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Abstract : 

Resonant Ultrasound Spectroscopy is known as one of the most accurate techniques to 

determine materials' elastic properties. Its use has been limited until now since the extraction 

of elastic coefficients from resonance spectra requires some expertise. Recent efforts have 

been made to automatise the analysis and favour the widespread use of this method. 

Advanced mathematical tools have indeed been developed to produce robust exploitation of 

resonance spectra, mainly based on probabilistic approaches. Within this dynamics, we 

propose here a method that allows obtaining in a very efficient way the elastic coefficients of 

isotropic materials. The method is applicable to complete or incomplete resonance spectra. 

Our approach exploits the subtleties of resonance spectra in isotropic materials, the main one 

being that resonance frequencies depend in a complex manner on the Poisson's ratio  but 

are proportional to the square root of Young's Modulus E. Starting from a set of resonance 

frequencies, from sample dimensions and density, our method is able to determine the real E 

and  coefficients quickly and without making any hypothesis on their initial value. We also 

demonstrate that our approach is valid when the resonance spectrum presents some missing 

frequencies - which can occur in real cases - or when these frequencies are affected by 
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experimental error. Finally, we demonstrate in two real cases presented in previous articles 

that our approach is robust and rapid to determine accurate elastic coefficients. 
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I. Introduction 

Elasticity, which correlates the matter displacements to the applied stress within a solid, 

appears as the first of the solid mechanical properties. It can be measured by many techniques 

such as compression tests [1-3], Impulse Excitation Technique [4-5], nano-indentation [6-8], 

Time-of-flight [9-11] or Resonant Ultrasound Spectroscopy (RUS) [12-17]. This last technique 

has many advantages over the other ones: a very high accuracy, no need for multiple 

measures for the whole elastic tensor determination, and no need for a big sample [12]. It has 

also been used in a wide range of thermodynamic conditions such as low temperature [17], 

high temperature [19-20], under electric or magnetic fields [21-23] or even in the case of 

samples showing high ultrasonic attenuation [24]. Despite these significant advantages, the 

use of RUS has been limited to a few groups all over the world: Los Alamos (USA) with 104 

publications, Oak Ridge National Laboratories (USA) with 54 publications, M. Carpenter's 

group at Cambridge (U.K.) with 95 publications, Osaka University (Japan) with 51 publications, 

Ruhr University of Bochum (Germany) with 20 publications, M. Landa's group (Czech Republic) 

with 40 publications, to name some of the main actors in the field. It reflects the fact that a 

degree of expertise is needed to perform RUS measurements and analysis. The measurement 

by itself is indeed somewhat tricky, even if all the optimised experimental details were 

presented in previous articles [12-14, 25]. These articles reported on the preparation of a good 

sample for RUS (shape and size), on the requirement concerning electronics to acquire RUS 

spectra or on potential sources of errors like the pressure on the sample during acquisition. 

Commercial devices were also proposed, which help to minimise the source of errors [26, 27]. 

Considering this, the main difficulty during a RUS characterisation would lie in analysing 

acquired spectra. The least-square non-linear optimisation usually leads to the correct values 

of elastic coefficients once a correct association of modes is made and the potential absence 
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of modes is identified. The approach becomes hard to apply on materials with unknown elastic 

properties or complex elastic tensors, as in low-symmetry single crystals. This latter case 

represents a significant difficulty since as much as 21 elastic coefficients must potentially be 

retrieved if no knowledge is available about sample symmetry. Some methodologies were 

proposed either based on a step-by-step strategy coupled with complementary experiments 

[15, 28-29] or on user-independent advanced mathematical analyses, such as the Bayesian 

approach or the use of genetic algorithms [30-32]. Even if isotropic materials' elastic 

properties are by far easier to analyse, the limited use of the RUS technique, even in this case, 

underlines the expertise or time needed to analyse resonance spectra.  

In the present work, we present an alternative approach applicable to isotropic materials only, 

leading to a fast and correct determination of the elastic coefficients. We expect our approach 

to make the RUS characterisation more accessible to scientists and engineers, following 

previous works aiming to popularise the RUS approach [17]. In the first part, we describe the 

hypothesis, approaches and mathematical tools that we used for the RUS analysis. We then 

apply our approach to 100 virtual isotropic rectangular parallelepiped samples chosen with 

random size, density and elastic coefficients. We demonstrate that it allows determining the 

elastic coefficients in the case of resonance spectra containing all the expected modes in a 

given frequency range and in the case of missing modes. We also show that we still obtain 

correct values for the elastic coefficients even if some statistical error is present in the 

spectrum resonance frequencies to be fitted. Finally, we apply our approach to two real 

examples that were presented in the literature as representative cases, and we show once 

more the efficiency of the approach.  

 

II. Calculations details 
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II.1. Theoretical approach 

Our approach is adapted to the analysis of samples with some given characteristics: 

- Samples are expected to be isotropic.  

- Samples are supposed to be prepared accordingly to an assumed geometry [12-14]. In 

particular, care should be taken to prepare samples with a well-defined parallelepiped 

shape and suitable dimensions to avoid overlapping modes. 

- Ultrasonic resonance spectra should be acquired with no loading on the sample. 

After considering as a requirement that high-quality resonance spectra are obtained, our 

approach uses the fact that a suitable representation of the elastic tensor allows simplifying 

the problem deeply. Indeed, the elastic tensor for an isotropic material is represented as: 

𝐶𝑖𝑗 =

(
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It can also be represented as: 
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, 

 

Where E and  are Young's Modulus and Poisson's ratio, respectively. From the second form, 

it is clear that the Cij elastic coefficients are a complex function of but are all proportional 

to Young's modulus E. This means that resonance frequencies are proportional to the square 
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root of E. Due to this form of the elastic tensor, isotropic materials with the same Poisson's 

ratios will present resonance spectra with the same resonance frequencies sequence. To 

illustrate this, we show in Figure 1, the calculated resonance spectra (standard procedure 

explained in the following) for three different Poisson's ratios and three different Young's 

moduli for an isotropic sample of a given size and density. From this comparison, it is evident 

that the value of E only affects the scale of the frequency axis, leaving the pattern of the 

spectrum the same, this pattern being controlled by  (see vertical graphs in Figure 1).  

 

 

 

Figure 1. Resonance spectra of samples with size L1=2 mm, L2= 3 mm, L3 = 5 mm, d = 2962 

kg. m-3 with Young's Modulus equal to (I) 100 (II) 200 (III) 300 GPa and Poisson's ratios of (A) 

0.1 (B) 0.2 (C) 0.3 
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The problem of elastic coefficient extraction in isotropic materials can be drastically simplified 

through our approach. Once spectra are calculated for a given E0 value and a range of  

Poisson's ratios, any spectrum corresponding to any (E, ) couple can be deduced from the 

(E0, ) spectrum by multiplying all its frequencies by (E/E0)1/2. We can calculate spectra for a 

vast range of (E, ) efficiently and compare them to the original known spectrum. After this 

comparison, one can determine Edet and det the best optimised elastic coefficients. This is the 

basis of our optimisation scheme, represented in Figure 2.  

        

 

Figure 2. Explored scheme for the elastic coefficients extraction 

 

II.2. Methodological details 

The fundaments and procedure for the Resonant Ultrasound Spectroscopy forward model 

calculations have made the subject of many articles. We thus refer the reader to the previous 

articles mentioned in the introduction, particularly those of Migliori's group [12], which 
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constitute a complete and reliable source to better understand the ins and outs of RUS 

principle practice.  

For the forward model, the evaluation of vibration modes of elastic objects with free 

boundaries can be simplified using the Rayleigh-Ritz method, allowing to calculate natural 

vibration frequencies. This approach supposes that the Lagrangian of a system is stationary 

with respect to small perturbations in the eigenfunctions. This requirement that Lagrangian is 

stationary reduces to finding the eigenvalues of the following equation: 

𝐊𝒂 = 𝜔2𝑴𝒂      [1] 

 

Where K is the stiffness matrix, M is the mass matrix, and a is a vector of displacements in 

three dimensions (see ref.12-17 and 28-31 for details). The interesting point is that the matrix 

K is proportional to the elastic constants Cij, i.e. proportional to Young's Modulus in the case 

of isotropic materials. By factorising E in the previous equation, one can easily demonstrate 

that the resonance frequencies of a given sample are directly proportional to Young's Modulus 

square root. This is the main property that we used here to fasten the calculations since the 

spectra for any (E, ) couple can be deduced from the spectrum (E0, ) by simply multiplying 

all frequencies by √𝐸 𝐸0
⁄ .  

Along the years, several significant advances were made to facilitate the calculation of the 

forward model [33-35], and RUS calculation codes were subsequently made available to the 

scientific community, for instance, from the Los Alamos National Laboratory [36], and the 

Physical Acoustic Lab (Auckland, New-Zealand) [37]. We used the "RUS.m" Matlab code 

developed by Matt Fig [38], adapted to our specific purpose. This code is essentially a forward 

model which allows obtaining the resonance frequencies of a given sample with known 
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dimensions, density and elastic coefficients. The virtual samples (see below) spectra were 

obtained by assuming a n = 20 polynomial order for the forward model; the calculated spectra 

used during elastic coefficient extraction were obtained considering a n = 12 polynomial order. 

 

Based on the scheme presented above, a more detailed calculation procedure is the following: 

- We first consider a known spectrum SK associated with a real or virtual sample with a 

known size and density. This spectrum, typically containing 30-40 frequencies, can be 

obtained from experiments or from calculations and is the one from which we want to 

extract the elastic coefficients.  

- We used the forward model to calculate the spectrum for the same sample (size, 

density, shape) fixing E0 = 100 GPa and  varying from 0.1 to 0.4. In our case, we 

calculated 601 spectra (SC) with thus a 0.0005 step in . 

- We obtained the theoretical spectra for all E in a given range by multiplying the 

frequencies obtained in the previous step by √
𝐸

𝐸0
. In our case, we used a 0.1 GPa step 

in E. 

- We calculate a distance measure between the known spectrum and all the calculated 

spectra (601 x n). In our case, we simply associated the frequencies of the known 

spectrum to the closest frequencies in the calculated spectra and sum all the absolutes 

values of differences in frequencies to obtain a distance measure:  

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑆𝑇, 𝑆𝐶) = ∑ 𝑚𝑖𝑛∀𝑓𝑗∈𝑆𝐶∀𝑓𝑖∈𝑆𝐾
|𝑓𝑖 − 𝑓𝑗|   [2] 

As a result, we obtain a couple (Edet, det) presenting the smaller distance between the known 

and the calculated spectra. The proposed distance measure which compares sets of different 

sizes is similar to the Hausdorff distance [39].  
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II.3. Virtual and real samples  

To validate our approach, we input the dimensions and density of the "virtual sample," chosen 

of a rectangular parallelepiped (RP) geometry. It is a virtual sample for the purpose of the 

proof of concept worked out here (random dimensions are used), equivalent to the 

investigated sample in a real experiment, where the mass and dimensions would be measured 

directly. We considered 100 virtual samples having different sizes and elastic properties. These 

virtual samples are rectangular parallelepipeds with dimensions L1, L2 and L3 in the range 0.5 

– 5.5 cm (the absolute size has actually not much importance on the final result), their density 

between 2000 and 7000 kg/m3,  and their elastic coefficients E and  in the range 100 – 400 

GPa and 0.1 – 0.4 respectively. We represent, in Table 1, ten of those samples. We also report 

in Table 1 two real samples taken as good examples for applying an original RUS analysis 

procedure from previous articles [29-31]. 

 

Sample a,b Samples dimensions and density 
elastic coefficients 

(known) 

elastic coefficients 

(determined) 

 L1 

(cm) 

L2 

(cm) 

L3 

(cm) 

Density 

(kg/m3) 

EK 

(GPa) 

K Edet 

(GPa) 

det 

1 4.573 5.029 1.135 2487 374.01 0.289 373.8 0.289 

2 1.892 3.234 5.287 6852 389.46 0.147 389.36 0.147 

3 5.289 2.927 4.501 6578 142.56 0.226 142.55 0.226 

4 4.461 5.297 3.779 6670 110.71 0.355 110.73 0.354 

5 3.894 4.289 4.215 2856 217.66 0.297 217.64 0.296 

6 4.030 0.659 1.884 6117 113.85 0.129 113.85 0.130 

7 3.974 2.085 5.251 3907 110.33 0.232 110.32 0.231 

8 4.327 4.475 4.434 5231 246.92 0.233 246.88 0.233 

9 4.047 4.273 1.880 2813 303.91 0.296 303.89 0.296 
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10 1.095 2.992 5.299 3119 202.12 0.275 202.12 0.276 

11 1.192 1.093 0.986 2788 71.51 0.3381 71.5 0.3390 

12 0.775 0.905 1.319 4402 118.6 0.3209 118.3 0.3192 

a 1-10 : virtual samples 

b 11, 12 : real samples taken from [29-31] 

 

Table 1. Virtual (n° 1-10) and real (n° 11 and 12) samples characteristics including the 

dimensions of the rectangular parallelepiped samples (L1, L2, L3), the density and elastic 

isotropic coefficients EK and K. Results of the elastic coefficients extraction procedure. 

 

III. Results 

III.1. Results for virtual test-samples  

In addition to the results shown in Table 1, we show in Figure 3 the results of our analysis for 

samples having perfect RUS spectra i.e. calculated with the forward model using a high 

polynomial order (n = 20), thus having all the resonance modes present and determined with 

great precision. Figure 3 plots the Poisson's ratio and Young's Modulus as deduced from our 

procedure and compared to those of 200 virtual samples. This figure shows a perfect 

agreement between the determined values and the known ones. As a whole, the calculated 

and known values differ by less than 0.1% for E and less than 0.5% for  , a precision here only 

limited by the precision we used for both E and   variables. Concretely we used steps of 0.1 

GPa for E screening, and 0.0005 for   screening.  
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Figure 3. Ratio between determined and known elastic coefficients for virtual samples: 

 (a) Young's Modulus and (b) Poisson's ratio. 

 

III.2. Results for virtual test-samples with altered spectra 

III.2.1. Influence of missing modes on elastic coefficients determination 

The results presented above confirm the method's potential interest since it leads to the 

determination of correct elastic coefficients without any initial guess value and required 

action. We consider in this part RUS spectra in which some resonance modes are missing. We 

have artificially removed a given percentage of modes (from 0% to 70%) from the original 

virtual spectra. The removed frequencies may include the first frequency, which is always 

considered as important experimentally due to its pure shear character.  

The analysis of missing modes' influence was performed in an exhaustive way using 20 

different combinations for each percentage of missing modes explored for 50 virtual samples, 

representing more than seven thousand cases. In the following graph, we present the ratio 

between the determined values and the known elastic properties as a function of the 

percentage of missing peaks. Even for a very high percentage of missing modes, our approach 

gives determined values of E close to the known value, the error being always less than 0.5% 

and 99% of the time less than 0.2%. The error on   determination is more important reaching 
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around 2% for some samples and a high percentage of missing modes. For 30% of missing 

modes, the percentage of solutions determined for which the error on   remains within 0.5% 

is greater than 95%. These results are particularly interesting since the approach allows 

determining the elastic coefficients even with incomplete spectra, without the need for 

assuming it or without the need to evaluate the number of missing modes. 

  

 

Figure 4. Ratio between determined and known elastic coefficients for virtual samples as a 

function of the percentage of missing peaks (artificially removed)  for (a) Young's Modulus 

and (b) Poisson's ratio 

 

II.2.2. Influence of noise in the spectrum 

In this part, we introduced some errors artificially on frequency measures in the original 

known resonance spectra. These errors are set to follow a normal distribution and are 

supposed to reflect potential sources of error coming from a poor sampling of frequencies 

during RUS spectrum acquisition. It is not expected to mimic bad acquisition conditions like 

those due to pressure on the sample, non-homogeneous dimensions, etc... which would 

induce non-random frequency shifts. 
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Figure 5. Ratio between determined and known values of elastic coefficients for virtual 

samples as a function of the normalised width of the normal distribution for (a) Young's 

Modulus and (b) Poisson's ratio. Proportion of determined values within a given range of 

error (0.2%, 0.5%, 1%) for (c) Young's Modulus and (d) Poisson's ratio. 

 

The results of the effect of random frequency shift on elastic coefficients extraction are shown 

in Figure 5. The standard deviation is normalised by the 15th frequency of the spectrum to take 

into account the size and density of the considered virtual sample. Our method appears robust 

in dealing with potential sources of error and can accept a broad standard deviation on 

frequency measurements, still leading to correct elastic coefficients.  

 

III.3. Study of real samples 
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In this section, we discuss the case of two real samples, which were presented in previous 

articles as good examples to illustrate the difficulty to identify normal modes and obtain the 

resulting elastic constants in isotropic solids.  

 

Real sample 1 

The first one numbered 11 in Table 1 corresponds to a polycrystalline Al alloy, presented first 

by Ogi et al. [29]. This sample was used to demonstrate the interest of using laser-assisted 

RUS to identify the symmetry of resonance modes and thus facilitate modes association. The 

same sample was further used by S. Bernard et al. [30] to demonstrate the Bayesian-based 

approach's efficiency for the determination of elastic coefficients. In the original article, the 

authors mentioned: "We tried to deduce the Cij using the usual RUS approach with the initial 

set of Cij used to compute the displacements … pairing the closest resonance frequencies from 

the measurements and calculations. The inverse calculation failed to converge, indicating that 

the usual RUS method is sensitive to the initial guesses ".  These authors then succeeded in 

refining elastic constants only after identifying vibration modes from displacement 

measurements through an interferometry method, taking benefit from the fact that "the 

displacement distribution patterns are insensitive to the elastic constants ".  

 

Real sample 2 

The second example, n°12 in Table 1, is a polycrystalline Ti-6Al-4V alloy with fine grains. This 

sample was used to demonstrate the Bayesian inference efficiency to determine elastic 

coefficients and prove the isotropic character of the sample [31]. This sample did not make 

the object of elastic coefficients determination from the standard procedure, by which we can 

only compare with the results obtained from the Bayesian approach. 
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As reported in Table 1, we obtained good determined values for both E and   for these two 

real examples. Through our optimisation scheme, Edet and EKnown (resp. det and Known) differ 

by ~0.2% (resp. ~0.3%) for sample 1 and by ~0.1%  (resp. ~0.5%) for sample 2. We did not have 

to make any assumption on the first mode, to presuppose any elastic coefficients, or to 

propose a specific mode association to make the analysis. Besides, our approach allows 

representing the solution as a map, which may help apprehend better the solution's 

uniqueness. In Figure 6, we represent the inverse of the distance (Equation 2) between 

calculated and known spectra. This map shows that the proposed solution is the only one 

giving acceptable values, the rest of the (E, ) variable space presenting a poor agreement 

with target data.  
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Figure 6. Map of the inverse of the distance between calculated and target spectra for a 

wide (E, ) explore space: (a) sample n°11 (b) sample n°12. 

 

A zoom on this map, close to the determined elastic coefficients region, provides a natural 

path toward error estimation. Following an approach similar to the one proposed by Migliori 

et al. [12], A 2D-ellipsoid in the parameter space surrounding the minimum of distance 

between calculated and known spectra can be determined corresponding to a 2% increase in 

the distance measure. This ellipsoid may provide a realistic error estimate for both E and v 

parameters. Following this approach, the error estimation for Edet for samples 11 and 12 is 

smaller than 0.1% in both cases, and the error estimation for detfor samples 11 and 12 is 0.3% 

and 0.6%, respectively. 

 

IV. Discussion 

The approach presented here exploits the elastic tensor's unique properties in isotropic 

materials, particularly the fact that we can factorise Young's Modulus in the expression of Cij, 
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making the calculation of resonance modes for a wide range of E and  coefficients more 

straightforward. The approach does not pretend to provide new conceptual tools in the field 

of Resonant Ultrasound Spectroscopy. It simply proposes some method to efficiently obtain 

elastic coefficients without any expertise needed, any identification of the peaks to specific 

resonance modes and any assumption on E and   values. It is nevertheless brute-force in that 

it explores the whole variable space to find the determined solution.  

In practice, the extraction of elastic coefficients following our scheme, i.e. scanning a wide 

range of E and , can last for some tens of seconds. For instance, an optimisation for E ranging 

from 100 to 400 GPa with a 0.1 GPa resolution and with  from 0.1 to 0.4 (with a 0.0005 step), 

would typically last 90 s on a personal computer. We have to mention here that all the results 

presented here were obtained with a code that was not specially optimised for speed. It could 

perform faster if the writing of elastic matrices during resonance mode calculation and 

interpolation of frequencies were optimised.  

Our approach is also interesting in that it allows obtaining a solution map, which further gives 

a visual representation of the solution. This representation could help reveal potential 

concurrent solutions in case of unreasonable determined values (Edet,det) or even be used as 

proof of isotropicity. Our approach for elastic coefficient determination is only adapted to the 

RUS analysis of isotropic samples. Contrary to some previous approaches, which suggest 

obtaining guess values for C44 by considering the shear character of the very first mode, the 

approach proposed here makes no hypothesis on elastic coefficients. Besides, the fact that we 

can manage till 30% of missing modes without significant degradation of the results could be 

interesting when dealing with incomplete spectra. Thus our approach, even if conceptually 

very simple, is potentially very useful for non-expert users or for in situ characterisations, 

during which it is often difficult to control the absence of resonance modes. Indeed, while 
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several experiments can easily be performed at room temperature to obtain a complete set 

of experimental resonance frequencies, such an approach is hard to apply on samples studied 

in situ, for instance, as a function of temperature or of a magnetic field. Obviously, our 

approach aims not to enter into competition with more advanced or general methodologies 

based on probabilistic approaches, which are especially powerful in determining elastic 

coefficients of samples with lower symmetry, i.e. for polycrystalline samples with texture or 

for single crystals. 

 

V. Conclusion  

This work proposes an alternative approach to analyse the Resonant Ultrasound Spectra of 

elastically isotropic samples to determine their two independent elastic coefficients. The 

procedure is straightforward, robust and efficient and can be implemented easily. Elastic 

coefficients can be obtained in a few tens of seconds with high accuracy without prior 

knowledge of the sample's elastic behaviour. It is also reliable when some resonance modes 

are absent in the original spectrum, which drastically simplifies the measure for the 

interpretation of in situ RUS measurements.  
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