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Abstract: Searching and tracking mobile targets rely most often on modeling the uncertainty
and various perturbations by stochastic processes. The detection and location of the targets
are performed with Bayesian estimation, which reliability and resulting performance are
deeply linked to the adequacy of the stochastic models. An alternative approach limits the
representation of these perturbations by defining the bounds within which they can vary.
Set-membership estimation techniques have been developed to handle this representation.
This paper compares the performance of set-membership and stochastic Bayesian estimation
techniques for target search and tracking for scenarios integrating false alarms. For this purpose,
estimation schemes are presented for each approach. The ability of estimators to find real targets
and not to be deceived by false targets or imperfect sensors are compared in simulations.

Keywords: Search and track, mobile targets, UAVs, set-membership estimation, Bayesian
estimation, performance comparison.

1. INTRODUCTION
Searching and tracking mobile targets using fleets of UAVs
is a challenging problem that encompasses many consid-
erations, such as the confidence for the target presence,
the accuracy of the estimated location, the optimal place-
ment of the sensors, the energy consumption, the available
search time, and the environmental hazards, see, e.g.,
Robin and Lacroix (2016) for a survey.

One of the main issues concerns how to model the un-
certainties, perturbations in the measurements, and the
variability of the quality of detection. This is most often
performed by considering that the uncertainties or pertur-
bations are additive noises, which are usually described
by Gaussian processes. Moreover, the false alarms or non-
detection of targets are assumed to correspond to the real-
ization of random events. The search and track procedures
associated to these representations often consider a grid-
based probability map of the search zone representing
the confidence for potential target locations (Hespanha
et al., 1999; Vidal et al., 2001; Bertuccelli and How, 2006b;
Furukawa et al., 2006; Yang et al., 2007; Khan et al., 2015).
The probability of the presence of a target in each cell can
be either modeled as a single value (Yang et al., 2007) or
as a stochastic variable with a probability density distri-
bution (pdf) (Bertuccelli and How, 2005, 2006a). The evo-
lution and update of the map are performed by recursive
Bayesian filtering. The correction step after measurement
accounts for probabilities of true positive and false positive
detection but does not explicitly integrate measurement
uncertainties (Hu et al., 2012, 2017). Nevertheless, a priori
pdfs describing the process and measurement noises may
not always be available. As pointed out in Gu et al. (2015),
the resulting performance may prove sensitive to these a
priori assumptions.

Alternatively, instead of considering some pdf character-
izing the noise distribution, it may be assumed that noise
and uncertainties remain within a priori known bounds.
Then set-membership (SM) estimation techniques can be
used to evaluate target state set estimates. These tech-
niques are well suited to characterize areas where tar-
gets are guaranteed to be present or absent with either
deterministic boundaries, as in Drevelle et al. (2013);
Desrochers and Jaulin (2016), or with uncertain bound-
aries, as in Boukezzoula et al. (2021). In Ibenthal et al.
(2020, 2021), the widely-used probability of false alarm is
replaced by deterministic geometric conditions depending
on the target observation point of view. The approach
proved to be very robust to the presence of decoys.

This paper compares the performance of SM and stochas-
tic Bayesian estimation techniques for target search and
tracking in scenarios integrating false alarms due to decoys
or imperfect sensors. The assumptions and modeling of
uncertainties and false alarms differ significantly between
Bayesian and set membership estimations which makes
a straightforward comparison using the approaches pre-
sented in the literature really difficult and potentially
biased. Therefore, an adapted estimation scheme is pre-
sented for each technique considering similar assumptions
on the measurement noise and false alarms. The per-
formance of the estimators is compared in simulations
considering their ability to find real targets and not to
be deceived by false targets or imperfect sensors.

2. PROBLEM FORMULATION

Consider Nu identical UAVs searching for an unknown
but constant number N t of ground targets evolving in a
delimited Region of Interest (RoI) X0 ⊂ R3, free of any
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certainties, perturbations in the measurements, and the
variability of the quality of detection. This is most often
performed by considering that the uncertainties or pertur-
bations are additive noises, which are usually described
by Gaussian processes. Moreover, the false alarms or non-
detection of targets are assumed to correspond to the real-
ization of random events. The search and track procedures
associated to these representations often consider a grid-
based probability map of the search zone representing
the confidence for potential target locations (Hespanha
et al., 1999; Vidal et al., 2001; Bertuccelli and How, 2006b;
Furukawa et al., 2006; Yang et al., 2007; Khan et al., 2015).
The probability of the presence of a target in each cell can
be either modeled as a single value (Yang et al., 2007) or
as a stochastic variable with a probability density distri-
bution (pdf) (Bertuccelli and How, 2005, 2006a). The evo-
lution and update of the map are performed by recursive
Bayesian filtering. The correction step after measurement
accounts for probabilities of true positive and false positive
detection but does not explicitly integrate measurement
uncertainties (Hu et al., 2012, 2017). Nevertheless, a priori
pdfs describing the process and measurement noises may
not always be available. As pointed out in Gu et al. (2015),
the resulting performance may prove sensitive to these a
priori assumptions.

Alternatively, instead of considering some pdf character-
izing the noise distribution, it may be assumed that noise
and uncertainties remain within a priori known bounds.
Then set-membership (SM) estimation techniques can be
used to evaluate target state set estimates. These tech-
niques are well suited to characterize areas where tar-
gets are guaranteed to be present or absent with either
deterministic boundaries, as in Drevelle et al. (2013);
Desrochers and Jaulin (2016), or with uncertain bound-
aries, as in Boukezzoula et al. (2021). In Ibenthal et al.
(2020, 2021), the widely-used probability of false alarm is
replaced by deterministic geometric conditions depending
on the target observation point of view. The approach
proved to be very robust to the presence of decoys.

This paper compares the performance of SM and stochas-
tic Bayesian estimation techniques for target search and
tracking in scenarios integrating false alarms due to decoys
or imperfect sensors. The assumptions and modeling of
uncertainties and false alarms differ significantly between
Bayesian and set membership estimations which makes
a straightforward comparison using the approaches pre-
sented in the literature really difficult and potentially
biased. Therefore, an adapted estimation scheme is pre-
sented for each technique considering similar assumptions
on the measurement noise and false alarms. The per-
formance of the estimators is compared in simulations
considering their ability to find real targets and not to
be deceived by false targets or imperfect sensors.

2. PROBLEM FORMULATION

Consider Nu identical UAVs searching for an unknown
but constant number N t of ground targets evolving in a
delimited Region of Interest (RoI) X0 ⊂ R3, free of any
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∗∗ Université Paris Saclay - CentraleSupelec - CNRS, L2S, F-91192
Gif-sur-Yvette (e-mail: author@universite-paris-saclay.fr)

Abstract: Searching and tracking mobile targets rely most often on modeling the uncertainty
and various perturbations by stochastic processes. The detection and location of the targets
are performed with Bayesian estimation, which reliability and resulting performance are
deeply linked to the adequacy of the stochastic models. An alternative approach limits the
representation of these perturbations by defining the bounds within which they can vary.
Set-membership estimation techniques have been developed to handle this representation.
This paper compares the performance of set-membership and stochastic Bayesian estimation
techniques for target search and tracking for scenarios integrating false alarms. For this purpose,
estimation schemes are presented for each approach. The ability of estimators to find real targets
and not to be deceived by false targets or imperfect sensors are compared in simulations.

Keywords: Search and track, mobile targets, UAVs, set-membership estimation, Bayesian
estimation, performance comparison.

1. INTRODUCTION
Searching and tracking mobile targets using fleets of UAVs
is a challenging problem that encompasses many consid-
erations, such as the confidence for the target presence,
the accuracy of the estimated location, the optimal place-
ment of the sensors, the energy consumption, the available
search time, and the environmental hazards, see, e.g.,
Robin and Lacroix (2016) for a survey.

One of the main issues concerns how to model the un-
certainties, perturbations in the measurements, and the
variability of the quality of detection. This is most often
performed by considering that the uncertainties or pertur-
bations are additive noises, which are usually described
by Gaussian processes. Moreover, the false alarms or non-
detection of targets are assumed to correspond to the real-
ization of random events. The search and track procedures
associated to these representations often consider a grid-
based probability map of the search zone representing
the confidence for potential target locations (Hespanha
et al., 1999; Vidal et al., 2001; Bertuccelli and How, 2006b;
Furukawa et al., 2006; Yang et al., 2007; Khan et al., 2015).
The probability of the presence of a target in each cell can
be either modeled as a single value (Yang et al., 2007) or
as a stochastic variable with a probability density distri-
bution (pdf) (Bertuccelli and How, 2005, 2006a). The evo-
lution and update of the map are performed by recursive
Bayesian filtering. The correction step after measurement
accounts for probabilities of true positive and false positive
detection but does not explicitly integrate measurement
uncertainties (Hu et al., 2012, 2017). Nevertheless, a priori
pdfs describing the process and measurement noises may
not always be available. As pointed out in Gu et al. (2015),
the resulting performance may prove sensitive to these a
priori assumptions.

Alternatively, instead of considering some pdf character-
izing the noise distribution, it may be assumed that noise
and uncertainties remain within a priori known bounds.
Then set-membership (SM) estimation techniques can be
used to evaluate target state set estimates. These tech-
niques are well suited to characterize areas where tar-
gets are guaranteed to be present or absent with either
deterministic boundaries, as in Drevelle et al. (2013);
Desrochers and Jaulin (2016), or with uncertain bound-
aries, as in Boukezzoula et al. (2021). In Ibenthal et al.
(2020, 2021), the widely-used probability of false alarm is
replaced by deterministic geometric conditions depending
on the target observation point of view. The approach
proved to be very robust to the presence of decoys.

This paper compares the performance of SM and stochas-
tic Bayesian estimation techniques for target search and
tracking in scenarios integrating false alarms due to decoys
or imperfect sensors. The assumptions and modeling of
uncertainties and false alarms differ significantly between
Bayesian and set membership estimations which makes
a straightforward comparison using the approaches pre-
sented in the literature really difficult and potentially
biased. Therefore, an adapted estimation scheme is pre-
sented for each technique considering similar assumptions
on the measurement noise and false alarms. The per-
formance of the estimators is compared in simulations
considering their ability to find real targets and not to
be deceived by false targets or imperfect sensors.

2. PROBLEM FORMULATION

Consider Nu identical UAVs searching for an unknown
but constant number N t of ground targets evolving in a
delimited Region of Interest (RoI) X0 ⊂ R3, free of any

Set-membership vs. stochastic approaches
for target localization with UAVs

J. Ibenthal ∗,∗∗ M. Kieffer ∗∗ H. Piet-Lahanier ∗ L. Meyer ∗

∗ ONERA, DTIS, Univ Paris Saclay, F-91120 Palaiseau,
(e-mail: author@onera.fr).
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obstacle. All x ∈ X0 are such that x3 = 0. Time is sampled
with a constant period T . At time tk = kT , let xu

i,k ∈ Rnu

be the state vector of UAV i ∈ N u = {1, . . . , Nu}
and xt

j,k ∈ X0 is the state vector of target j ∈ N t =

{1, . . . , N t}.
The evolution with time of the UAV state is modeled as

xu
i,k+1 = fuk

(
xu
i,k,ui,k

)
, (1)

where fuk is known function. The control input ui,k of
UAV i is constrained in a set U of admissible control
inputs. The state xt

j,k of target j evolves as

xt
j,k+1 = xt

j,k + Tvj,k, (2)

where vj,k is its velocity assumed piecewise constant over
the time intervals [tk, tk+1[. The target heading angle
γ (vj,k) is only known to belong to [0, 2π[, and the magni-
tude ‖vj,k‖ of its velocity is assumed bounded in [0, v].

The sensor of each UAV i has a limited field-of-view (FoV),
i.e., UAV i is only able to observe a subset Fi(x

u
i,k) of the

space, e.g., a half-cone. At time tk = kT , after processing
the information in the FoV Fi(x

u
i,k), UAV i obtains a list of

measurements Yi,k = {yi,m,k}m∈Di,k
related to the targets

present in the FoV, i.e.,

xt
j,k ∈ Fi

(
xu
i,k

)
⇒ ∃y ∈ Yi,k such that y = yi,j,k. (3)

Targets present in the FoV are thus always detected.
Nevertheless, we assume that UAVs are unaware of the
list of indexes Di,k ⊂ N u of the detected targets, i.e., a
measurement cannot be associated to a specific target. For
each m ∈ Di,k, the measurement vector is

yi,m,k = hi

(
xu
i,k,x

t
j,k

)
+wi,m,k, (4)

where hi is the measurement equation of UAV i and
wi,m,k is the measurement noise, assumed bounded in
some box [wi,m,k]. Usually the size of [wi,m,k] depends
on the environmental and measurement conditions Cortes
et al. (2004); Li and Duan (2017). One assumes that
a known box [w] such that [wi,m,k] ⊂ [w] is available
considering, e.g., worst-case measurement conditions.

False positive detection may occur due to decoys or lures
confused with targets, changing environmental conditions
(such as natural lighting), or imperfections of the mea-
surement processing system. As a consequence, the list
Yi,k may contain measurements that do not correspond
to a true target. At this point, no specific model for false
positive detection is assumed. False positive detection may
be deterministic or probabilistic.

In what follows, two approaches for target search and
tracking are presented. Both approaches are able to ac-
count for potential false positive detection of targets in
their estimation scheme. The bounds for γ (vj,k) and
‖vj,k‖ and the measurement noise bounds [w] are available
for both approaches.

3. SET-MEMBERSHIP ESTIMATION

This section describes a simplified version of the SM
estimator presented in Ibenthal et al. (2021). At time tk,
UAV i maintains three sets: Xi,k ⊂ X0 contains all possible
target state values consistent with the information Ii,k
available to UAV i up to time tk, Xi,k ⊂ X0 contains
the possible state values of targets not yet detected, and

X̃i,k = X0 \
(
Xi,k ∪ Xi,k

)
is the explored subset of X0 and

is known not to contain any true target state. Due to
potential false positive detection, Xi,k may contain state
values not consistent with actual target states.

The relative estimation uncertainty for UAV i in the SM
context is

ΦSM
(
Xi,k,Xi,k

)
= φ

(
Xi,k ∪ Xi,k

)
/φ (X0) , (5)

where φ is some measure function, e.g., the area or
volume of the sets. The aim of each UAV i is to reduce
ΦSM

(
Xi,k,Xi,k

)
as much as possible.

3.1 Evolution of the set estimates

At time tk, UAV i has access to Xi,k and Xi,k. These sets

are updated to Xi,k+1 and Xi,k+1 at time tk+1 using the
target evolution model (2), the list Yi,k+1 of collected mea-
surements, and the information received from neighbors in
Ni,k+1 ⊂ N u with which UAV i is able to communicate.

At time t0, for UAV i, one has Xi,0 = ∅ and Xi,0 = X0.

The estimator starts with a prediction step. At time tk,
from (2), UAV i evaluates the set of predicted target
locations

Xi,k+1|k =
{
x+ Tv |x ∈ Xi,k,v ∈ R2,

‖v‖ < v, γ (vj,k) ∈ [0, 2π[} ∩ X0, (6)

that can be reached from any x ∈ Xi,k at time tk+1. The

set Xi,k+1|k is evaluated similarly from Xi,k.

At time tk+1, a correction step from measurements is
performed exploiting the list of measurements Yi,k+1 ob-
tained form the observed FoV Fi(x

u
i,k+1). From Yi,k+1,

the measurement model (4), and the bounds [w] on the
measurement noise, the set containing all noise-free mea-
surements is

Yi,k = {y −w | y ∈ Yi,k,w ∈ [w]} . (7)

Then, different cases have to be considered to determine
the set Xi,k+1|k+1 updated from Xi,k+1|k. Target detected
at time tk+1 may correspond to already detected targets
which state is inside Xi,k+1|k. From (4), the associated set
estimate is

S1 =
{
x ∈ Xi,k+1|k |hk+1(x

u
i,k+1,x) ∈ Yi,k

}
. (8)

Alternatively, targets may be detected for the first time in
Xi,k+1|k and the corresponding set of possible target state
values is

S2 =
{
x ∈ Xi,k+1|k |hk+1(x

u
i,k+1,x) ∈ Yi,k

}
. (9)

Since target non-detection does not occur, when all in-
formation in Fi(x

u
i,k) is processed, there is no target in

Fi(x
u
i,k+1) \ (S1 ∪ S2). The set

S3 = Xi,k+1|k \ Fi

(
xu
i,k+1

)
, (10)

contains the target states in the part of Xi,k+1|k outside of
the FoV of the UAV i. The updated set estimate Xi,k+1|k+1

accounting the three previous cases is then

Xi,k+1|k+1 = S1 ∪ S2 ∪ S3. (11)

When all measurements from Fi(x
u
i,k+1) are processed, the

set Xi,k+1|k can be updated as

Xi,k+1|k+1 = Xi,k+1|k \ Fi(x
u
i,k+1). (12)
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Fig. 1. Set estimates Xi,k+1|k (in green) and Xi,k+1|k (in
yellow) before correction from measurement (left) and
set estimates Xi,k+1|k+1 (in green) and Xi,k+1|k+1 (in
yellow) after correction (right).

Figure 1 illustrates a situation where both S1 and S2
are not empty, and shows the reduction of the sizes of
Xi,k+1|k+1 and Xi,k+1|k+1 compared to those of Xi,k+1|k
and Xi,k+1|k due to the parts of the FoV Fi(x

u
i,k+1) in

which no target is detected.

Finally, once the correction step from measurements is
completed, UAV i exchanges the set estimates Xi,k+1|k+1

and Xi,k+1|k+1 with its neighboring UAVs with index
� ∈ Ni,k, and receives the corresponding sets X�,k+1|k+1

and X�,k+1|k+1. After communication, the set estimate
Xi,k+1 is evaluated as the union of the set estimates
X�,k+1|k+1, � ∈ Ni,k+1∪{i} reduced by the union of subsets

X̃�,k+1|k+1 = X0 \
(
Xi,k+1|k+1 ∪ Xi,k+1|k+1

)
of X0 proved

not to contain any target state, i.e.,

Xi,k+1 =
⋃

�∈Ni,k+1∪{i}

X�,k+1|k+1 \
⋃

�∈Ni,k+1∪{i}

X̃�,k+1|k+1. (13)

Finally, the set estimate Xi,k+1 is the intersection of the
unexplored space of UAV i and that of its neighbors, i.e.,

Xi,k+1 =
⋂

�∈Ni,k+1∪{i}

X�,k+1|k+1. (14)

Figure 2 illustrates the sets resulting from (13) and
(14) for two cases. The size of Xi,k+1 may be smaller
than Xi,k+1|k+1 as in Figure 2 a), when some subsets
of Xi,k+1|k+1 have been proved by another UAV not to
contain a target. It may also be larger, as in Figure 2 b),
where UAV � has obtained measurements leading to an-
other hypothesis on the state estimate of a target. The size
of Xi,k+1 is always reduced compared to that of Xi,k+1|k+1.

3.2 Cooperative control design

At each time tk, UAV i determines the sequence of control
inputs ui,k:k+h−1 = (ui,k, . . . ,ui,k+h−1) which minimizes

the predicted estimation uncertainty ΦSM(Xi,k+h,Xi,k+h)
at time tk+h, where h � 1 is the prediction horizon. A
model predictive control approach is considered.

At time tk, UAV i has access to Xi,k and Xi,k. Using
a prediction step described in Section 3.1, UAV i can
evaluate Xi,k+1|k and Xi,k+1|k. Then, for a given control
input ui,k, UAV i is able to get a predicted value xu,p

i,k+1 of
its state xu

i,k+1 at time tk+1 and to infer the corresponding

FoV Fi(x
u,p
i,k+1). Nevertheless, UAV i is unable to deter-

mine whether it will observe new or previously detected
targets in Fi(x

u,p
i,k+1). Consequently, neglecting also the

(a) (b)

Fig. 2. Set estimates evaluated by UAV i and � before com-
munication (two top subfigures of each column) and
after communication and update (bottom subfigures).

information provided by other UAVs, in the correction
from measurement step described in Section 3.1, only the
impact of the reduction of the sets due to the FoV is
evaluated to get the predicted values

Xp
i,k+1 = Xi,k+1|k \ Fi(x

u,p
i,k+1), (15)

Xp

i,k+1 = Xi,k+1|k \ Fi(x
u,p
i,k+1). (16)

A predicted estimation uncertainty for UAV i at time tk+1

may be evaluated as ΦSM(Xp
i,k+1,X

p

i,k+1) and is a lower
bound of the uncertainty that can be achieved.

The previous approach may be applied iteratively on
Xp

i,k+κ and Xp

i,k+κ to evaluate the impact of ui,k+κ, κ =
1, . . . , h − 1, on the predicted estimation uncertainty for
UAV i at time tk+κ, which provides Xp

i,k+h and Xp

i,k+h

when κ = h − 1. Thus an estimate ΦSM(Xp
i,k+h,X

p

i,k+h)

of ΦSM(Xi,k+h,Xi,k+h) is deduced. In practice, UAV i
searches the sequence of control inputs ui,k:k+h−1 mini-
mizing

J (ui,k:k+h−1) = ΦSM(Xp
i,k+h,X

p

i,k+h)

+ αSMdH(x
u,p
i,k+h,X

p
i,k+h ∪ Xp

i,k+h), (17)

where dH (x,X) is the Hausdorff distance between the
vector x and the set X. The second term is introduced
to drive UAV i towards Xp

i,k+h or Xp

i,k+h when the first

term, ΦSM(Xp
i,k+h,X

p

i,k+h), remains constant, whatever
the sequence of inputs ui,k:k+h−1, which may occur when
the chosen prediction horizon is not large enough. The
parameter αSM adjusts the relative importance of the
second term.

A cooperative version of the previous control strategy
is considered where UAVs evaluate their control input
sequentially. For example, UAV i accounts for the pre-
dicted sets Xp

�,k+h and Xp

�,k+h of neighbors with index
� ∈ N c

i,k ⊆ Ni,k, which have already evaluated their
sequence of control inputs. These sets may be used for
the control design of neighboring UAVs in the prediction
approach to account for predicted estimates of other UAVs
using (13) and (14), see Ibenthal et al. (2021) for more
details.
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Fig. 1. Set estimates Xi,k+1|k (in green) and Xi,k+1|k (in
yellow) before correction from measurement (left) and
set estimates Xi,k+1|k+1 (in green) and Xi,k+1|k+1 (in
yellow) after correction (right).

Figure 1 illustrates a situation where both S1 and S2
are not empty, and shows the reduction of the sizes of
Xi,k+1|k+1 and Xi,k+1|k+1 compared to those of Xi,k+1|k
and Xi,k+1|k due to the parts of the FoV Fi(x

u
i,k+1) in

which no target is detected.

Finally, once the correction step from measurements is
completed, UAV i exchanges the set estimates Xi,k+1|k+1

and Xi,k+1|k+1 with its neighboring UAVs with index
� ∈ Ni,k, and receives the corresponding sets X�,k+1|k+1

and X�,k+1|k+1. After communication, the set estimate
Xi,k+1 is evaluated as the union of the set estimates
X�,k+1|k+1, � ∈ Ni,k+1∪{i} reduced by the union of subsets

X̃�,k+1|k+1 = X0 \
(
Xi,k+1|k+1 ∪ Xi,k+1|k+1

)
of X0 proved

not to contain any target state, i.e.,

Xi,k+1 =
⋃

�∈Ni,k+1∪{i}

X�,k+1|k+1 \
⋃

�∈Ni,k+1∪{i}

X̃�,k+1|k+1. (13)

Finally, the set estimate Xi,k+1 is the intersection of the
unexplored space of UAV i and that of its neighbors, i.e.,

Xi,k+1 =
⋂

�∈Ni,k+1∪{i}

X�,k+1|k+1. (14)

Figure 2 illustrates the sets resulting from (13) and
(14) for two cases. The size of Xi,k+1 may be smaller
than Xi,k+1|k+1 as in Figure 2 a), when some subsets
of Xi,k+1|k+1 have been proved by another UAV not to
contain a target. It may also be larger, as in Figure 2 b),
where UAV � has obtained measurements leading to an-
other hypothesis on the state estimate of a target. The size
of Xi,k+1 is always reduced compared to that of Xi,k+1|k+1.

3.2 Cooperative control design

At each time tk, UAV i determines the sequence of control
inputs ui,k:k+h−1 = (ui,k, . . . ,ui,k+h−1) which minimizes

the predicted estimation uncertainty ΦSM(Xi,k+h,Xi,k+h)
at time tk+h, where h � 1 is the prediction horizon. A
model predictive control approach is considered.

At time tk, UAV i has access to Xi,k and Xi,k. Using
a prediction step described in Section 3.1, UAV i can
evaluate Xi,k+1|k and Xi,k+1|k. Then, for a given control
input ui,k, UAV i is able to get a predicted value xu,p

i,k+1 of
its state xu

i,k+1 at time tk+1 and to infer the corresponding

FoV Fi(x
u,p
i,k+1). Nevertheless, UAV i is unable to deter-

mine whether it will observe new or previously detected
targets in Fi(x

u,p
i,k+1). Consequently, neglecting also the
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Fig. 2. Set estimates evaluated by UAV i and � before com-
munication (two top subfigures of each column) and
after communication and update (bottom subfigures).

information provided by other UAVs, in the correction
from measurement step described in Section 3.1, only the
impact of the reduction of the sets due to the FoV is
evaluated to get the predicted values

Xp
i,k+1 = Xi,k+1|k \ Fi(x

u,p
i,k+1), (15)

Xp

i,k+1 = Xi,k+1|k \ Fi(x
u,p
i,k+1). (16)

A predicted estimation uncertainty for UAV i at time tk+1

may be evaluated as ΦSM(Xp
i,k+1,X

p

i,k+1) and is a lower
bound of the uncertainty that can be achieved.

The previous approach may be applied iteratively on
Xp

i,k+κ and Xp

i,k+κ to evaluate the impact of ui,k+κ, κ =
1, . . . , h − 1, on the predicted estimation uncertainty for
UAV i at time tk+κ, which provides Xp

i,k+h and Xp

i,k+h

when κ = h − 1. Thus an estimate ΦSM(Xp
i,k+h,X

p

i,k+h)

of ΦSM(Xi,k+h,Xi,k+h) is deduced. In practice, UAV i
searches the sequence of control inputs ui,k:k+h−1 mini-
mizing

J (ui,k:k+h−1) = ΦSM(Xp
i,k+h,X

p

i,k+h)

+ αSMdH(x
u,p
i,k+h,X

p
i,k+h ∪ Xp

i,k+h), (17)

where dH (x,X) is the Hausdorff distance between the
vector x and the set X. The second term is introduced
to drive UAV i towards Xp

i,k+h or Xp

i,k+h when the first

term, ΦSM(Xp
i,k+h,X

p

i,k+h), remains constant, whatever
the sequence of inputs ui,k:k+h−1, which may occur when
the chosen prediction horizon is not large enough. The
parameter αSM adjusts the relative importance of the
second term.

A cooperative version of the previous control strategy
is considered where UAVs evaluate their control input
sequentially. For example, UAV i accounts for the pre-
dicted sets Xp

�,k+h and Xp

�,k+h of neighbors with index
� ∈ N c

i,k ⊆ Ni,k, which have already evaluated their
sequence of control inputs. These sets may be used for
the control design of neighboring UAVs in the prediction
approach to account for predicted estimates of other UAVs
using (13) and (14), see Ibenthal et al. (2021) for more
details.

4. BAYESIAN ESTIMATION FOR TARGET SEARCH
AND TRACK IN A STOCHASTIC CONTEXT

This section presents an adaptation of the Bayesian state
estimation approach in a stochastic context for target
search and tracking of Hu et al. (2012, 2014). The approach
evaluates the a posteriori probability of presence of a
target in a discrete probability grid of the RoI. The
approach is adapted to account for the partly unknown
target dynamics and to comply with the observation model
introduced in (4). Here, we assume that γ (vj,k) and ‖vj,k‖
are uniformly distributed in [0, 2π[ and [0, v] respectively
and that wi,j,k is uniformly distributed in [w].

Following the approach in Hu et al. (2014), X0 is parti-
tioned into N c regular rectangular cells Cm ⊂ X0, where
m ∈ N c = {1, . . . , N c}. Assume that there is at most one
target in each cell. At time tk, let θ

m
k be a Bernoulli random

variable indicating the presence (θmk = 1) or absence
(θmk = 0) of a target in cell Cm. The aim of UAV i is to
evaluate pmi,k = Pr (θmk = 1 | Ii,k), the posterior probability
of presence of a target in Cm considering all information
Ii,k available to UAV i up to time tk. The probability map
Pi,k = {pmi,k}m∈N c gathers all values of pmi,k at time tk.

In the Bayesian approach, two ingredients are instrumen-
tal. The first is the transition probability Pr(θn,k+1 = 1 |
θm,k = 1) providing the probability that a target is in cell
n at time tk+1 knowing that there is a target in cell m at
time tk. The transition probability is assumed to be time
invariant and can be evaluated assuming a single target
present in the RoI in cell m. The pdf pk (x) of the target
state can be assumed uniform over Cm and null outside of
Cm. Then, a continuous target state transition pdf π (x′|x)
to represent the displacement of a target during a time
interval of duration T may be derived from the target
dynamics (2), as described, e.g., in Zhen et al. (2020). The
pdf of the predicted target location pk+1|k (x) at time tk+1

is obtained via the Chapman-Kolmogorov equation as

pk+1|k (x) =

∫

X0

π (x′ | x) pk (x) dx. (18)

The transition probability Pr (θn,k+1 = 1 | θm,k = 1) is
then obtained integrating pk+1|k (x) over Cn, n ∈ N c.

The second is the processing of observations. At time tk+1,
UAV i observes Fi(x

u
i,k+1) and gets Yi,k+1. It can evaluate

the list of completely observed cells

Oi,k+1 =
{
m ∈ N c | Cm ⊂ Fi

(
xu
i,k+1

)
∩ X0

}
.

and a list of cells where targets are detected

Li,k+1 =
{
m ∈ N c | ∃x ∈ Cm,hi

(
xu
i,k+1,x

)
∈ Yi,k

}
.

From Oi,k+1 and Li,k+1, UAV i deduces the observation
result zmi,k+1 for cell m. If m ∈ Li,k+1, then zmi,k = 1,
indicating that a target is detected in Cm. If m ∈ Oi,k+1

and m /∈ Li,k+1, then zmi,k = 0, indicating that not target
is detected in the observed cell Cm. One assumes further
that the true positive detection probability is Pr(zmi,k =

1|θmk = 1) = p and the false positive detection probability
is Pr(zmi,k = 1|θmk = 0) = q. Here, one has p = 1 since
targets located inside the FoV are always detected, see
Section 2, and q > 0 since it is assumed that false positive
detection of targets may appear. Conditioned on θmk , the
random variables zmi,k are assumed to be time-independent.

For a given threshold p ∈ [0.5, 1], the relative estimation
uncertainty for UAV i in the Bayesian (B) estimation
context is

ΦB
(
Pi,k, p

)
=

∣∣{m ∈ N c | 1− p < pmi,k < p}
∣∣ /N c, (19)

where |N | is the cardinal number of the set N . The
function ΦB

(
Pi,k, p

)
evaluates the proportion of cells with

pmi,k close to 1/2, i.e., the presence or absence of target
is still uncertain. The tolerated level of uncertainty is
determined by p.

4.1 Evolution of the probability map

At time tk, to evaluate Pi,k+1 from Pi,k, UAV i applies
a three-step estimation procedure similar to that in Sec-
tion 3. At time t0, the probability of presence of a target in
each cell is chosen as pmi,k = p0 = 0.5, m ∈ N c, to represent
the fact that targets may be anywhere in the RoI.

First, a prediction step is applied to evaluate pni,k+1|k =

Pr
(
θnk+1 = 1 | Ii,k

)
, n ∈ N c, using

pni,k+1|k =
∑

m∈N c

Pr
(
θnk+1 = 1 | θmk = 1

)
pmi,k. (20)

This procedure may be compactly written as

Pi,k+1|k = M (Pi,k) , (21)

where Pi,k+1|k = {pmi,k+1|k}m∈N c . The function M de-

pends on (20) and can be evaluated offline as the state
transition probability does not depend of the target state,
see Bertuccelli and How (2006a); Frew and Elston (2008).

At time tk+1, a correction step from measurements is
performed. Following Khan et al. (2015); Kuhlman et al.
(2017), UAV i can evaluate pmi,k+1|k+1 = Pr(θmk+1 =

1 | Ii,k,Fi(x
u
i,k+1),Yi,k+1), m ∈ N c from Pi,k+1|k and

{zmi,k+1}m∈N c using Bayes’ rule. If m ∈ Oi,k+1 and
zmi,k+1 = 1, one gets

pmi,k+1|k+1 =
p.pmi,k+1|k

p.pmi,k+1|k + q(1− pmi,k+1|k)
, (22)

else if m ∈ Oi,k+1 and zmi,k+1 = 0, one has

pmi,k+1|k+1 =
(1− p) pmi,k

(1− p) pmi,k+1|k + (1− q) (1− pmi,k+1|k)
,

(23)
and if m /∈ Oi,k+1, one simply gets pmi,k+1|k+1 = pmi,k+1|k.

When the detection probability is p = 1, m ∈ Oi,k+1 and
zmi,k+1 = 0 (cell Cm is in the FoV and no target is detected)
leads to pmi,k+1|k+1 = 0.

Then, UAV i broadcasts pmi,k+1|k+1 and receives the corre-

sponding information from its neighbors UAV 
 ∈ Ni,k.
Then UAV i evaluates pni,k+1 = Pr

(
θnk+1 = 1 | Ii,k+1

)
,

n ∈ N c, using a correction step from communication, as
in Hu et al. (2012). First the log a posteriori ratios

qmi,k+1|k+1 = log
((

1− pmi,k+1|k+1

)
/pmi,k+1|k+1

)
, (24)

are evaluated and pmi,k+1 is evaluated from

qmi,k+1 =
∑

�∈Ni,k∪{i}

wi,�,kq
m
i,k+1|k+1, (25)

where wi,i,k = 1 − ((|Ni,k| − 1) /Nu) and wi,�,k = 1/Nu,

 ∈ Ni,k, applying the inverse of (24) to get finally Pi,k+1.
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4.2 Control design

As in Section 3.2, each UAV i searches a sequence of
control inputs ui,k:k+h−1 which minimizes the uncertainty
ΦB(Pi,k+h, p) at time tk+h. To get a fair comparison, a
model predictive control approach relying on the same
assumptions as in Section 3.2 is considered: (1) UAVs com-
pute their control inputs sequentially, (2) once ui,k:k+h−1

is evaluated, it is broadcast, (3) UAV i accounts for the
control sequences of neighbors in � ∈ N c

i,k ⊆ Ni,k, and

(4) UAVs are unable to predict whether a target will be
detected at tk+κ, κ = 1 . . . , h.

At time tk, UAV i has access to P�,k and xu,p
�,k+1:k+h,

� ∈ N c
i,k. For a control input ui,k, UAV i predicts xu

i,k+1

to get xu,p
i,k+1 using (1). The predicted map Pp

�,k+1|k is

evaluated from P�,k using (21). At tk+1,the predicted set
of entirely observed cells by UAV i or one of its neighbors
is

Op
�,k+1 =

{
m ∈ N c | Cm ⊂ F�(x

u
�,k+1) ∩ X0

}
, (26)

with � ∈ N c
i,k ∪ {i}. As UAVs are unable to predict

whether targets will be detected, the predicted value of
L�,k+1 is Lp

�,k+1 = ∅ and that of zm�,k+1 is zm,p
�,k+1 = 0, for

m ∈ Op
�,k+1 and � ∈ N c

i,k ∪{i}. Pp
�,k+1|k+1 is then deduced

from Pp
�,k+1|k and the zm,p

�,k+1s using (22) and (23). Finally,

Pp
i,k+1 is obtained from Pp

�,k+1|k+1, � ∈ N c
i,k∪{i} using the

transform (24), (25), and the inverse (24).

The previous one-step ahead evaluation of Pp
i,m,k+1 is

applied recursively to get Pp
i,k+h. UAV i can then search

for ui,k:k+h−1 minimizing ΦB(Pp
i,k+h, p). When h is small,

ui,k:k+h−1 may have no impact on ΦB(Pp
i,k+h, p). Conse-

quently, the alternative cost function

JB (ui,k:k+h−1) = ΦB(Pp
i,k+h, p)

+ αBdB(x
u,p
i,k+h,P

p
i,k+h), (27)

is introduced, where

dB(x
u,p
i,k+h,P

p
i,k+h) = min

m∈N c,1−p′<pm,p
i,k+h

<p′
||cm − xu,p

i,k+h||,

where cm is the center Cm. The distance dB(x
u,p
i,k+h,P

p
i,k+h)

helps driving UAVs to cells for which the presence of
targets is still uncertain (determined by the threshold p′).

The weight αB balances the relative importance of this
distance with respect to the first term of (27) and plays a
role similar to the one of αSM.

5. SIMULATIONS

Simulation conditions are provided in Section 5.1. The
performance of the SM and stochastic estimators is first
compared in a scenario without false positive detection
in Section 5.2. Three different sources of false positive
detection are then considered. Section 5.3 reports results
where false positive detection is due to the presence of false
targets, whose detection conditions are deterministic, as in
Ibenthal et al. (2021). Then, Sections 5.4 and 5.5 report
results where false positive detection is random to model
a defective or imperfect sensor or changing environmental
conditions.

5.1 Simulation conditions

In the following simulations, the sampling period is T =
0.5 s. The RoI is a square of 500 × 500m2. A fleet of
Nu = 4 UAVs searches for N t = 10 static ground targets
uniformly distributed in the RoI. The state of UAV i at
time tk consists of its location xu

i,k = (xu
i,k,1, x

u
i,k,2, x

u
i,k,3)

�,
flight path angle xu

i,k,4, heading angle xu
i,k,5, yaw rate

xu
i,k,6, and yaw rate derivative xt

i,k,7. The UAVs move at
a constant altitude of h = 100m and a constant speed of
V = 16.6m/s. The control input ui,k is limited to the yaw
rate xu

i,k,7. The state vector xu
i,k evolves according to




xu
i,k+1,1

xu
i,k+1,2

xu
i,k+1,3

xu
i,k+1,4

xu
i,k+1,5

xu
i,k+1,6

xu
i,k+1,7




=




xu
i,k,1 + T cos

(
xu
i,k,4
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The FoVs are half cones with an identical aperture of
π/4 for the azimuth and elevation. Their inclination with
respect to the body X axis (roll axis) is γFoV = 3π/8.
When a target is detected, a noisy measurement of its
state is obtained, with a noise uniformly distributed in
[−5, 5] × [−5, 5]m2. To reflect a partial knowledge of the
noise bounds, which have to be over estimated, one takes
[w] = [−7, 7] × [−7, 7]m2. The prediction horizon for the
control design is h = 3 for both control schemes. The RoI
is divided into 125 × 125 cells for the probability map
of the Bayesian estimator. Each cell has a size of 4 ×
4m. The results have been averaged over 30 independent
simulations with uniformly distributed initial locations of
the targets and UAVs in the RoI.

In the SM approach, the value αSM in (17) has to be chosen

so that αSMd(xu,p
i,k+h,X

p
i,k+h ∪Xp

i,k+h) remains small com-

pared to ΦSM(Xp
i,k+h,X

p

i,k+h), to emphasize the reduction
of the size of the sets. Sets are represented using Matlab
polyshapes.

In the Bayesian approach, four parameters need to be
chosen. The thresholds p and p′ for pmi,k determine when
one decides a target is present or absent in a cell. The
weight αB has a similar meaning as αSM and should

be chosen such that αBdB(xu,P
i,k+h,PP

i,k+h) remains small

compared to ΦB(Pp
i,k+h). Finally, the false detection prob-

ability q needs to be selected. This probability depends
on the quality of observation and thus on the sensor, the
image processing system, and environmental conditions.
The value of q may be derived from prior simulations and
experiments analyzing the properties of the sensor system
in various conditions. Here, the parameters are chosen as
αSM = αB = 0.0001 and p′ = 0.99.

5.2 Without false positive detection

In the first scenario, the estimation performance is com-
pared without false positive detection. Figure 4 (left)

presents the evolution of Φ
SM

k = 1
Nu

∑Nu

i=1 Φ
SM(Xi,k,Xi,k)

and Φ
B

k

(
p
)
= 1

Nu

∑Nu

i=1 Φ
B+

(
Pi,k, p

)
, with ΦB+

(
Pi,k, p

)
=
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4.2 Control design

As in Section 3.2, each UAV i searches a sequence of
control inputs ui,k:k+h−1 which minimizes the uncertainty
ΦB(Pi,k+h, p) at time tk+h. To get a fair comparison, a
model predictive control approach relying on the same
assumptions as in Section 3.2 is considered: (1) UAVs com-
pute their control inputs sequentially, (2) once ui,k:k+h−1

is evaluated, it is broadcast, (3) UAV i accounts for the
control sequences of neighbors in � ∈ N c

i,k ⊆ Ni,k, and

(4) UAVs are unable to predict whether a target will be
detected at tk+κ, κ = 1 . . . , h.

At time tk, UAV i has access to P�,k and xu,p
�,k+1:k+h,

� ∈ N c
i,k. For a control input ui,k, UAV i predicts xu

i,k+1

to get xu,p
i,k+1 using (1). The predicted map Pp

�,k+1|k is

evaluated from P�,k using (21). At tk+1,the predicted set
of entirely observed cells by UAV i or one of its neighbors
is

Op
�,k+1 =

{
m ∈ N c | Cm ⊂ F�(x

u
�,k+1) ∩ X0

}
, (26)

with � ∈ N c
i,k ∪ {i}. As UAVs are unable to predict

whether targets will be detected, the predicted value of
L�,k+1 is Lp

�,k+1 = ∅ and that of zm�,k+1 is zm,p
�,k+1 = 0, for

m ∈ Op
�,k+1 and � ∈ N c

i,k ∪{i}. Pp
�,k+1|k+1 is then deduced

from Pp
�,k+1|k and the zm,p

�,k+1s using (22) and (23). Finally,

Pp
i,k+1 is obtained from Pp

�,k+1|k+1, � ∈ N c
i,k∪{i} using the

transform (24), (25), and the inverse (24).

The previous one-step ahead evaluation of Pp
i,m,k+1 is

applied recursively to get Pp
i,k+h. UAV i can then search

for ui,k:k+h−1 minimizing ΦB(Pp
i,k+h, p). When h is small,

ui,k:k+h−1 may have no impact on ΦB(Pp
i,k+h, p). Conse-

quently, the alternative cost function

JB (ui,k:k+h−1) = ΦB(Pp
i,k+h, p)

+ αBdB(x
u,p
i,k+h,P

p
i,k+h), (27)

is introduced, where

dB(x
u,p
i,k+h,P

p
i,k+h) = min

m∈N c,1−p′<pm,p
i,k+h

<p′
||cm − xu,p

i,k+h||,

where cm is the center Cm. The distance dB(x
u,p
i,k+h,P

p
i,k+h)

helps driving UAVs to cells for which the presence of
targets is still uncertain (determined by the threshold p′).

The weight αB balances the relative importance of this
distance with respect to the first term of (27) and plays a
role similar to the one of αSM.

5. SIMULATIONS

Simulation conditions are provided in Section 5.1. The
performance of the SM and stochastic estimators is first
compared in a scenario without false positive detection
in Section 5.2. Three different sources of false positive
detection are then considered. Section 5.3 reports results
where false positive detection is due to the presence of false
targets, whose detection conditions are deterministic, as in
Ibenthal et al. (2021). Then, Sections 5.4 and 5.5 report
results where false positive detection is random to model
a defective or imperfect sensor or changing environmental
conditions.

5.1 Simulation conditions

In the following simulations, the sampling period is T =
0.5 s. The RoI is a square of 500 × 500m2. A fleet of
Nu = 4 UAVs searches for N t = 10 static ground targets
uniformly distributed in the RoI. The state of UAV i at
time tk consists of its location xu

i,k = (xu
i,k,1, x

u
i,k,2, x

u
i,k,3)

�,
flight path angle xu

i,k,4, heading angle xu
i,k,5, yaw rate

xu
i,k,6, and yaw rate derivative xt

i,k,7. The UAVs move at
a constant altitude of h = 100m and a constant speed of
V = 16.6m/s. The control input ui,k is limited to the yaw
rate xu

i,k,7. The state vector xu
i,k evolves according to




xu
i,k+1,1

xu
i,k+1,2

xu
i,k+1,3

xu
i,k+1,4

xu
i,k+1,5

xu
i,k+1,6

xu
i,k+1,7




=




xu
i,k,1 + T cos

(
xu
i,k,4

)
cos

(
xu
i,k,5

)
V

xu
i,k,2 + T cos

(
xu
i,k,4

)
sin

(
xu
i,k,5

)
V

xu
i,k,3 + T sin

(
xu
i,k,4

)
V

xu
i,k,4

xu
i,k,5 + Txu

i,k,6

xu
i,k,6 + Txu

i,k,7

ui,k




.

The FoVs are half cones with an identical aperture of
π/4 for the azimuth and elevation. Their inclination with
respect to the body X axis (roll axis) is γFoV = 3π/8.
When a target is detected, a noisy measurement of its
state is obtained, with a noise uniformly distributed in
[−5, 5] × [−5, 5]m2. To reflect a partial knowledge of the
noise bounds, which have to be over estimated, one takes
[w] = [−7, 7] × [−7, 7]m2. The prediction horizon for the
control design is h = 3 for both control schemes. The RoI
is divided into 125 × 125 cells for the probability map
of the Bayesian estimator. Each cell has a size of 4 ×
4m. The results have been averaged over 30 independent
simulations with uniformly distributed initial locations of
the targets and UAVs in the RoI.

In the SM approach, the value αSM in (17) has to be chosen

so that αSMd(xu,p
i,k+h,X

p
i,k+h ∪Xp

i,k+h) remains small com-

pared to ΦSM(Xp
i,k+h,X

p

i,k+h), to emphasize the reduction
of the size of the sets. Sets are represented using Matlab
polyshapes.

In the Bayesian approach, four parameters need to be
chosen. The thresholds p and p′ for pmi,k determine when
one decides a target is present or absent in a cell. The
weight αB has a similar meaning as αSM and should

be chosen such that αBdB(xu,P
i,k+h,PP

i,k+h) remains small

compared to ΦB(Pp
i,k+h). Finally, the false detection prob-

ability q needs to be selected. This probability depends
on the quality of observation and thus on the sensor, the
image processing system, and environmental conditions.
The value of q may be derived from prior simulations and
experiments analyzing the properties of the sensor system
in various conditions. Here, the parameters are chosen as
αSM = αB = 0.0001 and p′ = 0.99.

5.2 Without false positive detection

In the first scenario, the estimation performance is com-
pared without false positive detection. Figure 4 (left)

presents the evolution of Φ
SM

k = 1
Nu

∑Nu

i=1 Φ
SM(Xi,k,Xi,k)

and Φ
B

k

(
p
)
= 1

Nu

∑Nu

i=1 Φ
B+

(
Pi,k, p

)
, with ΦB+

(
Pi,k, p

)
=

∣∣∣{m ∈ N c | pmi,k � p}
∣∣∣ /N c, p ∈ {0.6, 0.9, 0.99}. As soon as

Xi,k = ∅, ΦSM

k and Φ
B

k

(
p
)
provide the proportion of the

search area where the estimators conclude in the presence
of targets. For the Bayesian approach, three values for
the probabilities of false positive detection are compared
q ∈ {0.1, 0.5, 0.9}. Some values are chosen very large to
emphasize their impact on the estimation performance.
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Fig. 3. Without false detection: Mean values of Φ
SM

k and

Φ
B

k

(
p
)
(left) and of the number of true targets tracked

(right).

Figure 3 (left) shows that Φ
SM

k monotonically decreases
with tk and converges to 0.064×10−2, which is the number
of true targets (N t = 10) times the measure of the
mismatch of the noise bound ((±2) × (±2) m2) divided
by the area of the RoI (500 × 500m2). The proposed
SM estimator evaluates guaranteed estimates (provided
that the assumptions on the noise bounds are satisfied).

Consequently, Φ
SM

k is an upper bound for the estimation
uncertainty that can be obtained.

For the Bayesian estimator, the criterion Φ
B

k (p) converges
towards different values depending on q ∈ {0.1, 0.5, 0.9}.
The smallest value of Φ

B

k

(
p
)
is identical to that of Φ

SM

k and

corresponds to N t times the area of a single cell (4×4m2)
divided by the area of the RoI. Nevertheless, due to the
mismatch of the noise bound, a single target may lead to
a constant detection in neighboring cells. Assuming that a
single target leads to a detection of targets in 3 neighboring

cells results in a final value of Φ
B

k (p) of 0.192 × 10−2,

which is very close to what is obtained for Φ
B

k (0.99), when
q = 0.9. The Bayesian estimator with q = 0.9 performs
better since it removes more efficiently these erroneous
detections in neighboring cells.

Figure 3 (right) presents the number of tracked targets. For
the SM estimator, it is number of targets that are located
in Xi,k (solid, black, SME). The targets are always located

in Xi,k∪Xi,k. For the Bayesian estimator, it is the number
of targets in cells with pmi,k > p. The Bayesian estimator
with q = 0.9 needs a much larger number of observations
to identify the cells where the targets are located. This
is reasonable since the higher probability of false positive
detection makes it necessary to collect more measurements
of the same cell to increase pmi,k.

5.3 Deterministic false positive detection

In this section, static false targets may be confused with
true targets. A false target at location xf

j is detected when

xf
j ∈ Fi(x

u
i,k). When detected, the false target is confused

with a true target when xu
i,k /∈ gj

(
xf
j

)
, where

gj
(
xf
j

)
= {xf

j +
∑3

m=1amvj,m | am ∈ R+,m = 1, 2, 3},
is a half cone described by vectors vj,1, vj,2, and vj,3 ∈
R3. One has vj,1 = (0, 0, 1)

�
. The angle between vec-

tors are ∠ (vj,1,vj,2) = π/4, ∠ (vj,1,vj,3) = π/4, and
∠ (vj,2,vj,3) = π/4. The orientation/angle of the cone

∠(vj,2, (1, 0, 0)
�
) is uniformly distributed in [0, 2π[. When

xu
i,k ∈ gj

(
xf
j

)
, the measurement is discarded, which trans-

lates the fact that the UAV observes the target with a
point of view that enables determining that it is a false
target, see also Ibenthal et al. (2021). Consequently, for
Yi,k in (3), if xf

j ∈ Fi(x
u
i,k) and xu

i,k /∈ gj
(
xf
j

)
then there

exists y ∈ Yi,k such that y = yf
i,j,k where yf

i,j,k =

hi(x
u
i,k,x

f
j)+wi,j,k is the measurement of the location xf

j of

false target j with wi,j,k uniformly distributed in [−5, 5]×
[−5, 5]m2. The RoI contains 10 uniformly distributed false
targets.

Figure 4 (left) shows that Φ
SM

k is not much affected by
the presence of false targets, compared to Figure 3 (left).

For the stochastic estimator, Φ
B

k

(
p
)
converges to different

values compared to Figure 3. The estimator with q = 0.1
is strongly affected by the presence of the false targets and

Φ
B

k (0.99) converges to 0.9×10−2 (compared to 0.5×10−2

in Figure 3).

Figure 4 (right) shows the evolution of the number of
tracked true targets. The presence of 10 false targets does
not impact significantly the SM estimator. The Bayesian
estimator shows also a similar behavior. Nevertheless, the
number of tracked targets for the estimator with p = 0.99
and q = 0.9 is increasing faster around t = 200 s than in
Figure 3 (right). Repetitive observations of false targets
seem to lead also to more observations of true targets and
thus to improved detection of the true targets.
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Fig. 4. Deterministic false positive detection: Mean values

of Φ
SM

k and Φ
B

k

(
p
)
(left) and of the number of true

targets tracked (right).

Figure 5 shows the mean values of the number of tracked
false targets, i.e., false targets that are inside the set
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estimates XU
i,k ∪ Xi,k (for the SM estimator) or inside a

cell m, where pmi,k > p (for the stochastic estimator). One
observes that the stochastic estimator with q = 0.9 is the
most efficient in discarding locations of false targets, and
performs the worst with q = 0.1. A high probability of
false positive detection forces the UAVs to update the
probability of each cell many times to reach pmi,k > p′ as in

(27), since the presence or absence of a target is considered
uncertain if 1− p′ < pmi,k < p′. The frequent updates lead
to changing points of view when collecting observations,
and the UAVs are prone to attain configurations where
xu
i,k ∈ gj

(
xf
j

)
and can finally discard the false targets.

The stochastic estimator with q � 0.5 performs worse
than the SM estimator in eliminating false targets. This
might be partially due to numerical approximations. The
probability pmi,k in each cell may be rounded to either 0
or 1 after a finite number of observations, which leads to
qmi,k either +∞ or −∞. As a consequence, the cost function

(27) can become zero whatever the control input sequence.
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Fig. 5. Deterministic false positive detection: Mean values
of the number of tracked false targets.

5.4 Stochastic false positive detection: Poisson model

In this section, false positive detection are assumed to be
due to a defective/imperfect sensor or computer vision
system. At each time tk UAV i may get N f

i,k false pos-

itive detection in the FoV, where N f
i,k follows a Poisson

distribution with parameter λi, determined by the quality
of the computer vision system of UAV i, i.e., P (N f

i,k = n |
λi) = λn

i e
−λi/n!. The locations of the N f

i,k false detection

is uniformly distributed in Fi(x
u
i,k). Each false positive

detection generates a measurement y in Yi,k.

Figure 6 presents the performance of the estimators when
λi = 10. The evolution of the number of tracked targets
of the SM estimator in Figure 6 (right) is very similar to
that in absence of false detection. The Bayesian estimator

with q = 0.9 converges towards similar values Φ
B

k (0.99) ≈
0.2× 10−2. One observes that targets are detected earlier
for a higher probability of false positive detection. This
false positive detection model has a strong impact on the
performance of the Bayesian estimator with q = 0.1. One

observes a strong overshoot of Φ
B

k (0.99) with q = 0.1 and

λi = 10 and a convergence to Φ
B

k (0.99) ≈ 0.8 × 10−2.

This indicates that the chosen probability of false positive
detection (q = 0.1) is too small and the real probability of
false positive detection is higher. In general, an appropriate
choice of q should lead to an evolution of ΦB

(
Pi,k, p

)
that

does not present any overshoots.
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Fig. 6. Stochastic false positive detection – Poisson model

with λi = 10: Mean values of Φ
SM

k and Φ
B
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(left)

and of the number of tracked true targets (right).

5.5 Stochastic false positive detection: Markov model
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Fig. 7. Stochastic false positive detection – Markov model:
Results of simulations with p11 = 0.99 and p00 = 1−
7.10−6. Mean values of Φ
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k and Φ
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(left) and of

the number of true targets tracked (right).

Now, false positive detection is assumed to be due to
changing environmental conditions. The false positive de-
tection in Cm, m ∈ N c, is modeled by a Markov pro-
cess. At time tk, consider N

c independent and identically

distributed stationary binary Markov processes θm,f
k to

model potential false positive detection of a target in

Cm. When θm,f
k = 1, a target is erroneously detected in

cell Cm when observed. When θm,f
k = 0, no false pos-

itive detection occurs when Cm is observed. The UAVs
have no access to θm,f

k . The evolution of θm,f
k represents

changes in environmental conditions. The state transition

probabilities are Pr(θm,f
k+1 = 1 | θm,f

k = 1) = p11 and

Pr(θm,f
k+1 = 0 | θm,f

k = 0) = p00. If at time tk, θ
m,f
k = 1 and

Cm ⊂ Fi(x
u
i,k+1) UAV i gets an additional measurement y

that corresponds to the detection of a decoy at the center
of Cm.
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estimates XU
i,k ∪ Xi,k (for the SM estimator) or inside a

cell m, where pmi,k > p (for the stochastic estimator). One
observes that the stochastic estimator with q = 0.9 is the
most efficient in discarding locations of false targets, and
performs the worst with q = 0.1. A high probability of
false positive detection forces the UAVs to update the
probability of each cell many times to reach pmi,k > p′ as in

(27), since the presence or absence of a target is considered
uncertain if 1− p′ < pmi,k < p′. The frequent updates lead
to changing points of view when collecting observations,
and the UAVs are prone to attain configurations where
xu
i,k ∈ gj

(
xf
j

)
and can finally discard the false targets.

The stochastic estimator with q � 0.5 performs worse
than the SM estimator in eliminating false targets. This
might be partially due to numerical approximations. The
probability pmi,k in each cell may be rounded to either 0
or 1 after a finite number of observations, which leads to
qmi,k either +∞ or −∞. As a consequence, the cost function

(27) can become zero whatever the control input sequence.

0 100 200 300 400 500
0

2

4

6

8

10

Time t (s)

N
u
m
b
er

of
tr
ac
ke
d
fa
ls
e
ta
rg
et
s

SME

p = 0.6, q = 0.1

p = 0.9, q = 0.1

p = 0.99, q = 0.1

p = 0.6, q = 0.5

p = 0.9, q = 0.5

p = 0.99, q = 0.5

p = 0.6, q = 0.9

p = 0.9, q = 0.9

p = 0.99, q = 0.9

Fig. 5. Deterministic false positive detection: Mean values
of the number of tracked false targets.

5.4 Stochastic false positive detection: Poisson model

In this section, false positive detection are assumed to be
due to a defective/imperfect sensor or computer vision
system. At each time tk UAV i may get N f

i,k false pos-

itive detection in the FoV, where N f
i,k follows a Poisson

distribution with parameter λi, determined by the quality
of the computer vision system of UAV i, i.e., P (N f

i,k = n |
λi) = λn

i e
−λi/n!. The locations of the N f

i,k false detection

is uniformly distributed in Fi(x
u
i,k). Each false positive

detection generates a measurement y in Yi,k.

Figure 6 presents the performance of the estimators when
λi = 10. The evolution of the number of tracked targets
of the SM estimator in Figure 6 (right) is very similar to
that in absence of false detection. The Bayesian estimator

with q = 0.9 converges towards similar values Φ
B

k (0.99) ≈
0.2× 10−2. One observes that targets are detected earlier
for a higher probability of false positive detection. This
false positive detection model has a strong impact on the
performance of the Bayesian estimator with q = 0.1. One

observes a strong overshoot of Φ
B

k (0.99) with q = 0.1 and

λi = 10 and a convergence to Φ
B

k (0.99) ≈ 0.8 × 10−2.

This indicates that the chosen probability of false positive
detection (q = 0.1) is too small and the real probability of
false positive detection is higher. In general, an appropriate
choice of q should lead to an evolution of ΦB

(
Pi,k, p

)
that

does not present any overshoots.
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Fig. 6. Stochastic false positive detection – Poisson model

with λi = 10: Mean values of Φ
SM

k and Φ
B

k

(
p
)
(left)

and of the number of tracked true targets (right).

5.5 Stochastic false positive detection: Markov model
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Fig. 7. Stochastic false positive detection – Markov model:
Results of simulations with p11 = 0.99 and p00 = 1−
7.10−6. Mean values of Φ
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k and Φ
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(left) and of

the number of true targets tracked (right).

Now, false positive detection is assumed to be due to
changing environmental conditions. The false positive de-
tection in Cm, m ∈ N c, is modeled by a Markov pro-
cess. At time tk, consider N

c independent and identically

distributed stationary binary Markov processes θm,f
k to

model potential false positive detection of a target in

Cm. When θm,f
k = 1, a target is erroneously detected in

cell Cm when observed. When θm,f
k = 0, no false pos-

itive detection occurs when Cm is observed. The UAVs
have no access to θm,f

k . The evolution of θm,f
k represents

changes in environmental conditions. The state transition

probabilities are Pr(θm,f
k+1 = 1 | θm,f

k = 1) = p11 and

Pr(θm,f
k+1 = 0 | θm,f

k = 0) = p00. If at time tk, θ
m,f
k = 1 and

Cm ⊂ Fi(x
u
i,k+1) UAV i gets an additional measurement y

that corresponds to the detection of a decoy at the center
of Cm.

Figure 7 presents the estimation performance of the two
estimators with p11 = 0.99 and p00 = 1 − 7.10−6. This
choice produces in average 10 cells in the RoI where

θm,f
k = 1. At k = 0, 10 randomly selected cells are such that

θm,f
0 = 1. The others are initialized with θm,f

k = 0. Again,
the SM estimator is hardly affected by the presence of false
positive detection, contrary to the Bayesian estimation,
which convergence speed is reduced.

6. CONCLUSION AND PERSPECTIVES

This paper compares SM and stochastic Bayesian state
estimators for target search and tracking. Both estimation
techniques are applied to search scenarios with false tar-
gets and a potentially defective/imperfect computer vision
system. It is assumed that the detection of false targets
is deterministic and depends on the points of view of
the UAVs when an observation is taken. Stochastic false
positive detection is assumed to be caused by a defec-
tive/imperfect computer vision system, where the false
positive detection appears uniformly distributed in the
FoV. The results show that the SM estimator is quite
insensitive to the considered sources of false positive detec-
tion. The stochastic estimator presents a higher sensitivity.

Furthermore, the choice of the assumed probability of false
positive detection q impacts the estimation uncertainty
considerably. Consequently, q is an additional parameter
that must be carefully chosen when using a stochastic
estimation method. The stochastic estimator shows the
potential to remove false targets more effectively from
the estimates when choosing a very high probability of
false positive detection. Nevertheless, this also delays the
estimation of the location of true targets.

Further extensions of the comparison include simulation
with moving targets and other noise sources. Only false
positive detection is considered in this paper. It would be
very interesting to adapt and compare both estimation
techniques for scenarios where false negative detection
of targets may appear. The adaptation of the stochastic
estimator in this context seems to be simpler than for the
SM estimator.
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