denote by |S| ∈ N its cardinal, that is, the number of all potential values.
Each value Xi ∈ S, for 1 ≤ i ≤ |S|, can be sorted according to the value Mx(Xi), for a given 1 ≤ x ≤ 4.
We note nx(X) the rank, with nx = 1 being the best rank, and qx(X) = nx(X)/|S| ∈ [0, 1] (also
expressed in % when presenting the results). We note q(X) = max

1≤x≤4
(qx(X)). Then, finding the

trade-off strategy is equivalent to finding:

X∗ = argmin
X∈S

q(X) (E.4)

E.3 Note about the decreasing strategy

The decreasing strategy is formulated in the article by:

d(t) =

{
d̄ for t ∈ [T, T + L],
λd(t− L) for t ∈ [T + L, τ ]

(E.5)

This is a recursive formulation. An other way to express it without self-referring is as follows:

d(t) = d̄ · λn(t) for t ∈ [T, τ ]

with n(t) = ⌊ t−T
L ⌋ (where ⌊x⌋ gives the integer part of x).

E.4 Note about the composite dose-toxicity relation

The composite dose-toxicity is defined in the article as followed:

z(d) =
5
√
5

9

√
d− 0.1 1d∈[0.1,0.55] +

5

4
√
5

1√
1− d

1d∈[0.55,1] (E.6)

Here, we will detail the construction of this relation, and particularly the choice of the numerical values
involved in that relation.
The composite relation is a more complex relation than the linear, convex, or concave ones, with:

• first, a low threshold dlow under which there is no toxicity: z(d) = 0 for d < dlow,

• second, a steep increase leading to a plateau like level, when a second threshold dup is reached. We
choose to model this increase by a relation close to our concave relation, that is, z(d) ∝

√
d− dlow

for d ∈ [dlow, dup[ (ensuring the continuity of the function for d = dlow with z(dlow) = 0),

• and finally, an increase of the toxicity towards an infinite value at the maximal considered dose
dmax = 1. Several functions could have been chosen to model this behavior. In addition to
reaching an infinite value for d = dmax, we also want the normalization

∫ 1

0
z(d) dd = 1. Such

normalization requires to be able to integrate a function which diverges at a finite value. For that
reason, a usual choice of function would be to consider that z(d) ∝ 1√

dmax−d
for d ∈ [dup, dmax].

Then, the choice for the composite relation would be:

z(d) =


0 if d ∈ [0, dlow[

ζ1
√

d−dlow

dup−dlow
if d ∈ [dlow, dup[

ζ2

√
dmax−dup

dmax−d if d ∈ [dup, dmax]

with ζ1, ζ2, dlow and dup to be determined (dmax = 1). Previous equation already accounts for two
conditions : 1) continuity at d = dlow, and 2) divergence at d = dmax.
In addition to both conditions, we want: 3) continuity at d = dup, that is:

ζ1 = ζ2 := ζ (E.7)



4) continuity of the derivative at d = dup, which leads to:

1

2(dup − dlow)
=

1

2(1− dup)

that is:
dup = 0.5(1 + dlow) (E.8)

and finally, 5) normalization: ∫ 1

0

z(d) dd = 1 (E.9)

We have: ∫ 1

0

z(d) dd =

∫ dlow

0

z(d) dd+

∫ dup

dlow

z(d) dd+

∫ 1

dup

z(d) dd

= 0 +
ζ√

dup − dlow

∫ dup−dlow

0

√
d dd+ ζ

√
1− dup

∫ 1−dup

0

1√
d
dd

=
ζ√

dup − dlow

2

3
(dup − dlow)

3/2 + 2ζ(1− dup)

= ζ

(
2

3
(dup − dlow) + 2(1− dup)

)

The previous conditions are not sufficient to allow determining a value of each our parameters; there
is still one degree of liberty left. We choose to set dlow = 0.1 (corresponding to 18 µg/week).
Then, from eq. (E.8) , we get dup = 0.55 (that is, dup − dlow = 0.45 = 1− dup).

Finally,
∫ 1

0
z(d) dd = 0.45ζ

(
2
3 + 2

)
= 6

5ζ so that ζ = 5
6 according to condition (E.9).

Using these numerical values, the composite dose-toxicity can be written as:

z(d) =


0 if d ∈ [0, 0.1[
5
6

√
d−0.1
9/20 if d ∈ [0.1, 0.55[

5
6

√
9/20
1−d if d ∈ [0.55, 1]

or equivalently, z(d) can be given by eq. (E.6).



F Estimating the best timing for measuring the clonal archi-
tecture

Our recommendations must be based on accurate estimations of the individual model parameters for
validity. The clinician might play an active role not only in the prescription of the IFNα dose and
the monitoring of the hematological response but also in the choice of the dates at which the clonal
architecture of progenitor cells is measured. Indeed, by default, we chose to consider that the second
measurement (the first one being at the start of the therapy) of the CF among immature cells is
obtained about 300 days after the start of the therapy. This choice is consistent with another study
exploring the effect of combining IFNα with ruxolitinib on MPN patients, where the clonal architecture
could only be measured twice, and the second time-point was chosen about 300 days after the start of
the therapy [10]. In this part, we want to explore the relevance of this choice.
To this end, we will conduct a study based on a synthetic dataset derived from the three patients #18,
12, and 32, for whom we estimated the model parameters.

For a given patient i, we estimated their parameter vector θ(i) as presented in § C.2.2, here with
the assimilation time T = 600 days. We assume these values to be the true ones. The parameter
vector entirely describes the patient’s response to the treatment for any potential dose d(t) ∈ [0, 1]
over time t. We simulate, from the model and the value for θ(i), the response to the treatment for
t ∈ [0, 600] and the dose d(t) received by the considered patient. We get the simulated dynamics of
the VAF yθ(i)(t) and the heterozygous zθ(i),het(t) and homozygous zθ(i),hom(t) CF over time t. We
call the latter values the true ones (or the theoretical ones). We will try to retrieve these values using
our inference method. In particular, we will explore the influence of the choice of the time point Tobs

of the second observed CF. For that purpose, we simulate synthetic datasets (Fig. F.1-i).

For the considered patient i, the (clinical) VAF was measured at different time points:
{
t
(i)
k

}
k∈I(i)

T=600

.

We consider then the simulated values of the VAF yθ(i)(t
(i)
k ) for k ∈ I(i)

T=600. From these latter,

we generate noisy VAF measurements ŷ
(i)
k using eq. (A.1) (pseudo-observations). Then, we build the

following synthetic datasets, according to the choice of the time Tobs ∈ {1, . . . , 600}, which corresponds
to the time when the second (pseudo-)observation of the clonal architecture would be made (Fig. F.1-ii):

D(i)
Tobs

=
{
t
(i)
k , ŷ

(i)
k

}
k∈I(i)

T=600

⋃{
zθ(i),het(0), zθ(i),hom(0)

}⋃{
zθ(i),het(Tobs), zθ(i),hom(Tobs)

}
We conduct 600 parameter estimation procedures (Fig. F.1-iii), one for each D(i)

Tobs
, 1 ≤ Tobs ≤ 600,

to estimate the parameter vector θ
(i)
Tobs

for which the posterior density function is maximal. For each

Tobs ∈ {1, . . . , 600}, we estimate the parameter θ̂
(i)
Tobs

which maximizes the posterior:

p[θ
(i)
Tobs

|D(i)
Tobs

] ∝ p[D(i)
Tobs

|θ(i)
Tobs

] p[θ
(i)
Tobs

] (F.1)

with p[θ
(i)
Tobs

] the prior expressed in § C.2.1.
Since the optimization problem has to be repeated 600 times for each patient, we solve numerically
with an efficient algorithm, namely the CMA-ES (Covariance Matrix Adaptation - Evolution Strategy)

algorithm [4, 5]. θ̂
(i)
Tobs

is estimated numerically using the CMA-ES algorithm. From our model and

the value of θ̂
(i)
Tobs

, we get the inferred dynamics of the heterozygous z
θ̂
(i)
Tobs

,het
(t) and homozygous

z
θ̂
(i)
Tobs

,hom
(t) CF, that we can confront to the theoretical ones, that is, to the target ones obtained by

simulation (Fig. F.1-iv). For that purpose, we define the following prediction error:

ε(Tobs) =

T=600∫
0

|z
θ̂
(i)
Tobs

,het
(t)− zθ(i),het(t)|+ |z

θ̂
(i)
Tobs

,hom
(t)− zθ(i),hom(t)| dt

≈
600∑
k=1

|z
θ̂
(i)
Tobs

,het
(k)− zθ(i),het(k)|+ |z

θ̂
(i)
Tobs

,hom
(k)− zθ(i),hom(k)| (F.2)

Then, we search for the (pseudo-)observation time T ∗
obs which minimizes the previous error:



T ∗
obs = argmin

1≤Tobs≤600
ε(Tobs) (F.3)

From this study, we could then discuss whether there would be some choices that are better than
others (and consistent among the three patients we consider), to deduce the best timing for the second
measurement of clonal architecture.



Figure F.1: Illustration of the experimental design method. We consider that we know the true parameter vector
for a given patient, that is, the parameter vector θ. First, we simulate data (i), consisting of VAF measurements,
as well as daily observations of the clonal architecture (pseudo-observations). Note that we simulate as many
VAF pseudo-observations as we actually have for the patient and at the same observation times. For clarity,
we do not represent all the data points for the CF. We consider different potential pseudo datasets for the
parameter estimation procedure; these peudo-datasets are built with all VAF pseudo-observations and only two
pseudo-observations of the CF (ii). The pseudo-datasets differ according to the choice of the second pseudo-
observation time Tobs of the CF, here t1 vs t2. For each pseudo-dataset, we infer the model parameters, and,
thus, the cell dynamics over IFNα (iii). Then, we compare the error between the inferred CF dynamics and
the true one (iv).



G Detailed results

Our study is organized into three parts, and so are our results. In § G.1, we present the results of the
prediction, in § G.2 how the therapy could be optimized, and in § G.3 how to choose the best timing
for measuring the clonal architecture. We present the results separately for patients #12, 18, and 32.

G.1 Prediction

G.1.1 Patient #12

We exclude patient #12 from the cohort of the 19 JAK2V 617F patients. For the 18 remaining patients,
we run a hierarchical Bayesian estimation, as presented in § C.1. For patient #12, we will estimate
their parameters, as presented in § C.2, for different assimilation times T . According to the values of
T , a different number of VAF measurements are used for the estimation:

• 5 VAF measurements for T = 300 days,

• 7 VAF measurements for T = 600 days,

• and 10 VAF measurements for T = 1, 000 days.

In all cases, two measurements of the CF among progenitors are considered, the first at t = 0 and the
second at t = 287 days.

The posterior distributions of the parameters are presented in Fig. G.2, and the results of the
predictions are presented in Fig. G.1. The MSE are presented in Tab. G.1. Note that, for t ≥ 1, 000
days, we do not have measurements of the VAF anymore, so we can not compute the prediction error
MSEV AF

pred .

We get a good agreement between the observed and predicted VAF values already for T = 300
days, but we underestimate the values of the homozygous CF. The credibility intervals are large for
T = 300 days and decrease for T = 600 and T = 1, 000 days.
When looking at the posterior distributions, we can see the impact of the prior knowledge learned
from the cohort: the posterior distributions - in particular those of parameters related to heterozygous
cells (γhet, δ0,het, ρhet) - are close to the prior distributions, especially for T = 300. For ηhet and ηhom,
the prior is chosen uniform and, thus, does not come from the cohort. For δ0,hom and γhom, their
posteriors for T = 300 differ from the prior, and we can see how increasing T updates the posteriors.
Adding more VAF measurements also seems to impact the estimation of ρhom; the more data, the less
variance we have for the posterior.
However, most of the information comes from the observations before T = 300 (and from the prior): the
posterior we obtain with T = 600 or 1,000 does not differ much from the one we get with T = 300. The
reason is that, when increasing T , we only add VAF measurements but no additional observations of
the CF among progenitors. In general, the posterior distributions of patient #12 are close to the prior,
suggesting that their response to the therapy does not deviate too large from those obtained for the 18

T = 300 T = 600 T = 1000

D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i)

VAF 0.0031 0.0011 0.0021 0.0016 0.0015 0.0015 0.0011 NA 0.001
het CF 0.0087 0.0061 0.0067 0.0108 0.0080 0.0086 0.0111 0.0083 0.0089
hom CF 0.0257 0.0377 0.0353 0.0282 0.0417 0.0390 0.0298 0.0442 0.0414

All 0.0375 0.0449 0.0440 0.0406 0.0512 0.0491 0.0420 NA 0.0514

Table G.1: Results for patient # 12. Values of the MSE computed for different assimilation times T (300,
600, or 1000 days), different types of measurements (VAF among mature cells, heterozygous or homozygous

CF among progenitors, or all together), and different observations: either from the control dataset (D(i)
c ),

the one used for the model calibration (D(i)
T ), or the whole dataset (D(i)). For t ≥ 1, 000 days, we do not

have measurements of the VAF, so we can not compute the prediction error and displays NA (Not applicable)
instead.



remaining patients in the cohort. However, we can also see that there is not a good agreement between
the observed and inferred homozygous CF at t = 287, suggesting that the dynamics of the VAF would
agree with what could be expected for the other patients but not the dynamic of the CF. More broadly,
when looking at the residuals, we observe systematic deviations for the heterozygous (overestimation)
and homozygous (underestimation) values (most of them being not used for estimating the model
parameters). This is in line with the previous comment suggesting that the observed dynamics among
progenitor cells for patient # 12 might differ from what would be expected a priori. For more reliable
predictions concerning the heterozygous and homozygous CF dynamics, more than two measurements
of the heterozygous and homozygous CF should be considered when fitting the model.

Figure G.1: Data assimilation results for patient #12. From left to right, the assimilation times are T = 300,
600, and 1,000 days (vertical dash line). At the top, we present the predicted dynamics. In black, the
VAF (median value and 95% credibility interval), and respectively in green and blue, the CF (medians) of
heterozygous and homozygous mutated progenitors. The squares, circles, and triangles correspond to the
clinical/experimental data, either used to calibrate the model (dark colors), or to control the quality of the
predictions (light colors - control dataset). In brown, we represent the IFNα dose variations over treatment
(in µg/week).
Second line, we compare the inferred values (median values, in the y-axis) with those observed (in the x-axis)
for both the control data set and the one used for the model calibration. The error bars correspond to the
95% credibility intervals. At the bottom, we display the residuals (inferred values minus the observed ones)
(y-axis) according to the inferred values (x-axis).



Figure G.2: Posterior distributions (pdf - in purple) of all parameters, for patient #12, according to the
assimilation time T . In grey on the left, we display the prior distribution (that is, the one obtained from the
hierarchical inference based on the 18 remaining patients). For parameters ηhet and ηhom, which refer to the
initial conditions, we choose a non-informative uniform prior. Otherwise, the prior comes from the hierarchical
Bayesian estimation made with the data of the 18 remaining patients. The horizontal dark line represents the
mean value.



G.1.2 Patient #18

We exclude patient #18 from the cohort of the 19 JAK2V 617F patients. For the 18 remaining patients,
we run a hierarchical Bayesian estimation, as presented in § C.1. For patient #18, we will estimate
their parameters, as presented in § C.2, for different assimilation times T . According to the values of
T , a different number of VAF measurements are used for the estimation:

• 4 VAF measurements for T = 300 days,

• 8 VAF measurements for T = 600 days,

• and 11 VAF measurements for T = 1, 000 days.

In all cases, two measurements of the CF among progenitors are considered, the first at t = 0 and the
second at t = 248 days.

The parameter posterior distributions are presented in Fig. G.4 and the results of the predictions
are presented in Fig. G.3. The MSE are presented in Tab. G.2.
The results for patient #18 were detailed in §3.1 in the main text. In general, we can see a good
agreement between the inferred and observed values, both for the VAF and the heterozygous and
homozygous CF. We did not observe systematic deviations concerning the observations used for the
model calibration. However, we tend to underestimate (for T = 600 or T = 1000) the predicted
values of the homozygous CF when overestimating those of the heterozygous CF, such that there is a
compensation leading to a good estimation of the VAF.
For this patient, it is interesting to see how the posterior distribution of some parameters (δ0,hom, δ0,het,
ρhom, γhom) is updated when adding more and more data (i.e., when increasing the assimilation time
T ) when for other parameters, the posterior stays close from the prior (km, γhet). In particular, the
posterior of δ0,hom largely deviates from the prior, already when T = 300, and even more for higher T .
It is also interesting to observe that the posterior distributions of ηhet and ηhom - parameters associated
with the initial quantities of heterozygous and homozygous mutated cells - remain unchanged when
increasing the assimilation time.

T = 300 T = 600 T = 1000

D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i)

VAF 0.0068 0.0066 0.0067 0.0040 0.0006 0.0026 0.0026 0.0005 0.0021
het CF 0.0002 0.0047 0.0041 0.0016 0.0085 0.0076 0.0027 0.0163 0.0145
hom CF 0.0086 0.0065 0.0068 0.0046 0.0045 0.0045 0.0034 0.0062 0.0058

All 0.0155 0.0177 0.0175 0.0102 0.0136 0.0147 0.0087 0.0231 0.0225

Table G.2: Results for patient # 18. Values of the MSE computed for different assimilation times T (300,
600, or 1000 days), different types of measurements (VAF among mature cells, heterozygous or homozygous

CF among progenitors, or all together), and different observations: either from the control dataset (D(i)
c ), the

one used for the model calibration (D(i)
T ), or the whole dataset (D(i)).



Figure G.3: Data assimilation results for patient #18. From left to right, the assimilation times are T = 300,
600, and 1,000 days (vertical dash line). At the top, we present the predicted dynamics. In black, the
VAF (median value and 95% credibility interval), and respectively in green and blue, the CF (medians) of
heterozygous and homozygous mutated progenitors. The squares, circles, and triangles correspond to the
experimental/clinical data, either used to calibrate the model (dark colors), or to control the quality of the
predictions (light colors - control dataset). In brown, we represent the IFNα dose variations over treatment
(in µg/week).
Second line, we compare the inferred values (median values, in the y-axis) with those observed (in the x-axis)
for both the control data set and the one used for the model calibration. The error bars correspond to the
95% credibility intervals. At the bottom, we display the residuals (inferred values minus the observed ones)
(y-axis) according to the inferred values (x-axis).



Figure G.4: Posterior distributions (pdf - in purple) of all parameters, for patient #18, according to the
assimilation time T . In grey on the left, we display the prior distribution. For parameters ηhet and ηhom,
which refer to the initial conditions, we choose a non-informative uniform prior. Otherwise, the prior comes
from the hierarchical Bayesian estimation made with the data of the 18 remaining patients. The horizontal
dark line represents the mean value.



G.1.3 Patient #32

We exclude patient #32 from the cohort of the 19 JAK2V 617F patients. For the 18 remaining patients,
we run a hierarchical Bayesian estimation, as presented in § C.1. For patient #32, we will estimate
their parameters, as presented in § C.2, for different assimilation times T . According to the values of
T , a different number of VAF measurements are used for the estimation:

• 3 VAF measurements for T = 300 days,

• 5 VAF measurements for T = 600 days,

• and 8 VAF measurements for T = 1, 000 days.

In all cases, two measurements of the CF among progenitors are considered, the first at t = 0 and the
second at t = 235 days.

The results of the predictions are presented in Fig. G.5. The MSE are presented in Tab. G.3.
For T = 600, we get poor predictions. Therefore, we study the impact of the choice of another time
point for measuring the clonal architecture among progenitors. The results, presented in the next
paragraph, show that the poor predictions we get for T = 600 can be explained by the choice of
the CF used for inferring the dynamics. In other words, the time point for measuring the clonal
architecture matters.

T = 300 T = 600 T = 1000

D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i)

VAF 0.0164 0.0217 0.0205 0.0049 0.2500 0.1557 0.0065 0.0235 0.0130
het CF 0.0022 0.0010 0.0012 0.0033 0.0007 0.0011 0.0012 0.0010 0.0010
hom CF 0.0073 0.0060 0.0062 0.0006 0.0862 0.0730 0.0015 0.0073 0.0064

All 0.0164 0.0287 0.0279 0.0088 0.3370 0.2299 0.0065 0.0318 0.0205

Table G.3: Results for patient # 32. Values of the MSE computed for different assimilation times T (300,
600, or 1000 days), different types of measurements (VAF among mature cells, heterozygous or homozygous

CF among progenitors, or all together), and different observations: either from the control dataset (D(i)
c ), the

one used for the model calibration (D(i)
T ), or the whole dataset (D(i)).



Figure G.5: Data assimilation results for patient #32. From left to right, the assimilation times are T = 300,
600, and 1,000 days (vertical dash line). At the top, we present the predicted dynamics. In black, the
VAF (median value and 95% credibility interval), and respectively in green and blue, the CF (medians) of
heterozygous and homozygous mutated progenitors. The squares, circles, and triangles correspond to the
clinical/experimental data, either used to calibrate the model (dark colors), or to control the quality of the
predictions (light colors - control dataset). In brown, we represent the IFNα dose variations over treatment
(in µg/week).
Second line, we compare the inferred values (median values, in the y-axis) with those observed (in the x-axis)
for both the control data set and the one used for the model calibration. The error bars correspond to the
95% credibility intervals. At the bottom, we display the residuals (inferred values minus the observed ones)
(y-axis) according to the inferred values (x-axis).

G.1.4 Patient #32 when choosing another time point for measuring the clonal architec-
ture

As we saw in the previous paragraph, the predictions were not good for patient #32 for T = 600 and a
CF measured at t = 235 days. If we run the same computation, but instead of choosing the second CF
observation at t = 235 days, we consider the one at t = 508 days, we obtain the results presented in
Fig. G.6. The predictions for T = 600 are much better (Tab. G.4), illustrating the importance of the
choice of the time point for measuring the clonal architecture. No systematic deviations are observed.
When looking at the posterior distributions (Fig. G.7), we can observe that the posterior distribu-
tions of the parameters related to heterozygous mutated cells do not deviate from the prior, which
is explained by the fact that patient #32 has almost no heterozygous cells. There is especially one
parameter - namely ρhom - whose posterior distribution is updated when increasing the number of
VAF measurements.



T = 600 T = 1000

D(i)
T D(i)

c D(i) D(i)
T D(i)

c D(i)

VAF 0.0133 0.0075 0.0097 0.0071 0.0161 0.0106
het CF 0.0006 0.0010 0.0009 0.0004 0.0011 0.0010
hom CF 0.0063 0.0038 0.0042 0.0051 0.0038 0.0040

All 0.0201 0.0123 0.0148 0.0126 0.0210 0.0156

Table G.4: Results for patient # 32, when considering a measurement of the clonal architecture at t = 0
and t = 508 (Therefore, we do not present the results for T = 300). Values of the MSE computed for
different assimilation times T (600 or 1000 days), different types of measurements (VAF among mature cells,
heterozygous or homozygous CF among progenitors, or all together), and different observations: either from

the control dataset (D(i)
c ), the one used for the model calibration (D(i)

T ), or the whole dataset (D(i)).

Figure G.6: Data assimilation results for patient #32, when considering a measurement of the clonal architec-
ture at t = 0 and t = 508 (Therefore, we do not display the results for T = 300). On the left, we have T = 600,
and on the right, T = 1, 000. At the top, we present the predicted dynamics. In black, the VAF (median
value and 95% credibility interval), and respectively in green and blue, the CF (medians) of heterozygous and
homozygous mutated progenitors. The squares, circles, and triangles correspond to the clinical/experimental
data, either used to calibrate the model (dark colors), or to control the quality of the predictions (light colors
- control dataset). In brown, we represent the IFNα dose variations over treatment (in µg/week).
Second line, we compare the inferred values (median values, in the y-axis) with those observed (in the x-axis)
for both the control data set and the one used for the model calibration. The error bars correspond to the
95% credibility intervals. At the bottom, we display the residuals (inferred values minus the observed ones)
(y-axis) according to the inferred values (x-axis).



Figure G.7: Posterior distributions (pdf - in purple) of all parameters, for patient #32, according to the
assimilation time T . Here, we consider that the CF is measured at t = 0 and t = 508 (instead of 235). In
grey on the left, we display the prior distribution. For parameters ηhet and ηhom, which refer to the initial
conditions, we choose a non-informative uniform prior. Otherwise, the prior comes from the hierarchical
Bayesian estimation made with the data of the 18 remaining patients. The horizontal dark line represents the
mean value.



G.1.5 Synthesis

This section summarises the results we get for patients #12, 18, and 32. In Tab. G.5, we display the
predicted error based on the VAF values (MSEV AF

pred ). In Tab. G.6, we present the estimated parameter
vector (mean posterior value) for the assimilation time T = 600. These are the values used when
studying the treatment optimization (section G.2) and the experimental design (section G.3). The pa-
rameter km is similar for each of our three patients. It might suggest that the proliferative advantage of
the JAK2V 617F mutated cells at the last stages of hematopoiesis is a property of the mutated cell and
not patient-dependent. ηhet and ηhom correspond to the estimated initial quantities of heterozygous
and homozygous mutated HSCs compared to the quantities of WT HSCs. Patient #18 initially has
far more mutated cells than the two others, which explains why patient #18 is diagnosed with a PMF,
a more advanced disease than PV. The values of 1/γhet do not much differ between the three patients,
and actually, do not differ much from the prior (that is, from the population distribution), suggesting
that the effect of IFNα on the quiescence exit of mutated HSCs does not differ much between patients.
For homozygous mutated HSCs, on the contrary, the value of 1/γhom differs according to the patient,
with a trend to have lower values (that is, higher rate of quiescence exit) when there are more mutated
HSCs (but three patients is too few to have a statistical significance). Overall, patients # 12 and #18,
who have few heterozygous mutated cells, have similar estimated parameter values when associated
with heterozygous mutated cells. This is explained by the fact that, for them, the posterior distribu-
tions of the parameter associated with the heterozygosity will not differ much from the prior. Patient
# 18 will have their heterozygous mutated HSCs slightly less targeted than the two other patients
(according to the estimated value for ρhet). However, on the other hand, their homozygous mutated
cells will be targeted more efficiently (since patient # 18 has a lower value for δ0,hom and a higher
value for ρhom, compared to the two others). Here again, the potential difference between patient #18
vs patients #12 and 32 might lie in the difference at the beginning of the therapy, that is, a much
higher mutated heterozygous and homozygous CF before the start of the treatment.
To sum up, differences between the estimated model parameters could be, of course, explained by an
inter-individual heterogeneity, but also by the fact that the patients have different prognostic when
they start the therapy, with patient # 18 having the most severe one (PMF) associated with a high
proportion of both heterozygous and homozygous mutated cells.

T #12 #18 #32 #32 (bis)
300 0.0011 0.0066 0.0217 NR
600 0.0015 0.0006 0.2500 0.0075
1,000 NR 0.0005 0.0235 0.0161

Table G.5: Results of the prediction error MSEV AF
pred . NR means Not Relevant. #32 (bis) corresponds to the

dataset of patient #32 when choosing the second observation for the CF at t = 508 > 300.

We also explored the relevance of our observation model - presented in eq. (A.1) - with a QQ-plot
in Fig. G.8 or with the residual plots presented at the bottom of Fig. G.1, G.3, G.5, and G.6. However,
these results suggest that the assumption of Gaussian distributed errors might not be totally relevant,
and other choices could be more appropriate. It should also be recalled that the dynamic model
used to describe the on-treatment dynamics of JAK2V 617F patients is necessarily a simplification of
reality. Consequently, the model could also introduce some biases, explaining why the residuals are
not randomly distributed around zero in Fig. G.1, G.3, G.5, and G.6.



Figure G.8: QQ-plot showing to which extent the assumption of Gaussian distributed errors, as expressed by
equation (A.1), holds for the VAF observations (when used to estimate the model parameters). According to

equation (A.1), ŷ
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individual i, when y
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k corresponds to the theoretical value (median values obtained after propagating the

uncertainties from the posterior distribution of the parameters to the model output - computations made with
the assimilation time T = 1, 000 days). The values used for computing the QQ-plot are associated with the
VAF measurements obtained before T = 1, 000 days of treatment for patient #12 (orange circles), #18 (black),
and #32 (blue).
The QQ-plot differs from what would be ideally expected if the errors were truly distributed according to
eq. (A.1) and if the model was the real one. Our model is necessarily a simplification of reality; it is not
excluded that it has some bias and might not be totally suitable to describe the clinical data. However, if not
perfect, the considered model resulted from a model selection procedure performed in [9] and therefore turned
out to be the most appropriate given a large set of (217) potential models. More likely, the assumption of
Gaussian distributed errors, as we initially introduced it in [15], might not be verified, and it would be relevant
to explore if some noise models were more suitable.



Parameter #12 #18 #32 (bis) Baseline (WT)
km 6.97 6.96 7.22 1.0
ηhom 0.14 1.83 0.36 -

1/γhom 113.0 61.58 80.4 300.0
δ0,hom 0.19 0.07 0.35 0.0
ηhet 0.16 2.14 0.11 -

1/γhet 171.8 144.8 178.6 300.0
δ0,het 0.18 0.17 0.16 0.0
ρhom 3.47 4.55 1.55 0.0
ρhet 3.5 2.18 3.26 0.0

dinf 0.093 (17µg/week) 0.138 (25µg/week) 0.345 (62µg/week) -

Table G.6: Estimated (mean posterior value) parameter vectors for patient #12, 18, and 32, when the assim-
ilation time is T = 600. For patient #32, we present the results when considering a measurement of the CF
at time t = 508 > 300. In addition, we present the estimated minimal IFNα dose dinf (see § C.2.4). The last
column gives an indication of the values we would have for WT cells, or more broadly, for cell populations
which, even if mutated, would not have a proliferative advantage compared to WT cells, neither be targeted
by IFNα.

G.2 Optimization

For the optimization part of this study, we consider having observed the patient (either patient #12,
18, or 32) before T = 600 days. We estimated their parameter vector from the observations before
that time, as reported in Tab. G.6. In this section, we aim to optimize the therapy from time T = 600
days.

G.2.1 Patient #12

We consider T = 600 days. Using the observations of patient #12 before that time (7 VAF observa-
tions, two clonal architectures: the first at t = 0, the second at t = 287 days) and the prior knowledge
obtained from the 18 remaining patients, we estimated the posterior distribution of the model param-
eters previously.
We now consider that the actual parameter vector is the one having been estimated (see Tab. G.6)
and study how different dose strategies impact the response to the treatment after T = 600 days.
With the estimated parameter vector, the minimal dose - under which the treatment would not target
sufficiently the mutated HSCs, resulting in a relapse - is estimated to be equal to dinf = 0.093, that is,
17µg/week. We consider different scenarios for how drug toxicity increases as a function of the dose,
as presented in § 2.3.3 in the main text.
For each scenario, we study our three therapeutic strategies - presented in §2.3.2 in the main text - for
which we find the parameters (e.g., the choice of the dose d̄) that minimize the value of M(τ). This
latter value corresponds to the toxicity-related amount of IFNα administered from T to the time τ ,
this latter being the time when the therapy could be interrupted (section D). We can compare the
three therapeutic strategies for a given drug-toxicity relation and select the one with the best (i.e., the
lowest) value for M(τ). Results are presented in Fig. G.9. It turns out that the constant strategy is
found to be the most optimal for the linear and the concave scenario. For the convex scenario, the pa-
rameter vectors which minimize M(τ) for the periodic and the decreasing strategies are such that the
three optimal strategies are almost the same. For the composite relation, dinf = 0.093 < dlow := 0.1,
dlow being the threshold below which we consider there is no toxicity (see E.4). Thus, it turns out in
that case that each therapeutic strategy can be optimized to avoid administrating a dose above the
value of dlow, such that we end up with a zero value for M(τ). Under the hypothesis of the composite
dose-toxicity relation, all optimal therapeutic strategies are close to the constant one. Thus, the con-
stant strategy can also here be considered the most optimal.

For patient #12, the trade-off would be to treat them with a decreasing dose, starting at T = 600
days with d̄ = 86µg/week, a decreasing factor λ = 0.45, and a period L = 16 months, until the
treatment could be interrupted, here at age 77. This trade-off strategy would be:



• in the top 22 percent if the dose-toxicity relation were linear,

• in the top 46 percent if the dose-toxicity relation were convex,

• in the top 46 percent if the dose-toxicity relation were concave,

• and in the top 47 percent if the dose-toxicity relation were composite.

G.2.2 Patient #18

Using the observations of patient #18 before T = 600 (8 VAF observations, two clonal architectures:
the first at t = 0, the second at t = 248 days) and the prior knowledge obtained from the 18 remaining
patients, we previously estimated the posterior distribution of the model parameters.
We now consider that the actual parameter vector is the estimated one (see Tab. G.6) and study how
different dose strategies impact the response of the treatment after T = 600 days. With the estimated
parameter vector, the minimal dose is estimated to be equal to dinf = 0.138, that is, 25µg/week.
The constant strategy is found to be the most optimal for each of the four scenarios of dose-toxicity
we study (Fig. G.10).

For patient #18, the trade-off would be to treat them with a constant dose of 61µg/week, until the
treatment could be interrupted, here at age 72. This trade-off strategy would be:

• in the top 0.09 percent if the dose-toxicity relation were linear,

• in the top 6.6 percent if the dose-toxicity relation were convex,

• in the top 7.5 percent if the dose-toxicity relation were concave,

• and in the top 3.9 percent if the dose-toxicity were composite.

G.2.3 Patient #32

The results related to patient #32 have been detailed in the main text (§3.2). Results are also displayed
here in Fig. G.11.



Figure G.9: Results of the treatment optimization for patient #12. Four hypothetical relationships between
IFNα toxicity and the dose are studied: linear (at the top), convex (second line), concave (third line), and
composite (at the bottom). For each of them, three therapeutic strategies - constant on the left, periodic on the
middle, and decreasing on the right - are optimized to minimize M(τ) (denoted by M on the figures), which is
the toxicity-related amount of IFNα administered from T (vertical dashed line) to the treatment interruption
time τ (when the weekly dose of interferon - represented in beige - drops to zero). The dynamics of the VAF
among mature cells (black line), the heterozygous CF among progenitors (green line), the homozygous CF
among progenitors (blue line), and the VAF among HSCs (red dotted line) will differ for t ≥ T according to
how the doses vary (depending on the considered therapeutic strategy and its parameter values). After the
treatment interruption, only the dynamics of the VAF among HSCs is computed (and displayed), according to
equation (D.3). All graphs are displayed until 90 years old, the age above which the VAF among HSCs should
not exceed 7.5%, as explained in section D. M values are only comparable for a given dose-toxicity relation;
the lower, the better.
If the actual dose-toxicity relation were linear, the constant strategy would be optimal for d̄ = 36µg/week (with
the associated age of treatment interruption τ = 72 years and an optimal value of M(τ) = 1101), the periodic
strategy would be optimal for d̄ = 43µg/week and L = 3 months, and the decreasing one for d̄ = 40µg/week,
L = 20 months, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were convex, the constant strategy would be optimal for d̄ = 18µg/week,
the periodic strategy would be optimal for d̄ = 18µg/week and L = 3 months, and the decreasing one for
d̄ = 18µg/week, L = 3 months, and λ = 0.95.
If the actual dose-toxicity relation were concave, the constant strategy would be optimal for d̄ = 79µg/week,
the periodic strategy would be optimal for d̄ = 90µg/week and L = 22 months, and the decreasing one for
d̄ = 83µg/week, L = 18 months, and λ = 0.95. Among these three strategies, the constant and decreasing ones
are both the best.
If the actual dose-toxicity were composite, with a low threshold dlow = 0.1 below which zero toxicity is assumed,
then each strategy for which the dose is maintained below this threshold would lead to a zero value for M(τ).



Figure G.10: Results of the treatment optimization for patient #18. Four hypothetical relationships between
IFNα toxicity and the dose are studied: linear (at the top), convex (second line), concave (third line), and
composite (at the bottom). For each of them, three therapeutic strategies - constant on the left, periodic on the
middle, and decreasing on the right - are optimized to minimize M(τ) (denoted by M on the figures), which is
the toxicity-related amount of IFNα administered from T (vertical dashed line) to the treatment interruption
time τ (when the weekly dose of interferon - represented in beige - drops to zero). The dynamics of the VAF
among mature cells (black line), the heterozygous CF among progenitors (green line), the homozygous CF
among progenitors (blue line), and the VAF among HSCs (red dotted line) will differ for t ≥ T according to
how the doses vary (depending on the considered therapeutic strategy and its parameter values). After the
treatment interruption, only the dynamics of the VAF among HSCs is computed (and displayed), according to
equation (D.3). All graphs are displayed until 90 years old, the age above which the VAF among HSCs should
not exceed 7.5%, as explained in section D. M values are only comparable for a given dose-toxicity relation;
the lower, the better.
If the actual dose-toxicity relation were linear, the constant strategy would be optimal for d̄ = 54µg/week (with
the associated age of treatment interruption τ = 73 years and an optimal value of M(τ) = 3191), the periodic
strategy would be optimal for d̄ = 65µg/week and L = 3 months, and the decreasing one for d̄ = 65µg/week,
L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were convex, the constant strategy would be optimal for d̄ = 32µg/week,
the periodic strategy would be optimal for d̄ = 36µg/week and L = 3 months, and the decreasing one for
d̄ = 43µg/week, L = 19 months, and λ = 0.95.
If the actual dose-toxicity relation were concave, the constant strategy would be optimal for d̄ = 122µg/week,
the periodic strategy would be optimal for d̄ = 157µg/week and L = 3 months, and the decreasing one for
d̄ = 137µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were composite, the constant strategy would be optimal for d̄ = 100µg/week,
the periodic strategy would be optimal for d̄ = 104µg/week and L = 3 months, and the decreasing one for
d̄ = 108µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.



Figure G.11: Results of the treatment optimization for patient #32. Four hypothetical relationships between
IFNα toxicity and the dose are studied: linear (at the top), convex (second line), concave (third line), and
composite (at the bottom). For each of them, three therapeutic strategies - constant on the left, periodic on the
middle, and decreasing on the right - are optimized to minimize M(τ) (denoted by M on the figures), which is
the toxicity-related amount of IFNα administered from T (vertical dashed line) to the treatment interruption
time τ (when the weekly dose of interferon - represented in beige - drops to zero). The dynamics of the VAF
among mature cells (black line), the heterozygous CF among progenitors (green line), the homozygous CF
among progenitors (blue line), and the VAF among HSCs (red dotted line) will differ for t ≥ T according to
how the doses vary (depending on the considered therapeutic strategy and its parameter values). After the
treatment interruption, only the dynamics of the VAF among HSCs is computed (and displayed), according
to equation (D.3). All graphs are displayed until 90 years old, the age above which the VAF among HSCs
should not exceed 7.5%, as explained in §D. M values are only comparable for a given dose-toxicity relation;
the lower, the better.
If the actual dose-toxicity relation were linear, the constant strategy would be optimal for d̄ = 135µg/week
(with the associated age of treatment interruption τ = 61 years and an optimal value of M(τ) = 3764), the
periodic strategy would be optimal for d̄ = 153µg/week and L = 22 months, and the decreasing one for
d̄ = 144µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were convex, the constant strategy would be optimal for d̄ = 86µg/week,
the periodic strategy would be optimal for d̄ = 90µg/week and L = 23 months, and the decreasing one for
d̄ = 100µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were concave, the constant strategy would be optimal for d̄ = 180µg/week,
the periodic strategy would be optimal for d̄ = 180µg/week and L = 20 months, and the decreasing one for
d̄ = 180µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.
If the actual dose-toxicity relation were composite, the constant strategy would be optimal for d̄ = 126µg/week,
the periodic strategy would be optimal for d̄ = 137µg/week and L = 2 years, and the decreasing one for
d̄ = 133µg/week, L = 2 years, and λ = 0.95. Among these three strategies, the constant one is the best.



G.3 Experimental Design

Our capacity to recommend good therapeutic strategies to clinicians depends on our capacity to cor-
rectly infer the model parameters of new patients, from only minimal observations. We showed in
section G.1 that two observations of the clonal architecture and several VAF measurements before
600 days were sufficient to get accurate predictions. But we also illustrated with patient #32 that
the quality of the predictions could highly depend on when the clonal architecture is measured (Sec-
tion G.1.4). In this section, we aim to investigate whether the choice of the timing for measuring
the heterozygous and homozygous CF could be rationalized. We apply the method we described in
section F, and present first the results we get for patient #12, then the results for patients #18 and #32.

We consider T = 600 days. Using the clinical observations of patient #12 before that time (7
VAF observations, two clonal architectures: one at t = 0, the second one at t = 287) and the prior
knowledge obtained from the 18 remaining patients, we estimated the posterior distribution of the
model parameters and showed that we could make good predictions (section G.1.1).
We now consider that the actual parameter vector is the one having been estimated (mean of the
posterior distribution). From it, we get the theoretical dynamics of the VAF and the heterozygous
and homozygous CF over [0, 600] days (solid lines on the top of Fig. G.12). We simulate 600 different
synthetic datasets DTobs

. All of them have in common 7 VAF values (pseudo-observations) - obtained
from the theoretical values by adding some noise - and the CF (pseudo-observation) at the initial time.
All of them differ in the time point Tobs of the second CF (pseudo-observation). For each value of
Tobs ∈ {1, 2, · · · , 600}, we estimate the parameter vector that maximizes the posterior density function,
and infer the associated CF dynamics. We can then evaluate the error between the estimated and the
theoretical CF dynamics, and find for which Tobs the error is minimal. Results for patient #12 are
presented in Fig. G.12. For them, we find that the pseudo-observation time that would result in the
most accurate parameter estimation is Tobs = 100 days, that is, about three months after the start of
the therapy. This observation time corresponds to when the theoretical VAF and CF for patient #12
are maximal over [0, 600], and also when there is a dose increase. However, when applying the same
methods with patients #18 and #32, we find that it would be better to observe the clonal architecture
later, at 476 days after the start of the therapy for patient #18 (Fig. G.13), when, for patient #32, the
error between the theoretical and inferred CF is continuously decreasing when increasing the pseudo-
observation time (Fig. G.14. ) We are therefore unable to identify a common trend from the study of
these three patients and only show that there would be better timings than others, which would be
potentially patient-dependent.



Figure G.12: Optimal experimental design for patient #12. From the theoretical VAF dynamics (solid black
line) of patient #12, we simulate noisy VAF pseudo-observations (black square). From the theoretical dynamics
of the heterozygous (solid green line) and homozygous (solid blue line), we consider that we observe (pseudo-
observations) the CF at the initial time and also at an additional observation time Tobs. In the bottom (purple
line), we show the error between the theoretical and the inferred CF (L1-norm) according to the choice of Tobs.
We see that the error would be minimal for Tobs = 100. On the top, the dashed lines correspond to the inferred
dynamics when the synthetic dataset includes the CF pseudo-observation at Tobs = 100 days.



Figure G.13: Optimal experimental design for patient #18. From the theoretical VAF dynamics (solid black
line) of patient #18, we simulate noisy VAF pseudo-observations (black square). From the theoretical dynamics
of the heterozygous (solid green line) and homozygous (solid blue line), we consider that we observe the CF
(pseudo-observations) at the initial time and also at an additional observation time Tobs. In the bottom (purple
line), we show the error between the theoretical and the inferred CF (L1-norm) according to the choice of Tobs.
We see that the error would be minimal for Tobs = 476. On the top, the dashed lines correspond to the inferred
dynamics when the simulated dataset includes the CF pseudo-observation at Tobs = 476 days.



Figure G.14: Optimal experimental design for patient #32. From the theoretical VAF dynamics (solid black
line) of patient #32, we simulate noisy VAF pseudo-observations (black square). From the theoretical dynamics
of the heterozygous (solid green line) and homozygous (solid blue line), we consider that we observe (pseudo-
observations) the CF at the initial time and also at an additional observation time Tobs. In the bottom (purple
line), we show the error between the theoretical and the inferred CF (L1-norm) according to the choice of Tobs.
We see that the error continuously decreases with Tobs. On the top, the dashed lines correspond to the inferred
dynamics when the simulated dataset includes the CF pseudo-observation at Tobs = 600 days.
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