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Abstract: In this paper we propose a delay-dependent analysis of the positive invariance
property with respect to linear discrete-time systems with delayed states. An appropriate model
transformation is employed, together with a matrix parametrization, which allow the derivation
of delay-dependent invariance conditions of polyhedral sets with respect to the transformed
model. We then show that such conditions imply the confinement of the state trajectories of the
original system in the set, as long as the initial states satisfy additional constraints related to the
system dynamics. The characterization of this set of admissible initial conditions gives rise to the
proposition of a less conservative definition of set-invariance. We illustrate through numerical
examples the fact that, under the proposed definition, confinement of state trajectories in the
set can be achieved even though it is not invariant according to the classical definition.
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1. INTRODUCTION

Positive invariance of sets is a key concept for analysis
and control design of dynamic systems subject to state
and input constraints. Aside its standalone importance,
it gained the interest of the control community also due
to its close link with the classical stability theory. The
literature on this subject is mature nowadays, mainly for
linear systems (Blanchini and Miani, 2015). When time-
delay on the system states or inputs enters the picture,
the analysis and control design problems become more
involved (Gielen et al., 2012; Athanasopoulos and Lazar,
2014; Liu et al., 2020).

It is worth noticing the interest of positive invariance stud-
ies in different fields of applications of time-delay systems
as, for example, logistics problems (Farraa et al., 2021),
autonomous systems (Michel et al., 2019) or network con-
trol (Lombardi et al., 2012) to mention just a few.

Linear discrete-time systems affected by delays can be
described by finite-dimensional delay difference equations
(dDDEs). For this reason, the study of set invariance is
easier for such systems than for the continuous-time coun-
terparts, which are infinite-dimensional. Many contribu-
tions can be found in the literature on positive invariance
for discrete-time delay systems. For a guided tour in this
subject, the reader is referred to Laraba et al. (2016).

Concerning, in particular, linear time-delay systems and
polyhedral invariant sets, defined by linear constraints

⋆ The work of C.E.T. Dórea has been financed by CAPES, Brazil.

on the system states, the classical definition of positive
invariance, or D-invariance, (Hennet and Tarbouriech,
1998; Vassilaki and Bitsoris, 1999; Stanković et al., 2014)
amounts to imply that the state trajectory remains in
the set if the initial conditions belong to it. Since the
initial conditions for a discrete-time system with delayed
states correspond to the past states in a time interval the
size of the delay, this definition results quite conservative,
because it accepts past state trajectories that might never
exist within the regular behavior of the system. As a
consequence of this classical definition, the conditions for
set invariance that we find in the literature are indepen-
dent of the size of the delay. Knowing that the roots of
the characteristic polynomial of the system evolve as a
function of the delay and that this possibly affects stability,
it becomes clear that the conditions for the existence of D-
invariant sets are restrictive if they are delay-independent.

For continuous-time systems, a different perspective has
been presented in Dórea et al. (2022), under which a
delay-dependent analysis of set invariance can be made.
From a transformation of the original model, D-invariance
conditions were derived depending on the size of the
delay. A linear programming approach was proposed to
check if a given polyhedron is D-invariant with respect
to (w.r.t.) the transformed model. It was established

that invariance w.r.t. the transformed model can imṕly
constraint satisfaction for the original model if its initial
conditions are tied by the system dynamics.

In the present work, besides extending the results of Dórea
et al. (2022) to discrete-time systems, we formally prove

Delay-Dependent Invariance of Polyhedral
Sets for Discrete-Time Linear Systems ⋆
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Signaux et Systèmes, 91190, Gif-sur-Yvette, France (e-mail:
Sorin.Olaru@centralesupelec.fr, silviu.niculescu@centralesupelec.fr)

∗∗∗ INRIA Saclay, 91120 Palaiseau, France.

Abstract: In this paper we propose a delay-dependent analysis of the positive invariance
property with respect to linear discrete-time systems with delayed states. An appropriate model
transformation is employed, together with a matrix parametrization, which allow the derivation
of delay-dependent invariance conditions of polyhedral sets with respect to the transformed
model. We then show that such conditions imply the confinement of the state trajectories of the
original system in the set, as long as the initial states satisfy additional constraints related to the
system dynamics. The characterization of this set of admissible initial conditions gives rise to the
proposition of a less conservative definition of set-invariance. We illustrate through numerical
examples the fact that, under the proposed definition, confinement of state trajectories in the
set can be achieved even though it is not invariant according to the classical definition.

Keywords: Linear systems, time-delay, invariant sets, constraints.

1. INTRODUCTION

Positive invariance of sets is a key concept for analysis
and control design of dynamic systems subject to state
and input constraints. Aside its standalone importance,
it gained the interest of the control community also due
to its close link with the classical stability theory. The
literature on this subject is mature nowadays, mainly for
linear systems (Blanchini and Miani, 2015). When time-
delay on the system states or inputs enters the picture,
the analysis and control design problems become more
involved (Gielen et al., 2012; Athanasopoulos and Lazar,
2014; Liu et al., 2020).

It is worth noticing the interest of positive invariance stud-
ies in different fields of applications of time-delay systems
as, for example, logistics problems (Farraa et al., 2021),
autonomous systems (Michel et al., 2019) or network con-
trol (Lombardi et al., 2012) to mention just a few.

Linear discrete-time systems affected by delays can be
described by finite-dimensional delay difference equations
(dDDEs). For this reason, the study of set invariance is
easier for such systems than for the continuous-time coun-
terparts, which are infinite-dimensional. Many contribu-
tions can be found in the literature on positive invariance
for discrete-time delay systems. For a guided tour in this
subject, the reader is referred to Laraba et al. (2016).

Concerning, in particular, linear time-delay systems and
polyhedral invariant sets, defined by linear constraints
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Carlos E. T. Dórea ∗ Sorin Olaru ∗∗

Silviu-Iulian Niculescu ∗∗,∗∗∗

∗ Department of Computer Engineering and Automation, Universidade
Federal do Rio Grande do Norte, 59078-900 Natal, RN, Brazil (e-mail:

cetdorea@dca.ufrn.br).
∗∗ Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des
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that D-invariance w.r.t. the transformed model imply con-
straint satisfaction in the original model provided that the
initial conditions belong to an admissible set, which is also
formally characterized. That gives rise to the proposition
of a new definition of set invariance for time-delay sys-
tems, which is much less conservative than the classical
definition. We develop numerical examples that show how
useful this new definition can be, by certifying constraint
satisfaction when the concerned set is not D-invariant. We
close the presentation drawing some conclusions.

Notation: Z[a,b], with a, b ∈ Z stands for the set of inte-
gers i such that a ≤ i ≤ b. The Minkowski sum of two sets
P,Q ⊂ Rn is defined by: P ⊕Q = {p+ q | p ∈ P, q ∈ Q}.

2. LINEAR DISCRETE-TIME DELAY SYSTEM

Consider a linear discrete-time system represented by
delay-difference equations of the form:

x(k + 1) = Ax(k) +Adx(k − d), d > 0, (1)

with the initial conditions x(i), i ∈ Z[−d,0]. Here, x ∈ Rn

denotes the state vector and d ∈ Z∗
+ the time-delay.

In order to bring more flexibility within the positive
invariance analysis performed next, we introduce a model
transformation of (1) and detail its ingredients in a two
stage procedure. First, we introduce an auxiliary variable
K ∈ Rn×n such that the time-delay model above can be
rewritten as:

x(k + 1) = (A+K)x(k)+ (Ad −K)x(k − d)−
−K(x(k)− x(k − d)).

Now, let us write the difference in the last term as:

x(k)− x(k − d) =

−1∑
i=−d

(x(k + i+ 1)− x(k + i)),

leading to the following transformed model:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d)

−K
−1∑

i=−d

(x(k + i+ 1)− x(k + i)).

Using the model (1) to account for x(k + i+ 1) leads to:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d)

−K
−1∑

i=−d

(Ax(k + i) +Adx(k + i− d)− x(k + i))

and, finally:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d)

−
−1∑

i=−d

K(A− I)x(k + i)−
−d−1∑
i=−2d

KAdx(k + i))
(2)

with the initial conditions x(i), i ∈ Z[−2d,0].

As discussed in (Niculescu, 2001) in the continuous-time
framework, the use of this kind of parametrized model
transformation allows decoupling delay-independent modes
from delay-dependent ones by appropriately exploiting the
system’s structure. We will show in the sequel how this
artifact can be of help in the discrete-time framework as
well.

From the derivation of the transformed model, one can
see that the equivalence of the original model (1) with
respect to possible state trajectories holds only if x(k +
i+ 1) = Ax(k + i) +Adx(k + i− d) for i ∈ Z[−d,−1]. This
equivalence is formally established as follows:

Theorem 1. Consider systems (1) and (2) and let their
state trajectories be denoted, respectively, by x(k), k ∈ Z+

with initial conditions x(i), i ∈ Z[−d,0], and by xt(k),
k ∈ Z+ with initial conditions xt(i), i ∈ Z[−d,d]. If the
initial conditions of (2) are given by:

xt(i) = x(i), for i ∈ Z[−d,0],
xt(i+ 1) = Ax(i) +Adx(i− d), for i ∈ Z[0,d−1],

(3)

Then, xt(k) = x(k) ∀k ≥ 0.

Proof: First, we notice that the state trajectories of (1)
and (2) coincide in the interval Z[−d,d] as follows:

• For −d ≤ k ≤ 0, xt(k) coincide with the initial
conditions of (1).

• For 1 ≤ k ≤ d, xt(k) is given by the dynamics of (1).

For k = d+ 1, the state xt is given by (2):

xt(d+ 1) = (A+K)xt(d) + (Ad −K)xt(0)

−K
−1∑

i=−d

(Axt(d+ i) +Adxt(i)− xt(d+ i))

From (3), Axt(d + i) + Adxt(i) = xt(d + i + 1) for
i ∈ Z[−d,−1]. Hence:

xt(d+ 1) = (A+K)xt(d) + (Ad −K)xt(0)

−K
−1∑

i=−d

(xt(d+ i+ 1)− xt(d+ i))

= (A+K)xt(d) + (Ad −K)xt(0)−K(xt(d)− xt(0))
= Axt(d) +Adxt(0) = Ax(d) +Adx(0) = x(d+ 1).

Now, the same development can be made for k = d+2 and,
naturally by induction, for k = d+ i, ∀i ≥ 2, proving that
the state trajectories x(k) and xt(k) coincide for k ≥ 0. �

This Theorem establishes conditions under which a state
trajectory of the original model is also a trajectory of the
transformed model, and will be a key to analyse positive
invariance w.r.t. (1) from results obtained for (2). In the
sequel, we study positive invariance w.r.t. (2) and the link
of this property with the state trajectories of the original
system.

3. POSITIVELY INVARIANT POLYHEDRAL SETS
OF THE TRANSFORMED MODEL

We focus next on the analysis of the positive invariance
property of given sets in the state space. We adopt the
following definition (Lombardi et al., 2011):

Definition 1. Given a scalar 0 ≤ λ ≤ 1, a set Ω ⊂ Rn

containing the origin is called positively D-invariant with
respect to the time-delay system (1) if for any initial
conditions x(i) ∈ Ω, i ∈ Z[−d,0], it follows that x(k) ∈
λΩ, ∀k ∈ Z+.

This definition is equivalent to those of delay-independent
positive invariance of Hennet and Tarbouriech (1998) and
of positive invariance w.r.t. an ARMA model of Vassilaki
and Bitsoris (1999). If 0 ≤ λ < 1, Ω is additionally said to
be contractive.
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Necessary and sufficient (delay-independent) conditions for
D-invariance have been established as follows (Lombardi
et al., 2011):

Theorem 2. A set Ω is positively D-invariant w.r.t. (1) if,
and only if: AΩ⊕AdΩ ⊂ λΩ, 0 ≤ λ ≤ 1.

The D-invariance definition can be straightforwardly ex-
tended to the transformed system (2), but with the ini-
tial conditions defined on a larger interval: x(i), with
i ∈ Z[−2d,0].

Consider now a convex polyhedral set containing the origin
in its interior, described by Ω = {x ∈ Rn | Fx ≤ w}, with
F ∈ Rf×n, w ∈ Rf , w > 0. The inequalities here are taken
component-wise.

We establish necessary and sufficient conditions for pos-
itive invariance of the polyhedron Ω with respect to the
transformed system (2).

Theorem 3. Ω is positively D-invariant w.r.t. system (2) if,
and only if, there exist nonnegative matrices H,L,M,N ∈
Rf×f such that:

HF = F (A+K) (4)

LF = F (Ad −K) (5)

MF =−FK(A− I) (6)

NF =−FKAd (7)

(H + L+ d(M +N))w ≤ w. (8)

Proof: (Only if:) Consider a state x(k) ∈ Ω. At time k, the
following conditions are required by Definition 1 of positive
D-invariance w.r.t. system (2):



Fx(k) ≤ w, Fx(k − d) ≤ w,

F
−1

i=−d

x(k + i) ≤
−1

i=−d

w = dw,

F
−d−1
i=−2d

x(k + i) ≤ dw.

(9)

One can notice that the conditions (9) define a polyhedron
on the finite-dimensional space represented by the vector:

[x(k)T x(k − d)T
−1

i=−d

x(k + i)T
−d−1
i=−2d

x(k + i)T ]T . (10)

For D-invariance, it is necessary that x(k+1) ∈ Ω, hence:

Fx(k + 1) = F (A+K)x(k) + F (Ad −K)x(k − d)

−FK(A− I)
−1

i=−d

x(k + i)− FKAd

−d−1
i=−2d

x(k + i) ≤ w.

(11)

This condition defines a polyhedron on the space of (10) as
well. Then, a necessary condition for positive D-invariance
of Ω is that the polyhedron defined by (9) be included in
the polyhedron defined by (11).

According to the so-called extended Farkas’ Lemma (see,
e.g. Hennet and Tarbouriech (1998)) this inclusion holds if,
and only if, there exist non-negative matrices H,L,M,N
such that conditions (4)-(8) hold.

(If:) We assume that x(k + i) ∈ Ω in a time window of
width 2d+ 1, i.e.:

Fx(k + i) ≤ w, i ∈ Z[−2d,0]. (12)

Then, from (2) we have that:

Fx(k + 1) = F ((A+K)x(k) + (Ad −K)x(k − d)

−
−1

i=−d

K(A− I)x(k + i)−
−d−1
i=−2d

KAdx(k + i))).

From (4)-(7), (12), and (8):

Fx(k + 1) = HFx(k) + LFx(k − d)

+
−1

i=−d

MFx(k + i) +

−d−1
i=−2d

NFx(k + i))

≤ Hw + Lw + dMw + dNw ≤ w.

We have proved that x(k + 1) ∈ Ω if x(k + i) ∈ Ω,
i ∈ Z[−2d,0] for an arbitrary k ∈ Z+. Since, from Definition
1, this hypothesis is true for k = 0, we conclude, by
induction, that x(k) ∈ Ω ∀k ∈ Z+. �

For a given polyhedral set Ω (a priori known F and
w), conditions (4)-(7) are linear on the matrix variables
H,L,M,N and K.

For a given delay d, condition (8) is linear as well. In this
case, positive D-invariance of Ω can be checked by solving
the following linear programming (LP) problem:

min
λ,K,H,L,M,N

λ

s.t.: (4)-(7)
(H + L+ d(M +N))w − λw ≤ 0
H,L,M,N ≥ 0

(13)

If the optimal solution λ∗ is such that λ∗ ≤ 1, then Ω is
positively D-invariant for the given delay d.

Let dr ∈ R be defined by: dr = min
i

wi − (H∗
i + L∗

i )w

(M∗
i +N∗

i )w
. A

guaranteed value for the integer d > 0 such that positive
D-invariance of Ω is satisfied is given by:

dM = max
d∈Z∗

+

d such that d ≤ dr.

Such a dM may not be the maximal admissible d though,
because different values of K,H,L,M,N can be obtained
if one chooses another value of d in Problem (13). As
such, these matrices can be used to improve the maximal
admissible delay granting the positive invariance of the
pre-defined polyhedral set Ω.

As usual in the set-invariance literature (Hennet and
Tarbouriech, 1998), simplified expressions can be obtained
if the polyhedral set Ω is symmetrical w.r.t. to the origin,
i.e.:

Ω = {x ∈ Rn | |F̄ x| ≤ w̄} (14)

Corollary 1. A symmetrical polyhedral set Ω is positively
D-invariant w.r.t. system (2) if, and only if, there exist
matrices H̄, L̄, M̄ , N̄ of appropriate dimensions such that:

H̄F̄ = F̄ (A+K) (15)

L̄F̄ = F̄ (Ad −K) (16)

M̄F̄ =−F̄K(A− I) (17)

N̄ F̄ =−F̄KAd (18)

(|H̄|+ |L̄|+ d(|M̄ |+ |N̄ |))w̄ ≤ 0 (19)

that D-invariance w.r.t. the transformed model imply con-
straint satisfaction in the original model provided that the
initial conditions belong to an admissible set, which is also
formally characterized. That gives rise to the proposition
of a new definition of set invariance for time-delay sys-
tems, which is much less conservative than the classical
definition. We develop numerical examples that show how
useful this new definition can be, by certifying constraint
satisfaction when the concerned set is not D-invariant. We
close the presentation drawing some conclusions.

Notation: Z[a,b], with a, b ∈ Z stands for the set of inte-
gers i such that a ≤ i ≤ b. The Minkowski sum of two sets
P,Q ⊂ Rn is defined by: P ⊕Q = {p+ q | p ∈ P, q ∈ Q}.

2. LINEAR DISCRETE-TIME DELAY SYSTEM

Consider a linear discrete-time system represented by
delay-difference equations of the form:

x(k + 1) = Ax(k) +Adx(k − d), d > 0, (1)

with the initial conditions x(i), i ∈ Z[−d,0]. Here, x ∈ Rn

denotes the state vector and d ∈ Z∗
+ the time-delay.

In order to bring more flexibility within the positive
invariance analysis performed next, we introduce a model
transformation of (1) and detail its ingredients in a two
stage procedure. First, we introduce an auxiliary variable
K ∈ Rn×n such that the time-delay model above can be
rewritten as:

x(k + 1) = (A+K)x(k)+ (Ad −K)x(k − d)−
−K(x(k)− x(k − d)).

Now, let us write the difference in the last term as:

x(k)− x(k − d) =

−1∑
i=−d

(x(k + i+ 1)− x(k + i)),

leading to the following transformed model:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d)

−K
−1∑

i=−d

(x(k + i+ 1)− x(k + i)).

Using the model (1) to account for x(k + i+ 1) leads to:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d)

−K
−1∑

i=−d

(Ax(k + i) +Adx(k + i− d)− x(k + i))

and, finally:

x(k + 1) = (A+K)x(k) + (Ad −K)x(k − d)

−
−1∑

i=−d

K(A− I)x(k + i)−
−d−1∑
i=−2d

KAdx(k + i))
(2)

with the initial conditions x(i), i ∈ Z[−2d,0].

As discussed in (Niculescu, 2001) in the continuous-time
framework, the use of this kind of parametrized model
transformation allows decoupling delay-independent modes
from delay-dependent ones by appropriately exploiting the
system’s structure. We will show in the sequel how this
artifact can be of help in the discrete-time framework as
well.

From the derivation of the transformed model, one can
see that the equivalence of the original model (1) with
respect to possible state trajectories holds only if x(k +
i+ 1) = Ax(k + i) +Adx(k + i− d) for i ∈ Z[−d,−1]. This
equivalence is formally established as follows:

Theorem 1. Consider systems (1) and (2) and let their
state trajectories be denoted, respectively, by x(k), k ∈ Z+

with initial conditions x(i), i ∈ Z[−d,0], and by xt(k),
k ∈ Z+ with initial conditions xt(i), i ∈ Z[−d,d]. If the
initial conditions of (2) are given by:

xt(i) = x(i), for i ∈ Z[−d,0],
xt(i+ 1) = Ax(i) +Adx(i− d), for i ∈ Z[0,d−1],

(3)

Then, xt(k) = x(k) ∀k ≥ 0.

Proof: First, we notice that the state trajectories of (1)
and (2) coincide in the interval Z[−d,d] as follows:

• For −d ≤ k ≤ 0, xt(k) coincide with the initial
conditions of (1).

• For 1 ≤ k ≤ d, xt(k) is given by the dynamics of (1).

For k = d+ 1, the state xt is given by (2):

xt(d+ 1) = (A+K)xt(d) + (Ad −K)xt(0)

−K
−1∑

i=−d

(Axt(d+ i) +Adxt(i)− xt(d+ i))

From (3), Axt(d + i) + Adxt(i) = xt(d + i + 1) for
i ∈ Z[−d,−1]. Hence:

xt(d+ 1) = (A+K)xt(d) + (Ad −K)xt(0)

−K
−1∑

i=−d

(xt(d+ i+ 1)− xt(d+ i))

= (A+K)xt(d) + (Ad −K)xt(0)−K(xt(d)− xt(0))
= Axt(d) +Adxt(0) = Ax(d) +Adx(0) = x(d+ 1).

Now, the same development can be made for k = d+2 and,
naturally by induction, for k = d+ i, ∀i ≥ 2, proving that
the state trajectories x(k) and xt(k) coincide for k ≥ 0. �

This Theorem establishes conditions under which a state
trajectory of the original model is also a trajectory of the
transformed model, and will be a key to analyse positive
invariance w.r.t. (1) from results obtained for (2). In the
sequel, we study positive invariance w.r.t. (2) and the link
of this property with the state trajectories of the original
system.

3. POSITIVELY INVARIANT POLYHEDRAL SETS
OF THE TRANSFORMED MODEL

We focus next on the analysis of the positive invariance
property of given sets in the state space. We adopt the
following definition (Lombardi et al., 2011):

Definition 1. Given a scalar 0 ≤ λ ≤ 1, a set Ω ⊂ Rn

containing the origin is called positively D-invariant with
respect to the time-delay system (1) if for any initial
conditions x(i) ∈ Ω, i ∈ Z[−d,0], it follows that x(k) ∈
λΩ, ∀k ∈ Z+.

This definition is equivalent to those of delay-independent
positive invariance of Hennet and Tarbouriech (1998) and
of positive invariance w.r.t. an ARMA model of Vassilaki
and Bitsoris (1999). If 0 ≤ λ < 1, Ω is additionally said to
be contractive.
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This result can be easily obtained from standard manipu-
lation of the conditions obtained for general polyhedra.
Linear Programming problems can be easily set up to
check for invariance of such symmetrical sets too (Hennet
and Tarbouriech, 1998).

The analysis of these simplified expressions allows for the
following interpretation of invariance conditions: matrix H̄
is obtained from a particular similarity transformation of
(A + K) through matrix F̄ . The same applies to matrix
L̄ w.r.t. Ad − K. In order to satisfy condition (19), the
absolute values of the elements of H̄ and L̄ must be small.
The parameter K can act to simultaneously decrease the
absolute values of H̄ and L̄, making it possible to achieve
D-invariance w.r.t. (2) when it is not achievable for the
original model (1).

4. SET INVARIANCE FOR THE ORIGINAL MODEL

The positive D-invariance conditions for the polyhedron
Ω have been established with respect to the transformed
model (2). A question now arises on whether the confine-
ment of state trajectories in Ω also holds w.r.t. the original
system (1). In what follows, we show that it does hold, but
under additional restrictions on the initial conditions.

Corollary 2. If the set Ω is positively D-invariant w.r.t.
(2), then, the state trajectory of (1) is such that x(k) ∈ Ω
∀k ≥ 0, provided that:

x(i) ∈ Ω, ∀i ∈ Z[−d,d],
x(i+ 1) = Ax(i) +Adx(i− d), ∀i ∈ Z[0,d−1].

(20)

Proof: From Theorem 1, under the conditions of the
Corollary’s statement, the trajectory of x(k) for (1) is also
a trajectory of (2). As such, since the initial conditions
of (2) belong to Ω and Ω is D-invariant w.r.t. (2), then
x(k) ∈ Ω ∀k ≥ 0. �

The reader will notice that this result is not limited to
polyhedral sets Ω.

The classical definition of positive D-invariance w.r.t. sys-
tem (1) (Definition 1) requires that x(i) ∈ Ω ∀i ∈ Z[−d, 0].
The statement of the preceding Corollary additionally
requires that x(i), i ∈ Z[1,d] belong to Ω and respect the
system dynamics (1). We can interpret these additional
restrictions on the initial conditions in two ways:

• the past states of (1), x(i), i ∈ Z[−2d,0] can be split
into two subsets: for i ∈ Z[−2d,−d] the states are ”free”
and for i ∈ Z[−d+1,0], the states must obey the system
dynamics. Since the initial conditions of (1) are x(i),
i ∈ Z[−d,0], these restrictions amount to require that
the initial conditions result from a state trajectory
started d steps before, i.e., only initial conditions
which are consistent with the system dynamics are
considered to check the confinement of x(k) in the
set Ω.

• If we consider, as usual, that the initial conditions
x(i) of (1) are defined for i ∈ Z[−d,0], then, the
restriction now applies to the interval i ∈ Z[−d,d].
Hence, x(i) are ”free” for i ∈ Z[−d,0] and must obey
the system dynamics for i ∈ Z[1,d]. However, the
dynamics of (1) imply that x(i) for i ∈ Z[1,d] are
given by the states for i ∈ Z[−d,0]. The additional

restrictions, then, imply additional constraints to x(i)
for i ∈ Z[−d,0], i.e., to the initial conditions of (1). We
use this interpretation to define a set of admissible
initial states w.r.t. trajectory confinement in Ω.

Definition 2. Consider the system (1) and a polyhedral set
Ω which is positively D-invariant w.r.t. the transformed
system (2). The set of admissible initial states of (1) will
be defined as follows:

I(Ω) = {x(i) ∈ Ω, i ∈ Z[−d,0] s.t. x(i) ∈ Ω, i ∈ Z[1,d]}

Now we show that, for a polyhedral set Ω = {x : Fx ≤
w}, I(Ω) is a polyhedral set defined on the extended state
space x(i), i ∈ Z[−d,0]. The solution of (1) in the interval
j ∈ Z[1,d] is given by:

x(j) = Ajx(0) +

j−1
l=0

Aj−l−1Adx(l − d).

From definition 2, I(Ω) is then given by x(i), i ∈ Z[−d,0],
such that:


Fx(i) ≤ w, i ∈ Z[−d,0]

F (Ajx(0) +

j−1
l=0

Aj−l−1Adx(l − d)) ≤ w, j ∈ Z[1,d].

(21)
The constraints above define a polyhedral set on the
extended state space x(i), i ∈ Z[−d,0].

The time-delay discrete-time systems (1) can be repre-
sented in an extended state space as (Lombardi et al.,
2011):

X(k + 1) = AX(k) =




A 0 . . . 0 Ad

I 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0







x(k)
x(k − 1)

...
x(k − d+ 1)
x(k − d)



.

(22)

Under this representation, the numerous tools available for
analysis of positive invariance for linear systems without
delay can be used. In particular, the relationship between
the existence of positively invariant sets and stability can
be established. However, a major disadvantage of using
the extended model is the complexity of the polyhedral
invariant sets, defined over a space of potentially large
dimension, which increases with the size of the delay.
(Olaru et al., 2014),

A connection between the transformed model (2) and the
extended model above is given as follows.

Corollary 3. Consider a polyhedral set Ωa defined on the
extended state space by the following inequalities:


Fx(k + i) ≤ w, i ∈ Z[−d,0]

F (Ajx(k) +

j−1
l=0

Aj−l−1Adx(k + l − d)) ≤ w, j ∈ Z[1,d].

(23)
If Ω = {x : Fx ≤ w} is positively D-invariant w.r.t. (2),
then Ωa is positively invariant w.r.t. (22).

Proof: Assume that X(k) ∈ Ωa. Then, the constraints (23)
are satisfied. From Corollary 2, if Ω is D-invariant w.r.t.
(2), then, it is clear that conditions (23) are satisfied with
k replaced by k + 1. �
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Since Ωa is a compact set, then, positive invariance with
contraction implies stability of the time-delay system.
Hence, D-invariance of Ω w.r.t. (2) can be used as a
stability certificate for (1).

Corollary 2 induces a different notion of set-invariance for
the original time-delay system (1), that we propose as
follows:

Definition 3. Given a scalar 0 ≤ λ ≤ 1, a set Ω ⊂ Rn

containing the origin will be said to be positively I − D-
invariant with respect to the time-delay system (1) if for
any initial conditions x(i) ∈ I(Ω), i ∈ Z[−d,0], it follows
that x(k) ∈ λΩ, ∀k ∈ Z+.

This definition is relaxed with respect to that of D-
invariance in the sense that it is easier for a given set
to be I − D-invariant because the initial conditions are
constrained to result in a trajectory that respects system’s
dynamics in the interval Z[1,d]. This assumption appears
more realistic than accepting, as for D-invariance, any
states in Ω as initial conditions.

An immediate consequence of this Definition and Corollary
2 to the links between the original and the transformed
model is as follows:

Corollary 4. If the polyhedral set Ω is positively D-
invariant w.r.t. (2), then, it is positively I − D-invariant
w.r.t. (1).

Considering, again, the polyhedral case, we notice that
Ω = {x : Fx ≤ w} is I −D-invariant if, and only if, (21)
implies

Fx(d+1) = F (Ad+1x(0)+
d∑

l=0

Ad−lAdx(l−d)) ≤ w. (24)

Both this condition and (21) define polyhedral sets in the
extended space [x(0)Tx(−1)T · · ·x(−d)T ]T . Hence, Ω is
I − D-invariant if, and only if, the polyhedron defined by
(21) is included in the one defined by (24). This condition
can be checked via Linear Programming through stan-
dard computation based on the so-called extended Farkas’
Lemma. In this sense, one can wonder why resorting to
D-invariance w.r.t. transformed model, if it is possible to
directly test I−D-invariance w.r.t. (1). There are two main
reasons: first, from the numerical point of view, the con-
ditions above involve a number of matrix multiplications,
operations known to propagate round-off errors. Second,
the conditions above apply for a given value of the delay
d, whereas the delay-dependent conditions of Theorem 3
provide values of admissible delays.

We close this section by pointing out that we can use the
conditions derived in the previous section to develop an
LP-based technique to compute a state feedback controller
which makes a polyhedral set positively invariant w.r.t. a
input-delayed linear system, similar to that proposed by
Dórea et al. (2022) for the continuous-time case.

5. NUMERICAL EXAMPLES

5.1 Example: first-order model

Consider the following system, borrowed from (Olaru
et al., 2014): x(k+1) = 0.8x(k)−0.4x(k−d), for which no
D-invariant polyhedron containing the origin in its interior

exists. For d > 4 this system is unstable, and this is one of
the reasons why delay-independent invariance cannot be
achieved.

The polyhedral set Ω is given by Ω = {x : |x| ≤ 1}.
The solution of the LP problem (13) (adapted to the
symmetrical case), after a trial-and-error adjustment of
the value of d, gives K∗ = −0.4, dM = 2, implying
that Ω is D-invariant w.r.t. the transformed model (2), for
d = 1 and d = 2.

The possibility of a delay-dependent analysis brought by
the proposed model transformation is well illustrated in
this example. Ω is not D-invariant w.r.t. (1) because |A|+
|Ad| > 1 (see Corollary 1, with F̄ = 1 and K = 0). With
K = −0.4, |A+K|+|Ad−K| = 0.4 and there is some space
left to accommodate the terms dependent on the delay up
to d = 2.

From Corollary 4, Ω is I−D-invariant for d = 1 and d = 2.
The set of admissible initial states I(Ω) for d = 1 is given

by x(0), x(−1) such that

∣∣∣∣∣

[
1 0
0 1
0.8 −0.4

] [
x(0)
x(1)

]∣∣∣∣∣ ≤
[
1
1
1

]
, and

is depicted in Figure 1.
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Fig. 1. Example 1: set of admissible initial states for d = 1.

One can notice that some initial conditions given by two
consecutive extreme values in Ω, for instance, x(−1) = 1,
x(0) = −1, would lead to constraint violation. If x(−1) =
−1, x(0) cannot be larger than 0.75, and if x(0) = −1,
x(−1) cannot be larger than 0.5. In this example the
restrictions on the initial conditions are quite mild in view
of the size of Ω.

5.2 Example: second-order model

Consider system (1) for which:

A =

[
1.2 0.2
−0.4 0.6

]
, Ad =

[
−0.3 −0.2
0.4 0.2

]
,

and a symmetrical polyhedral set Ω with

F̄ =

[
−1 −1
2 1

]
, w =

[
1
1

]
.

The solution of the LP problem (13) (adapted to the
symmetrical case), after a trial-and-error adjustment of the

value of d, gives K∗ =

[
−0.2036 −0.1020
0.2073 0.1040

]
, dM = 10.

This result can be easily obtained from standard manipu-
lation of the conditions obtained for general polyhedra.
Linear Programming problems can be easily set up to
check for invariance of such symmetrical sets too (Hennet
and Tarbouriech, 1998).

The analysis of these simplified expressions allows for the
following interpretation of invariance conditions: matrix H̄
is obtained from a particular similarity transformation of
(A + K) through matrix F̄ . The same applies to matrix
L̄ w.r.t. Ad − K. In order to satisfy condition (19), the
absolute values of the elements of H̄ and L̄ must be small.
The parameter K can act to simultaneously decrease the
absolute values of H̄ and L̄, making it possible to achieve
D-invariance w.r.t. (2) when it is not achievable for the
original model (1).

4. SET INVARIANCE FOR THE ORIGINAL MODEL

The positive D-invariance conditions for the polyhedron
Ω have been established with respect to the transformed
model (2). A question now arises on whether the confine-
ment of state trajectories in Ω also holds w.r.t. the original
system (1). In what follows, we show that it does hold, but
under additional restrictions on the initial conditions.

Corollary 2. If the set Ω is positively D-invariant w.r.t.
(2), then, the state trajectory of (1) is such that x(k) ∈ Ω
∀k ≥ 0, provided that:

x(i) ∈ Ω, ∀i ∈ Z[−d,d],
x(i+ 1) = Ax(i) +Adx(i− d), ∀i ∈ Z[0,d−1].

(20)

Proof: From Theorem 1, under the conditions of the
Corollary’s statement, the trajectory of x(k) for (1) is also
a trajectory of (2). As such, since the initial conditions
of (2) belong to Ω and Ω is D-invariant w.r.t. (2), then
x(k) ∈ Ω ∀k ≥ 0. �

The reader will notice that this result is not limited to
polyhedral sets Ω.

The classical definition of positive D-invariance w.r.t. sys-
tem (1) (Definition 1) requires that x(i) ∈ Ω ∀i ∈ Z[−d, 0].
The statement of the preceding Corollary additionally
requires that x(i), i ∈ Z[1,d] belong to Ω and respect the
system dynamics (1). We can interpret these additional
restrictions on the initial conditions in two ways:

• the past states of (1), x(i), i ∈ Z[−2d,0] can be split
into two subsets: for i ∈ Z[−2d,−d] the states are ”free”
and for i ∈ Z[−d+1,0], the states must obey the system
dynamics. Since the initial conditions of (1) are x(i),
i ∈ Z[−d,0], these restrictions amount to require that
the initial conditions result from a state trajectory
started d steps before, i.e., only initial conditions
which are consistent with the system dynamics are
considered to check the confinement of x(k) in the
set Ω.

• If we consider, as usual, that the initial conditions
x(i) of (1) are defined for i ∈ Z[−d,0], then, the
restriction now applies to the interval i ∈ Z[−d,d].
Hence, x(i) are ”free” for i ∈ Z[−d,0] and must obey
the system dynamics for i ∈ Z[1,d]. However, the
dynamics of (1) imply that x(i) for i ∈ Z[1,d] are
given by the states for i ∈ Z[−d,0]. The additional

restrictions, then, imply additional constraints to x(i)
for i ∈ Z[−d,0], i.e., to the initial conditions of (1). We
use this interpretation to define a set of admissible
initial states w.r.t. trajectory confinement in Ω.

Definition 2. Consider the system (1) and a polyhedral set
Ω which is positively D-invariant w.r.t. the transformed
system (2). The set of admissible initial states of (1) will
be defined as follows:

I(Ω) = {x(i) ∈ Ω, i ∈ Z[−d,0] s.t. x(i) ∈ Ω, i ∈ Z[1,d]}

Now we show that, for a polyhedral set Ω = {x : Fx ≤
w}, I(Ω) is a polyhedral set defined on the extended state
space x(i), i ∈ Z[−d,0]. The solution of (1) in the interval
j ∈ Z[1,d] is given by:

x(j) = Ajx(0) +

j−1
l=0

Aj−l−1Adx(l − d).

From definition 2, I(Ω) is then given by x(i), i ∈ Z[−d,0],
such that:


Fx(i) ≤ w, i ∈ Z[−d,0]

F (Ajx(0) +

j−1
l=0

Aj−l−1Adx(l − d)) ≤ w, j ∈ Z[1,d].

(21)
The constraints above define a polyhedral set on the
extended state space x(i), i ∈ Z[−d,0].

The time-delay discrete-time systems (1) can be repre-
sented in an extended state space as (Lombardi et al.,
2011):

X(k + 1) = AX(k) =




A 0 . . . 0 Ad

I 0 . . . 0 0
...

...
. . .

...
...

0 0 . . . I 0







x(k)
x(k − 1)

...
x(k − d+ 1)
x(k − d)



.

(22)

Under this representation, the numerous tools available for
analysis of positive invariance for linear systems without
delay can be used. In particular, the relationship between
the existence of positively invariant sets and stability can
be established. However, a major disadvantage of using
the extended model is the complexity of the polyhedral
invariant sets, defined over a space of potentially large
dimension, which increases with the size of the delay.
(Olaru et al., 2014),

A connection between the transformed model (2) and the
extended model above is given as follows.

Corollary 3. Consider a polyhedral set Ωa defined on the
extended state space by the following inequalities:


Fx(k + i) ≤ w, i ∈ Z[−d,0]

F (Ajx(k) +

j−1
l=0

Aj−l−1Adx(k + l − d)) ≤ w, j ∈ Z[1,d].

(23)
If Ω = {x : Fx ≤ w} is positively D-invariant w.r.t. (2),
then Ωa is positively invariant w.r.t. (22).

Proof: Assume that X(k) ∈ Ωa. Then, the constraints (23)
are satisfied. From Corollary 2, if Ω is D-invariant w.r.t.
(2), then, it is clear that conditions (23) are satisfied with
k replaced by k + 1. �
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H̄∗ =

[
0.8004 −0.0016

0 0.9

]
, L̄∗ =

[
0.0996 0.0016

0 0

]
.

The elements of matrices M̄∗ and N̄∗ have small values,
which explain the quite large value of dM .

The polyhedron Ω is depicted in Figure 2 with two state
trajectories of (1): the trajectory with d = 1, for initial
conditions x(−1) = [2 − 3]T , x(0) = [0 1]T is represented
by red circles, and the (quite oscillatory) trajectory with
d = 10, for initial conditions x(−10) = [2 − 3]T , x(i) =
[0 1]T , for i ∈ Z[−9,0] is represented by blue crosses.
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-1

0

1

2

3

Fig. 2. Example 2: the polyhedron Ω with two state
trajectories for d = 1 (red) and d = 10 (blue).

The choice K = 0 in (2) corresponds to the delay-
independent case treated in (Hennet and Tarbouriech,
1998). In this case Ω is not positively D-invariant w.r.t.
the transformed model (2), which was expected because
matrix A has an eigenvalue equal to 1, that was ”moved”
to 0.9 (see matrix H̄) by the parameter K.

Indeed, with d = 1, the state trajectory leaves Ω if the
initial conditions are x(−1) = [2 − 3]T , x(0) = [−2 3]T ,
which are opposite vertices of Ω, confirming that Ω is
not D-invariant w.r.t. (1). It appears reasonable that two
consecutive states do not move between two opposite
vertices, and it illustrates the conservatism of the D-
invariance definition.

6. CONCLUSIONS

In this paper we presented a study on set invariance for
linear discrete-time systems with delayed states. We argue
that the classical delay-independent definition of invariant
sets for this class of systems induces conditions which are
very hard to be met, because even the stability of the
system may depend on the size of the delay. The main
contribution of the present paper is, then, the derivation
of delay-dependent conditions that guarantee confinement
of the state trajectories into a polyhedral set, as long as
the initial conditions satisfy some restrictions, that were
formally characterized. These conditions gave rise to a
new definition of set invariance for time-delay systems
that allows to certify constraints satisfaction even when a
classical invariant set does not exist, as illustrated through
two numerical examples. Future work should focus on the

properties of this new type of invariant sets for time-delay
systems, and on methods for their practical construction
with the associated set of admissible initial states.

REFERENCES

Athanasopoulos, N. and Lazar, M. (2014). On controlled-
invariance and stabilization of time-delay systems. In
2014 European Control Conference (ECC), 778–783.
IEEE.

Blanchini, F. and Miani, S. (2015). Set-Theoretic Methods
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