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ABSTRACT

In today’s digital age, multimedia content is omnipresent,
and the demand for efficient compression techniques is ever-
increasing. In particular, the successful delivery of services
based on video transmission largely depends on achieving
the lowest latency values. One solution has been to use ex-
trapolation for latency compensation in video transmission
that allows to reduce the latency by an arbitrary amount.
Nevertheless, this latency reduction comes at the cost of an
increased distortion of the displayed images, since they are
based on temporal extrapolation. Latency can also be traded
with coding rate. This paper introduces ELR-PSNR and EPR-
Latency as unified metrics to assess the three-way trade-off
between rate, distortion, and latency simultaneously.

Index Terms— low-latency video delivery, metric, rate-
distortion-latency trade-off

1. INTRODUCTION

Achieving ultra low-latency video delivery is a crucial re-
quirement in numerous applications involving human inter-
actions (e.g., video conferencing, virtual and augmented re-
ality) or human-machine interactions (e.g., teleoperation of
unmanned vehicles or robots, etc.). In these scenarios, the
Glass-to-Glass latency, which represents the delay between
the acquisition of a video frame by one agent and its display
by a second remote agent, holds significant importance [1].
This latency factor heavily influences the overall quality of
experience perceived by users [2].

The latency compensation framework [3], approaches the
problem of ultra-low-latency video transmission between a
transmitter and a receiver. To mitigate the impact of G2G
latency, a compensatory approach involves extrapolating the
available present information on the receiver side to predict
and display future frames prior to their actual reception, dis-
played in Figure 1. To assess performance, the Bjøntegaard
metric [4] is used to compute the Bjøntegaard delta (BD)-
PSNR which measures the change in the peak signal-to-noise
ratio or PSNR [5] to achieve a certain level of rate improve-
ment compared to a reference codec. The structure similarity

index (SSIM) [6] or the recent video multi-method assess-
ment fusion (VMAF) [7] can be similary used for BD-SSIM
and BD-VMAF calculations to account for the different dis-
tortion measures.

While the BD-PSNR, BD-SSIM, BD-VMAF are effective
metrics for analyzing rate-distortion trade-offs, they do not
explicitly account for latency considerations. This paper pro-
poses a novel three-way metric for the rate-distortion-latency
trade-off. Our metrics expand upon traditional rate-distortion
analysis by including latency as a crucial factor in assessing
compression algorithms. We introduce two new metrics:

• ELR-PSNR: Equal-Latency, Equal-Rate Delta PSNR
• EPR-Latency: Equal-PSNR, Equal-Rate Delta Latency

which aim to characterize the three-way trade-off among
rate, distortion, and latency (RDL).

2. RELATED WORK

Introduced in 2001, the Bjøntegaard Delta (BD) method con-
tinues to be one of the most commonly utilized tools for cal-
culating and comparing the compression efficiency of video
codecs. It has been used to evaluate and compare thoroughly
the most recent codecs [8]. Alexis et al. [9] presented an Ex-
cel template for calculated BD bitrate values with more than
four data points and additional modes to handle cases where
there are overlapping issues. Later, Herglotz et al. [10] pro-
posed the Akima interpolation for more accurate results.

As the pursuit of more efficient codec designs advances,
it naturally leads to the investigation of calculating cod-
ing efficiency across various codec options. The SCENIC
metric [11] relies on the mean opinion score as opposed as
the PSNR. Later, the Bjøntegaard-Delta decoding energy
(BDDE) [12] is introduced to describe the energy savings
in % for the same PSNR. On the other hand, we also take
into account latency to propose unified measures for the
rate-distortion-latency trade-off.

Video extrapolation is a technique used to predict and gen-
erate future video frames based on the available information
in the existing video sequence. There are various approaches
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Fig. 1: Latency compensation scheme when extrapolation is performed at the decoder side to reduce the Glass-to-Glass latency.

to video extrapolation, including pixel-based, motion-based
and fusion-based methods as pinpointed by Gao et al. [13].
All of these extrapolation methods are an essential part for
the latency compensation framework [3].

3. METHODOLOGY

3.1. Definitions and notations

The ELR-PSNR and EPR-Latency metrics offer a versatile
approach to assess the trade-off among latency, rate, and dis-
tortion for various coding methods, extending their utility be-
yond cases involving latency control through extrapolation.
This includes applications such as comparing configurations
of different codecs. For instance, the metrics can be used to
compare Random Access (RA) with Low Delay P (LDP). In
fact, in order to evaluate the RDL trade-off between two meth-
ods, be them method A and method B, we only need to col-
lect, for both of them, a suitable number of operation points,
which is a triplet of rate R, distortion D and latency L values
associated to one specific execution of the method. In order
to simplify the description, let us first consider the case where
the video encoder does not change. We could consider for ex-
ample HEVC in Low Delay P (LDP) configuration. We run
this baseline with NQ values of QP and store the correspond-
ing RD points in two vectors:

R = [R(1), R(2), . . . , R(NQ)]T

D = [D(1), D(2), . . . , D(NQ)]T
(1)

Let us say we run method A over an input video sequence.
We consider NQ

A values of the quantization parameter QP and
Nh

A values of the extrapolation horizon h. If the considered
method A does not allow frame prediction, we consider Nh

A =
1 and h = 0 meaning no prediction in the future is performed.
If the method allows frame prediction typical values of Nh

include 5 to 10. Thus, for each method we collect NA =
NQ

A ·Nh
A operation points. We arrange them as follows:

RA = [RA(Qk, hp)]1≤k≤NQ
A

1≤p≤Nh
A

DA = [DA(Qk, hp)]1≤k≤NQ
A

1≤p≤Nh
A

LA = [LA(Qk, hp)]1≤k≤NQ
A

1≤p≤Nh
A

,

(2)

where k represents the values for the different quantiza-
tion parameters ordered in a column, and p the values for the
different extrapolation horizons. The latency should be com-
puted as a difference with respect to the baseline. For a given
Qk, we get the following equation:

LQk

A (hi) = TA,Qk

E (hi)− TF · hi (3)

where hi is the temporal extrapolation horizon, TA,Qk

E (n)
is the time needed by method A to compute an extrapolated
frame with horizon n, and TF = 1/F is the frame interval,
inverse of the frame rate F . The extrapolation horizon hi

expresses the number of frames predicted in the future and
therefore translates directly to the latency compensated based
on the individual latency that each method induces. This idea
can be generalized to measure any kind or any part of the la-
tency, such as the encoding time for different codec presets in
video codecs. Likewise, we gather NB = NQ

B · Nh
B opera-

tion points for methods B and we arrange RB , DB and LB

analogously as explained for the method A in Equation (2).

3.2. ELR-PSNR and EPR-Latency

The quality saving difference between the two rate-distortion-
latency surfaces at a given level of fidelity is :

∆D(R,L) =
DB(R,L)−DA(R,L)

DA(R,L)
(4)

where DA(R,L) and DB(R,L) are respectively the dis-
tortion of the interpolated of the methods A and B at a given
level of rate R and Latency L. ∆D(R,L) is positive for a
gain in quality whereas a negative value indicates a degrada-
tion in quality of method A with respect to method B.

Similar to the Bjøntegaard model, we use a logarithmic
scale for the domain of the quality interpolation, so by defin-
ing d = logD the ELR-PSNR savings can be expressed as:

∆D(R,L) = 10dB(R,L)−dA(R,L) − 1 (5)

By considering the measured rate-distortion-latency points
(R(i, j), D(i, j), L(i, j)), the computation of the ELR-PSNR
involves utilizing the fitted rate-distortion-latency surfaces
d̂(R,L). The ELR-PSNR approximation is then determined
over a specified range of rate levels, determined by the rate,



and latencies:

∆DOverall ≈

10
1

(Rh−Rl)·(Lh−Ll)

∫ Rh
Rl

∫ Lh
Ll

[d̂B(R,L)−d̂A(R,L)]dRdL − 1
(6)

The lower integration bounds Rl and Ll, and higher in-
tegration bounds Rh and Lh are derived from the range of
interpolated rate and latency values from method A and B:

Rh = max{min(RA, RB)}
Rl = min{max(RA, RB)}
Lh = max{min(LA, LB)}
Ll = min{max(LA, LB)}

(7)

Likewise to have a measure about the latency gain be-
tween two rate-distortion-latency surfaces at a given level of
latency, we introduce the EPR-Latency computed as follows:

∆LOverall ≈

10
1

(Rh−Rl)·(Dh−Dl)

∫ Rh
Rl

∫ Dh
Dl

[l̂B(R,D)−l̂A(R,D)]dRdD − 1
(8)

with Dl and Dh respectively the lower and higher inte-
gration bounds of distortion of methods A and B and l̂(R,D)
the fitted rate-distortion surfaces from the measured rate-
distortion-latency points.

4. EXPERIMENTAL RESULTS

4.1. Test conditions

For the video extrapolation methods, we select MCNet [14]
as the pixel-based method, FlowNet2 [15] as a the motion-
based method and SDCNet [16] as the fusion-based meth-
ods. FlowNet2 is the sole supervised approach, which means
it requires optical flow labels and can only use pretrained
weights, in contrast to other methods that can be retrained
on any dataset because of their self-supervised categorization.
“SDCNet iter” refers to the basic SDCNet architecture that it-
eratively re-circulate the last predicted output back as input
and “SDCNet direct” uses temporal subsampling to predict
directly the frame h steps in the future. The temporal sub-
sampling provides a better rate-distortion-latency trade-off we
will show later. FlowNet2 also uses recirculation to predict
beyond h > 1 and employs a warping operation that applies
computed flows to previous frame pixels for next-frame pre-
diction. In contrast, MCNet is based on long short-term mem-
ory and makes multiple simultaneous predictions.

For training, we use the UCF101 action recognition
dataset of realistic action videos, collected from Youtube [17].
The training set consists in 127,654 images from sequences
containing sufficient temporal information to allow the neural
network to learn the motion. The test set contain 10 sequences
cut at 250 frames of spanning over different set of actions.

BD-PSNR ↑
horizon h 1 3 5

Copylast -13.19 -17.43 -18.84
MCNet -11.37 -16.78 -18.79

FlowNet2 + warp -12.17 -16.96 -18.69
SDCNet iter -9.69 -14.03 -15.82

SDCNet direct -8.67 -15.47 -17.32

(a) HEVC All Intra results

BD-PSNR ↑
horizon h 1 3 5

Copylast -10.72 -14.79 -16.18
MCNet -8.92 -12.29 -16.07

FlowNet2 + warp -9.72 -14.30 -15.99
SDCNet iter -7.37 -11.38 -13.12

SDCNet direct -7.37 -12.82 -14.65

(b) HEVC LDP results

BD-PSNR ↑
horizon h 1 3 5

Copylast -11.13 -15.37 -16.80
MCNet -9.32 -14.74 -16.75

FlowNet2 + warp -10.08 -14.86 -16.62
SDCNet iter -7.51 -11.69 -13.52

SDCNet direct -7.51 -13.22 -15.17

(c) VVenC RA results

Table 1: Quantitative results on UCF101 sequences

All sequences are captured at 25 frame per second with the
resolution 256× 256.

To evaluate the efficacy on the latency compensation
scheme presented in Figure 1, we employ the HEVC and
VVC codecs as evaluation benchmarks. In the case of the
HEVC codec, we utilize both the All-Intra (AI) and Low De-
lay P (LDP) configurations, employing the HEVC HM codec
implementation as documented in [18]. As for the VVC
codec, we focus on the Random Access (RA) configuration,
utilizing the VVenC implementation as described in [19].

4.2. Beyond Bjøntegaard

To evaluate the latency compensation scheme [3], the differ-
ent codecs and configurations are used with the quantization
parameters QP ∈ {22, 27, 32, 37} for all the selected meth-
ods. Rate-Distortion (RD) points are computed considering
an extrapolation horizon h ∈ {1, 2, 3, 4, 5}. All RD curves
are compared to the case h = 0 which means that no extrap-
olation is performed. Table 1 reports the BD-PSNR results of
the different methods across the different horizon h displayed
at horizon 1, 3, 5 for conciseness.

The issue with such an approach is that we consider the
rate-distortion trade-off at separate horizon h resulting in
many measurement necessary. Furthermore, the use of the
extrapolation horizon h is necessary to compare the differ-
ent numbers, if we were to use latency values, predicting at
horizon h = 3 steps in the future corresponds to a latency
compensated of L = 3 × 16.7 − 120 = −69.9 ms for “SD-



HEVC All Intra HEVC LDP VVenC RA
ELR-PSNR [dB] ↑ EPR-Latency [ms] ↑ ELR-PSNR [dB] ↑ EPR-Latency [ms] ↑ ELR-PSNR [dB] ↑ EPR-Latency [ms] ↑

MCNet -2.27 -64.37 -2.13 -61.84 -2.30 -64.00
Flownet2 + warp -1.50 -30.24 -1.33 -27.93 -1.39 -27.78

SDCNet iter -2.22 -24.59 -2.25 -22.00 -2.27 -21.72
SDCNet direct 0.90 20.97 0.55 22.86 0.63 24.19

Table 2: ELR-PSNR and EPR-Latency for UCF101 sequences.
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Fig. 2: Rate-distortion-latency surfaces for Copylast, “SD-
CNet iter” and “SDCNet direct”. We see the impact iterative
method of SDCNet and its impact on the compensated latency
despite better quality than the direct method.

CNet iter” whereas it corresponds to a latency compensation
using Equation 3 of L = 16.7−120 = −103.3 ms for “SDC-
Net direct”. These latencies emphasize the distortion-latency
trade-off of what the the temporal subsampling applied to
SDCNet entails: a loss in quality but resulting in more la-
tency compensation. Here we can clearly see the limitations
of considering only rate-distortion curves.

4.3. The rate-distortion-latency trade-off

We display the 3-dimensional surfaces for CopyLast, “SDC-
Net iter” and “SDCNet direct” in Figure 2. We do so by inter-
polating the points of the matrices RA, DA, LA in equations 2
from method A and RB , DB , LB from method B with the fit-
ted rate-distortion-latency surfaces d̂A(R,L) and d̂B(R,L).
The latency compensation takes into account the extrapola-
tion time measured by a NVIDIA Geforce RTX 3090. For a
set of fixed PSNR and bitrate points, the surface is calculated
between method A and B giving thus the EPR-Latency value.

By switching to a three-dimensional perspective it is
therefore possible to compare rate-distortion curves at mul-
tiple horizon h at once. In Table 2 we show the ELR-PSNR
and EPR-Latency of the different extrapolation methods with
CopyLast. We see clearly that “SDCNet direct” provides true
quality gain of 0.55 dB and 22.86 ms of latency gain using
HEVC LDP configuration whereas the other methods report
loss. This is due to the fact that the extrapolation time is neg-
atively impacting the ELR-PSNR and EPR-Latency despite

HEVC LDB - ELR-PSNR [dB] ↑ EPR-Latency [s] ↑
HEVC LDP 0.03 153.37
HEVC RA 1.03 261.69
VVenC slow 2.01 150.00
VVenC slower 0.92 144.85

Table 3: Comparing codecs presets with the ELR-PSNR and
EPR-Latency by taking into account the encoding time as la-
tency.

the fact that Table 1 suggests that there will be less loss while
using “SDCNet iter”. However, because the extrapolation
time is linear with the extrapolation horizon h when using
“SDCNet iter”, the quality gain compared to “SDCNet di-
rect” does not compare to its constant extrapolation time with
respect to h.

In Table 3 we show that the ELR-PSNR and EPR-Latency
can be applied to a different context. Here we compare the
latency-rate-distortion trade-of between two different presets,
with HEVC Low Delay B (LDB) with different configura-
tions. The latency here is represented by the encoding time
measured and the table shows how the other methods are
faster in encoding compared to HEVC LDB.

5. CONCLUSION

In this paper we proposed two unified measures for the
rate-distortion-latency trade-off.The ELR-PSNR and EPR-
Latency for the rate-distortion-latency trade-off represent, a
development in the multimedia compression industry. By
concurrently taking into account the interplay between rate,
distortion, and latency, which are critical elements in assess-
ing the efficacy of compression algorithms, this innovative
metric tackles the shortcomings of conventional techniques.

Future research can refine and validate the three-way met-
ric across different compression algorithms and applications.
Additionally, investigating the potential trade-offs and opti-
mizing strategies within the three-way trade-off space would
contribute to further advancements in multimedia compres-
sion metrics and techniques.
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