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Abstract—We focus on recovering the support of sparse signals
for sparse inverse problems. Using a Bernoulli-Gaussian prior
to model sparsity, we propose to estimate the support of the
sparse signal using the so-called Marginal Maximum a Posteriori
estimate after marginalizing out the values of the nonzero
coefficients. To this end, we propose an Expectation-Maximization
procedure in which the discrete optimization problem in the M-
step is relaxed into a continuous problem. Empirical assessment
with simulated Bernoulli-Gaussian data using magnetoencephalo-
graphic lead field matrix shows that this approach outperforms
the usual ℓ0 Joint Maximum a Posteriori estimation in Type-I
and Type-II error for support recovery, as well as in SNR for
signal estimation

Index Terms—Sparse coding, inverse problem, Bernoulli-
Gaussian model, Marginal-MAP, Joint-MAP.

I. INTRODUCTION

Let us consider a linear inverse problem described by an
operator H ∈ RM×N that generates a set of observations

y = Hx+ n (1)

with x ∈ RN and y ∈ RM . We focus on the sparse
signal setting, where vector x contains a few nonzero entries.
This approach is now part of the state-of-the-art for inverse
problems where many convex and non-convex optimization
methods are available, see e.g., [1], [2]. In this paper, we make
use of the Bernoulli-Gaussian (BG) statistical prior to model
sparse signals x, with known parameters p ∈ (0, 1) and σ2

x > 0
coding for the rate and variance of the nonzero entries. For
all n, the entries x[n] are independent, identically distributed
(i.i.d.), with

p(x[n]) =
p√
2πσ2

x

exp

(
−x[n]2

2σ2
x

)
+ (1− p)δ(x[n])

where δ stands for the Dirac distribution centered on zero. The
noise n is assumed white and Gaussian: n ∼ N (0, σ2

0I).
Maximum a posteriori (MAP) estimation of x using the

BG prior combined with the white Gaussian noise leads to
the usual minimization of the ℓ2 + ℓ0 cost function when it
comes to minimizing the negative log posterior likelihood [3]:

xMAP = argmin
x

1

2σ2
0

∥y −Hx∥22 +
1

2σ2
x

∥x∥22 + ρ∥x∥0 (2)
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with ρ = log
(

1−p
p

)
, ∥x∥22 =

∑N
n=1 |x[n]|2 and

∥x∥0 = #{n, x[n] ̸= 0}. The latter optimization problem be-
ing highly non-convex, classical solvers yield sub-optimal
solutions, including proximal descent algorithms [4] akin to
iterative hard thresholding [5] and greedy algorithms [3].

A convenient reformulation of the BG prior is to write x as
the product of two independent random variables:

∀n, x[n] = q[n]r[n] (3)

where q[n] is a binary variable equal to 0 when x[n] = 0 and 1
otherwise, distributed according to the Bernoulli distribution:
q[n] ∼ B(p) and r[n] equals the signal amplitudes: r[n] ∼
N (0, σ2

x). Using matrix notations, one has

x = Qr where Q = Diag(q). (4)

In the literature, the MAP estimation of x = {q, r} can be
formulated by either maximizing the joint posterior likelihood
of (q, r) or the marginal posterior likelihood of q. This
leads to two distinct estimators: the joint and marginal MAP,
respectively (JMAP and MMAP), see [6].

The JMAP expression can be straightforwardly derived by
writing p(q, r |y):(
q̂JMAP, r̂JMAP

)
= argmin

q,r

1

2σ2
0

∥y−HQr∥2+ 1

2σ2
x

∥r∥2+ρ∥q∥0
(5)

One can notice that for fixed q, the latter criterion is quadratic
with respect to r. Thus, the minimizer of (5) with respect to
r has a closed-form expression r(q). Plugging this expression
into the cost function (5), the JMAP problem can be reformu-
lated (up to technical rearrangements) as:

q̂JMAP = argmin
q∈{0,1}N

y(t)Γ−1
y (q)y + ρ∥q∥0 (6)

where
Γy(q) = σ2

0I+ σ2
xHQQ(t)H(t). (7)

Once the support qJMAP has been estimated, the nonzero
amplitudes can be deduced by solving a least-squares prob-
lem (i.e., by minimizing the Mean Squared Error (MSE)
Ex|y,q

[
∥x− x̂∥2

]
), which reads:

x(q) = argmax
x

p(x|y,q) = σ2
xQH(t)Γ−1

y (q)y. (8)
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MMAP estimation consists of minimizing the marginal
posterior likelihood p(q |y) after marginalizing out the signal
coefficients r [7]. It is a natural estimator for applications
where the support may bear more interest than the ampli-
tudes, e.g., for source localization of brain activity using
Magneto/ElectroEncephalography (M/EEG) [8], [9], [10]. For
such problems, it seems more appropriate to first estimate
the support using the MMAP estimator, which is the Bayes
estimator for the 0−1 loss with discrete random variables, and
then retrieve the coefficients r. It is noticeable that the JMAP
and MMAP optimization problems are highly non-convex.

Contributions and outline of the paper. We propose
an Expectation-Maximization (EM) approach dedicated to
Marginal-MAP estimation. The algorithm is derived in Sec-
tion II. In Section III, the resulting binary optimization prob-
lem is relaxed into a continuous problem over [0, 1]N . We first
derive the appropriate algorithm to reach a local minimizer
over [0, 1]n. The latter is then used as warm start initialization
of the binary EM algorithm. Finally, the numerical experi-
ments in Section IV demonstrate the validity of our approach.

II. MARGINAL-MAP ESTIMATION OF THE SUPPORT

Marginal-MAP estimation relies on the maximization of
p(q|y) =

∫
p(q, r|y) dr over {0, 1}N . According to [6], the

Marginal-MAP estimate can be found by minimizing

− log p(q|y) = 1

2
y(t)Γ−1

y (q)y +
1

2
log |Γy(q)|+ ρ∥q∥0 + κ

(9)
where the constant κ does not depend on q. However, this
minimization problem is NP -Hard. We propose a sub-optimal
approach based on the Expectation-Maximization (EM) algo-
rithm. Following [11], the observation model (1) is rewritten
as

y = Hz+ e and z = Qr+ b (10)

where
e ∼ N (0,Γe) and b ∼ N (0, σ2

b I) (11)

are independent Gaussian vectors, such that

Γe + σ2
bHH(t) = σ2

0I . (12)

Notice that one necessarily has σ2
b ≤ σ2

0

∥HH(t)∥ (where ∥ .∥
refers to the spectral norm of a matrix) to ensure a non-
degenerate normal distribution for e. This model has been
proposed in [11] to derive the Iterative Shrinkage/Thresholding
Algorithm for the LASSO [1]/Basis Pursuit Denoising [2]
problem, and re-used in [12], [13] to estimate the parameters
(ρ, σ2

x) of a Bernoulli-Gaussian model.
Note that for a given z, the recovery of q from z = Qr+b

boils down to a simple denoising problem. For the latter, the
MMAP estimator of q yields a closed-form component-wise
expression for each binary variable q[n] [14], [12], [13]:

Proposition II.1. Let z = Qr + b as in Eq. (10) with the
corresponding prior. The MMAP estimator of q|z can be
written component-wise. For all n,

q[n] = 1 iff P (q[n] = 1|z[n]) ≥ P (q[n] = 0|z[n])

i.e. iff z[n]2 ≥ 2σ2
b

σ2
x + σ2

b

σ2
x

(
ρ+

1

2
log

(
σ2
b + σ2

x

σ2
b

))
Let us derive an EM algorithm for MMAP estimation by

considering z as a hidden variable. The EM approach then
reads:

q(t+1) = argmin
q∈{0,1}N

Q(q,q(t))

Q(q,q(t)) = Ez|y,q(t)[− log p(z,q|y)] .
(13)

The E-step and M-step are derived hereafter.

A. E-step

For conciseness, we will use the following writing:

f(q) + κ
κ
= f(q).

to refer to an equality up to any constant κ (which does not
depend on q). Using the linearity of the expectation and the
fact that p(q|z,y) = p(q|z), we have that

Q(q,q(t))
κ
= Ez|y,q(t)[− log p(q|z)] (14)

where κ = Ez|y,q(t)[− log p(z|y)]. Then, Bayes’ rule yields:

Q(q,q(t))
κ
= Ez|y,q(t)[− log p(z|q)] + ρ∥q∥0 (15)

with now κ = Ez|y,q(t)[log p(z)− log p(z|y)]. Using Eqs. (10)
to (12), we directly have

z|q ∼ N (0,Γz(q)) with Γz(q) = σ2
b I+ σ2

xQ
(t)Q. (16)

Applying Bayes’ rule, the posterior distribution of z reads

z|y,q ∼ N (ẑ,Σ) (17)

with

ẑ = Γz(q)H
(t)Γ−1

y (q)y

Σ = Γz(q)− Γz(q)H
(t)Γ−1

y (q)HΓz(q).
(18)

So, we get

Ez|y,q(t)[− log p(z|q)] κ= 1

2
Ez|y,q(t)

[
z(t)Γ−1

z (q)z
]
+

1

2
log |Γz(q)|

κ
=

1

2
(ẑ(t))(t)Γ−1

z (q)(ẑ(t)) +
1

2
Trace[Γ−1

z (q)Σ(t)] +
1

2
log |Γz(q)|.

Finally, the E-step reads

Q(q,q(t))
κ
=
1

2
(ẑ(t))(t)Γ−1

z (q)(ẑ(t)) +
1

2
Trace[Γ−1

z (q)Σ(t)]

+
1

2
log |Γz(q)|+ ρ∥q∥0

κ
=
1

2

N∑
n=1

Qn(q[n]) (19)

with

Qn(q[n]) =
(ẑ(t)[n])2 +Σ(t)[n, n]

σ2
b + σ2

xq[n]
2

+log(σ2
b+σ2

xq[n]
2)+2ρq[n]

As expected, Q(q,q(t)) is a decoupled sum on q[n]. Thus, the
minimization of Q boils down to the separate minimization of
Qn(q[n]) for all n. This minimization is derived in the M-step
described hereafter.
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B. M-Step

Given the previous observation on the decoupling of the
support variables and using the notation Γ

(t)
n = (ẑ(t)[n])2 +

Σ(t)[n, n], the M-step simplifies to

q(t+1)[n] = argmin
q∈{0,1}

Γ
(t)
n

σ2
b + σ2

xq
2
+log(σ2

b +σ2
xq

2)+2ρq (20)

It appears that q̂(t+1)[n] = 1 corresponds to the case where

Γ(t)
n ≥ σ2

b

σ2
x + σ2

b

σ2
x

(
log

(
σ2
b + σ2

x

σ2
b

)
+ 2ρ

)
. (21)

This operation is similar to the thresholding formula in the
Marginal-MAP denoising problem with Γ(t)

n instead of z[n]
in Prop. II.1.

C. Summary of the algorithm

The whole EM procedure is summarized in Alg. 1. One
can notice that when H = I, e can be set to 0 in (10), thus
σ2
b = σ2

0 , and the covariance matrices Γz and Γy are equal.
Then, Alg. 1 retrieves the MMAP estimator in the denoising
case (that is, for z = y in Prop. II.1).

The EM algorithm is known as a local ascent method,
converging towards a local maximizer of the MMAP criterion.
Since the MMAP criterion is highly non-convex (due to the
presence of the ℓ0 cost operator), the algorithm may reach
a poor local maximizer. In the next section, we propose to
relax the MMAP problem in the continuous setting, that is,
for q ∈ [0, 1]N to reach warm start support, which may be
further used as an initial solution for Alg. 1.

Algorithm 1: EM algorithm for MMAP estimation of
support q

Result: q ∈ {0, 1}N
Input: t = 0, q(t) ∈ [0, 1]N , ρ > 0
while not converged do

Q(t) = Diag(q);
Γ(t)
z = σ2

b I+ σ2
xQ

(t)Q(t)(t) ;
Γ(t)
y = σ2

0I+ σ2
xHQ(t)Q(t)(t)H(t);

Σ(t) = Γ(t)
z − Γ(t)

z H(t)Γ−1
y (q)HΓ(t)

z ;
Γ
(t)
n = ẑ(t)[n]2 +Σ(t)[n, n];

for n = 1 to N do
if Γ(t)

n ≥ 2σ2
b
σ2
b+σ2

x

σ2
x

(
ρ+ log

√
1 +

σ2
x

σ2
b

)
then

q(t+1)[n] = 1;
else

q(t+1)[n] = 0;
end

end
t = t+ 1

end

III. OPTIMIZATION BY CONTINUOUS RELAXATION

Hereafter, the binary optimization problem defined in (13)
is relaxed into a continuous optimization problem, in which
the objective function is unchanged and the domain {0, 1}N is
replaced by [0, 1]N . According to Section II, the cost function
Q(q,q(t)) reads as the decoupled sum (19). So, the M-step
still consists of solving 1D problems akin to (20).

First, let us point out that when q[n] ∈ {0, 1}, we have
q[n]2 = q[n]. Then, minimizing Qn(q[n]) over {0, 1} is
equivalent to minimizing:

Γ
(t)
n

σ2
b + σ2

xq[n]
2
+ log(σ2

b + σ2
xq[n]

2) + 2ρq[n]2.

Now, consider the continuous relaxation of q[n] over [0, 1]:

q(t+1)
n = argmin

q∈[0,1]

Γ(t)
n

σ2
b + σ2

xq
2
+ log(σ2

b + σ2
xq

2) + 2ρq2. (22)

This is a 1D problem with bound constraints. The related
unconstrained minimizer can be found by calculating the roots
of the first-order derivative w.r.t u = q2, written

−σ2
xΓ

(t)
n

(σ2
b + σ2

xu
2)2

+
σ2
x

σ2
b + σ2

xu
+ 2ρ = 0 . (23)

When ρ > 0, there is a single positive root:

u[n] =
1

4ρ

√1 + 8ρ
Γ(t)
n

σ2
x

− 1

− σ2
b

σ2
x

. (24)

Moreover, a careful study of the cost function within (22)
(seen as a function of u = q2) reveals that its second-order
derivative is non-negative for the positive root u. Taking into
account the bound constraints q ∈ [0, 1], we get:

q(t+1)[n] =


0 if u[n] ≤ 0

1 if u[n] ≥ 1√
u[n] otherwise.

(25)

Algorithm 2: EM algorithm for continuous relaxed q

Result: q ∈ [0, 1]N

Input: t = 0, q(t) ∈ [0, 1]N

while not converged do
Q(t) = Diag(q);
Γ(t)
z = σ2

b I+ σ2
xQ

(t)Q(t)(t) ;
Γ(t)
y = σ2

0I+ σ2
xHQ(t)Q(t)(t)H(t);

Σ(t) = Γ(t)
z − Γ(t)

z H(t)Γ−1
y (q)HΓ(t)

z ;
for n = 1 to N do

u[n] = 1
4ρ

(√
1 + 8ρΓ

(t)
n

σ2
x

− 1

)
− σ2

b

σ2
x

;

q[n] = max{min{
√

u[n], 1}, 0};
end
t = t+ 1;

end
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The resulting algorithm is given in Alg. 2.
One can remark that Alg. 2 is very similar to the EM Sparse

Bayesian Learning given in [15], except for the estimation
of q in the last step. Indeed, one has x|q ∼ N (0, σ2

xQ).
Then, when q is continuous valued, we recover the prior
used in SBL. The proposed continuous relaxation can be seen
as an SBL approach where the variances are constrained in
[0, σ2

x]
N , with a particular prior leading to the thresholding

step. Moreover, when ρ = 0, that is p = 1
2 in the BG model,

the updates (22) of q[n] are given by

q[n]2 = min

1,

(
Γ(t)
n − σ2

b

σ2
x

)+
 . (26)

with (x)+ = max(x, 0). Then, when σ2
x = 1 and σ2

b =
0, Alg. 2 exactly reduces to the EM SBL proposed by [15].

In Alg. 2, ρ can be seen as a hyperparameter. We propose
to run Alg. 2 with various values of this hyperparameter and
use the result as an initialization for the binary EM Marginal-
MAP (Alg. 1) with the actual value of the model. The resulting
procedure is summarized in Alg. 3.

Algorithm 3: Practical algorithm for Marginal-MAP
estimation

Result: q ∈ {0, 1}N
Input: k = 0, q̃(k) ∈ [0, 1]N , Λ = (λ0 > . . . > λK)
for k = 0 to K do

Estimate q̃(k+1) ∈ [0, 1]N by Alg. 2 initialized by
q̃(k) for ρ = λk;

Estimate q(k+1) ∈ {0, 1}N by Alg. 1 initialized by
q̃(k+1) for ρ = log

(
1−p
p

)
;

end

IV. NUMERICAL EXPERIMENTS

In this section, we assess the performance of the proposed
algorithm using statistical results on simulated data.

The simulated signals q and r are generated with Bernoulli
and Gaussian distributions of parameters p = 0.05, 0.01 and
σ2
x = 1. Then x is obtained according to x = Qr. The

observations are degraded by a Gaussian noise of variance
σ2
0 = 0.01. The operator H used here is a sub-matrix

drawn from a M/EEG leadfield of size 272 × 600. This kind
of operator contains strongly correlated columns and thus
is representative of common M/EEG inverse problems. We
compare the Marginal-MAP estimation of q given by (3), and
the corresponding signal estimate x(q) as in (8), to the usual
Joint-MAP estimation of q and x obtained by minimizing (2).
In practice, we used a proximal descent algorithm similar to
the popular Iterative Hard Thresholding (IHT) algorithm [5]
with warm restart.

We focus on the quality of the support estimation q. The
signal being sparse, we compare both approaches using:

• the False Positive rate (Type-I error);
• the False Negative rate (Type-II error);

0 10 20 30 40 50 60
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Fig. 1. Marginal-MAP VS Joint-MAP estimation p = 0.05, σ2
0 = 0.01. The

SNR of the associated estimated signal x is given for some point (including
the best reached SNR)

• the SNR of the estimated x(q) using (8).
The Type-I and Type-II errors are displayed versus the pre-
dicted positives (which is the size of the estimated support
q), the latter being directly related to the choice of the hyper-
parameter ρ in Alg. 3 (the larger ρ, the sparser q).

The results are presented in Figs. 1 and 2. It can be seen
that the Marginal-MAP outperforms the Joint-MAP in both
type-I and type-II errors and in SNR (especially Type-II error
and SNR). Moreover, the algorithm performs well for highly
correlated H. Other experiments (not displayed here) show
that for moderately correlated random Gaussian matrices H,
the Joint-MAP and Marginal-MAP approaches give similar
performance, the latter being more computational demanding
because of the computation of Σ(t) in Algs. 1 and 2.

V. DISCUSSION AND CONCLUSION

We have proposed a Marginal-MAP approach for selecting
the best possible support, as it is a Bayesian estimator in
the sense that the Marginal-MAP minimizes the 0 − 1 Loss.
The selection of the best possible support can be seen as a
variable selection problem well studied in statistics [16], also
known as the best subset selection problem [17]. The Lasso [1]
was initially proposed for variable selection. The problem of
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Fig. 2. Marginal-MAP VS Joint-MAP estimation p = 0.01, σ2
0 = 0.01. The

SNR of the associated estimated signal x is given for some point (including
the best reached SNR)

variable selection is studied in the context of ”prediction”;
hence the estimation of x is essential. In [18], an extensive
comparison is made between the Lasso and the optimal ℓ0
solution using a MILP solver as proposed in [19], [20] (as
well as few other methods). In the proposed context, the ℓ0
approach and the Lasso perform very similarly. However, the
matrix used in their simulation is not highly correlated as a
M/EEG lead field matrix can be. This study opens perspectives
on various topics, such as the relations between the Joint-MAP
minimizers and the Marginal-MAP ones. Future works will
also cover the impact of continuous relaxations. An extensive
comparison may be performed between the Marginal-MAP
approach, the Joint-MAP, and other approaches for variable
selection. In particular, a comparison with MCMC methods
for BG prior [21] and the EMVS method proposed in [22].
The latter relies on a mixture of Gaussians, which is very
similar to the pdf of the hidden variable z in Eq. (10). From
an application perspective, the method could be extended to
structured models to apply to actual M/EEG data [23].
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