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Subjective Media Quality Recovery from Noisy
Raw Opinion Scores: A Non-Parametric Perspective

Andrés Altieri, Lohic Fotio Tiotsop, Member, IEEE, Giuseppe Valenzise, Senior Member, IEEE

Abstract—Recent parametric approaches to recover subjective
media quality from noisy opinion scores involve assumptions that
are challenged by numerous complex factors influencing viewer
behavior in subjective tests. These approaches commonly involve
modeling scoring behavior using parametric distributions, with
parameters estimated through methods like maximum likelihood
or Bayesian techniques. This paper proposes instead a non-
parametric perspective to address the media quality recovery
problem, without making any a priori assumption on the sub-
jects’ scoring behavior. We propose and motivate an approach
to measure the reliability of each single opinion score of a
subject. The proposed measure of reliability is then leveraged to
formulate an Entropy-based Subjective Quality Recovery (ESQR)
algorithm. Simulations and experiments on real datasets show
that the proposed ESQR algorithm compares favorably to sev-
eral state-of-the-art approaches in terms of robustness to noise
across various testing conditions. The code to run ESQR and
reproduce the results in this paper is made freely available at:
http://media.polito.it/ESQR.

Index Terms—Media quality assessment, Subjective quality
recovery, Opinion scores reliability, Non-parametric model.

I. INTRODUCTION

The opinion scores gathered in subjective tests are known
to be affected by noise, caused by factors such as subjects’
fatigue and distraction, unforeseen software issues and other
uncontrolled elements influencing the emotional state of a sub-
ject. Several approaches to recover the subjective media quality
from noisy raw ratings have therefore been proposed [1]–[3].
The conventional approach computes the mean of the opinion
scores (MOS) gathered for a given stimulus as an estimate of
the subjective quality of that stimulus. Despite its popularity,
the MOS is known to be particularly sensitive to outlier
opinion scores [4]. As a consequence, more sophisticated
approaches that exploit parametric statistical models have
recently been proposed to cope with the subjective media
quality recovery problem [3], [5]–[7].

The diagram in the top part of Figure 1 illustrates the
main steps of parametric approaches (e.g., [1], [3], [5], [7],
[8]). They essentially implement three steps: i) a parametric
statistical model explaining the scoring behavior of each
subject is assumed; ii) the model’s parameters are estimated;
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iii) finally the desired subjective quality is derived. The main
advantage of parametric approaches is that they explain the
scoring behavior of subjects. However, the use of parametric
approaches entails several limitations: i) Lack of robustness,
as the model’s assumptions that allow interpretability and nu-
merical stability in practice do not hold in several application
scenarios [5], [7]. ii) High risk of underfitting since despite
the huge number of factors that influence the subjects scoring
behavior, very few parameters are considered to preserve the
model’s numerical stability. For instance, authors of parametric
approaches (e.g., [1], [3], [5]) very often use a single parameter
to capture the reliability of a subject, disregarding the fact that
the latter varies with the characteristics of each stimulus that
the subject is asked to evaluate. iii) High computational com-
plexity due to the parameter estimation process that involves
solving a complex optimization problem [3], [6].

In an attempt to overcome the aforementioned limitations
of parametric methods, this paper proposes a novel non-
parametric approach to recover the subjective quality from
noisy opinion scores. The general scheme of the proposed
method is illustrated in the bottom part of Figure 1. The
proposed non-parametric approach considers two main steps:
first, it measures the reliability of each single opinion score
without resorting to any assumed probabilistic scoring model.
Then, the recovered quality is computed as a weighted sum of
the opinion scores, in which the weight of each opinion score
is determined by its reliability.

The proposed approach to measure the reliability of an
opinion score finds its theoretical explanation in information
theory. In fact, it is inversely proportional to a measure of how
surprising that opinion score is for the quality of the stimulus
under evaluation. The proposed method addresses the main
shortcomings of parametric approaches since it: i) does not
consider any scoring model involving simple yet restrictive
assumptions on the subject’s behavior; ii) does not require
to solve an optimization problem for parameters estimation,
thus a significant computational burden is avoided; iii) does
not suffer underfitting or overfitting issues since it is a non-
parametric approach.

This paper’s contribution can be summarized as follows:
1) we propose a non-parametric approach to measure the

reliability of each opinion score of each subject;
2) based on this reliability score, we introduce a novel algo-

rithm, called Entropy-based Subjective Quality Recovery
(ESQR), to robustly recover the quality of stimuli.

Computational experiments demonstrate that ESQR offers a
subjective quality estimate with reduced uncertainty compared
to current techniques. Additionally, ESQR exhibits lower sen-
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Fig. 1. Parametric approaches assume that the observed opinion scores come
from a probabilistic model fθ , that depends on a finite set of parameters θ.
The parameters θ are then estimated, and the subjective quality Q is recovered
from the assumed probabilistic model using the estimated parameters. The
proposed non-parametric approach (ESQR) instead measures how reliable
is each single opinion score without resorting to a predefined model. The
recovered quality Q is then computed as a weighted sum of the opinion scores
in which the weight of each opinion score is determined by its reliability.

sitivity to noise when compared to five state-of-the-art quality
recovery approaches. Furthermore, the findings suggest that
the performance of ESQR is relatively robust across various
application scenarios. This resilience could be attributed to
the fact that, unlike parametric approaches, our method cir-
cumvents assumptions about subjects’ scoring behavior that
may be invalid in certain application contexts.

The rest of this paper is organized as it follows: Section II
reviews and analyzes the prior art. Our non-parametric ap-
proach to analyze subject’s behavior in subjective tests is
described in Section III, while the proposed quality recovery
algorithm is discussed in Section IV. Computational experi-
ments and the related results are presented in Section V, and
the conclusions are drawn in Section VI.

II. RELATED WORK

In recent years, the research on subjective quality recovery
has gained increasing importance, specially since the COVID-
19 pandemic democratized the collection of opinion scores
in non-highly controlled environments, i.e., crowdsourcing
subjective tests [9], [10]. Subjective tests can be conducted
using a rating quality scale [11] or by performing pair com-
parisons [12]. Examples of approaches to deal with noise
in pair comparison-based subjective tests can be found, e.g.,
in [13]–[16]. Pairwise preferences and rating scores can also
be fused into a common quality scale, thus reducing the noise
of individual experiments [17], [18]. In this paper, we focus
on the scenario where a rating quality scale is used to elicit
and collect opinions.

The mean of the opinion scores (MOS) gathered for a
given stimulus has long been considered as a good estimate
of the subjective quality of that stimulus. Unfortunately, the
MOS is very sensitive to outlier ratings since it attributes
the same importance to reliable and unreliable subjects. To
address this limitation, several relevant ITU recommendations
have appeared. The ITU-R BT.500 [4] recommends to identify
outlier subjects and exclude their opinion scores from the
dataset before computing the MOS. The ITU-T P.910 [19]
introduces the so-called Absolute Category Rating (ACR)
scale and recommends the use of the quality recovery algo-
rithm proposed in ITU-R BT.500 [4] together with Confidence

Intervals (CIs) to deal with noisy raw opinion scores collected
using the ACR scale. Finally, the ITU-T P.913 [20] suggests
to first perform a bias removal step on the data and then
potentially use the algorithm proposed in ITU-R BT.500 [4].

All these ITU recommendations support the use of an
algorithm that performs subject exclusion. However, removing
all the opinion scores of a subject from the dataset probably
causes an unnecessary loss of relevant information. In fact, as
underlined in [3], [5], considering that the excluded subjects
gave inaccurate opinion scores for all the stimuli is overly
conservative. Therefore, researchers have recently proposed
advanced statistical approaches to circumvent subject exclu-
sion.

These recent methods mainly assume that each opinion
score of each subject follows a probability distribution that
can be characterized by a finite number of parameters. These
parameters are then estimated using statistical frameworks
such as the Maximum Likelihood Estimation (MLE) [21] or
the Expectation Maximization Algorithm (EMA) [22]. Specifi-
cally, most of these recent parametric approaches assume that
the scoring behavior of a subject can be modeled with two
parameters, i.e., the subject’s bias and inconsistency [1], [5],
[7], [8], [23]. The bias is defined as a systematic tendency of
a subject to provide smaller (negative bias) or larger (positive
bias) opinion scores than the actual subjective quality of the
stimulus that is being rated. The inconsistency instead is a
measure of the inability of a subject to provide consistent
opinion scores when rating the same stimulus more than once.

When relying on bias and inconsistency, the authors usually
assume that each raw opinion score of each subject is a
realization of a Gaussian random variable. In [1], [8], the mean
of such a Gaussian random variable was modeled as the sum
of two parameters, i.e., the subjective quality to be recovered
and the subject’s bias. The variance was also expressed as
the sum of two other parameters: the subject’s inconsistency
and the stimulus’s ambiguity. The authors of [5] argued that
the Gaussian model proposed in [1] is still valuable if one
gets rid of the stimulus’s ambiguity, thus the variance of the
Gaussian random variable modeling each opinion score of
each subject was assumed to be equal only to the subject’s
inconsistency. The authors then proposed an iterative algo-
rithm, called alternating projection, to recover the subjective
quality based on their proposed scoring model. The alternating
projection algorithm was implemented in the Netflix SUREAL
software [24]. The authors of [7] improved the Gaussian model
of [5] by integrating into it the so-called Standard deviation
of Opinion Scores (SOS) hypothesis, proposed by the authors
of [25], in order to account for the fact that subjects are
more accurate when rating very low or very high quality.
Finally, the authors of [23] suggested to subtract the MOS
from the raw opinion scores and divide the result by the SOS
to obtain the so-called Z-scores. They then argued that the bias,
the inconsistency and the subjective quality can be estimated
more reliably and efficiently from the Z-scores rather than
the original opinion scores. This yielded a subjective quality
recovery approach called “ZREC”.

Another interesting parametric approach is the one proposed
in [3]. The authors assumed that each rating of each subject is
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a realization of a mixture of two probability distributions. The
first probability distribution models accurate opinion scores
given by the subject, while the second accounts for the cases
in which the subject provides inaccurate opinion scores. The
accuracy of the subject is measured with one parameter,
i.e., the probability that the subject would score the quality
according to the distribution modeling accurate opinion scores.
An EMA is proposed by the authors to estimate the model’s
parameters and thus the subjective quality.

More recently, the authors of [6] introduced the so-called
Regularized MLE (RMLE) approach to recover subjective
media quality. Basically, they proposed a regularization term
to be added to the likelihood function before solving the opti-
mization problem, the solution of which provides an estimate
of the parameters that characterize the subjective quality to
be recovered. The proposed regularization term is meant to
penalize opinion scores that are potentially noisy.

Although the superiority over the MOS of the parametric
approaches discussed so far has already been proved in specific
applications, the assumptions made by these approaches on
the scoring behavior of subjects raises some questions on
their general applicability. In fact, as it will be observed in
Section V, the performance of some of these approaches with
respect to the performance of the MOS can vary significantly
from one application scenario to another. In addition, from a
theoretical point of view, the optimization problem guiding the
parameter estimation process in parametric models is usually
computationally challenging and might not even have a unique
optimal solution as pointed out in [23]. This introduces addi-
tional challenges that parametric models have to overcome.

This paper adopts a different perspective than the recent
parametric approaches described in the previous paragraphs.
We avoid making assumptions about any particular parametric
probabilistic model able to explain all the opinion scores of
a subject. Instead, a non-parametric approach to measure the
reliability of each opinion score of each subject and recover the
subjective quality of each stimulus is proposed. By refraining
from imposing stringent assumptions on the subjects’ scoring
behavior, we aim at proposing an approach whose accuracy is
preserved over a broad spectrum of practical situations.

III. A NON-PARAMETRIC MEASURE OF RELIABILITY

This section introduces and motivates our approach to
measure the reliability of each opinion score of each subject.
The proposed measure will be used later in Section IV to
derive a new algorithm to recover the subjective media quality.

As discussed in the previous section, parametric approaches
to recover the subjective media quality from raw opinion
scores typically consider some parameters that measure the
reliability of each subject during the subjective test. For
instance, in [5], [23], the inverse of the square of the subject’s
inconsistency was used as measure of reliability. The authors
of [3] estimated the probability of each subject to provide ac-
curate scores, and then used this probability as an indicator of
the reliability of the subject. Clearly, the effectiveness of these
measures of reliability strongly depends on the assumptions
of the underlying parametric model. In this paper, we argue

that the reliability of each opinion score can be effectively
measured without resorting to any parametric scoring model.

A. Notation and Hypotheses

Let us introduce the following notation:
• I, a set of rated stimuli.
• J , a set of subjects.
• Ij ⊂ I the subset of the stimuli rated by the subject
j ∈ J .

• Ji ⊂ J , the subset of subjects that rated the stimulus
i ∈ I using a discrete scale in the range {1, ...,K}.

For a given stimulus i ∈ I, there might be different
opinion scores that accurately characterize its quality. The
ground-truth quality can be modeled as a discrete random
variable, characterized by its probability mass function (pmf).
Specifically, we introduce the following notation:

• Vi the discrete random variable that describes the latent
ground-truth quality of a stimulus i ∈ I in the range
{1, ...,K}. In the absence of any noise, subjects sample
this random variable, producing opinion scores.

• pVi
denotes the pmf of Vi.

The problem of quality estimation has been formulated in
some cases as that of recovering pVi (refer to, e.g., [3], [26]).
In practice, most of the quality assessment literature focuses
on predicting point estimates of the quality pmf, such as the
mean opinion score. We also follow the latter approach in this
paper, i.e., we are interested in estimating qi = E[Vi].

In real-world scenarios, the latent random variable describ-
ing quality is observed through a set of stochastic, noisy ob-
servations, i.e., opinion scores. This model effectively captures
the intrinsic subjectivity of scores, arising, e.g., from different
expectations in terms of quality. We will therefore denote by:

• Rj,i, the discrete random variable modeling the score of
the subject j for the stimulus i on a quality scale in the
range {1, ..,K}.

• pRj,i denotes the pmf of Rj,i.
Our goal is to propose a robust estimator of qi by introducing
an approach to measure the reliability of each observed opin-
ion score {Rj,i}j∈Ij ,i∈I . We will denote as Qi our proposed
estimator of qi.

B. Measuring the Reliability of an Opinion Score

We propose the following definition of reliability:

Definition 1. The reliability Wj,i of the opinion score Rj,i

given by the subject j when assessing the quality of the
stimulus i is the following ratio:

Wj,i = −
1

log (pVi(Rj,i))
. (1)

An estimate of the distribution pVi
is required to compute

the reliability measures Wj,i. We will explore how to perform
such an estimation in Section IV. For the moment, in order
to motivate why the formula in Eq. (1) provides a suitable
measure of reliability for each opinion score gathered in a
subjective test, let us assume that the distribution pVi is known
for each stimulus i ∈ I.
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Note that Wj,i is a measure of reliability if and only W−1
j,i

is a measure of unreliability. To motivate the suitability of
Wj,i as a measure of reliability, let us introduce the following
statistic for each subject:

Sj(Ij) =
1

|Ij |
∑
i∈Ij

W−1
j,i . (2)

We will prove that the statistic Sj(Ij) can be used to measure
the average unreliability of the subject j. In fact, the following
proposition holds:

Proposition 1. For each subject j, if there is a constant c
such that var

[
W−1

j,i

]
< c ∀i ∈ Ij , then, as |Ij | → ∞, Sj(Ij)

converges in the mean square sense to:

h̄j(Ij) =
1

|Ij |
∑
i∈Ij

H(pRj,i
)+

1

|Ij |
∑
i∈Ij

DKL(pRj,i
||pVi

), (3)

where H(pRj,i) is the entropy of the distribution pRj,i and
DKL(pRj,i ||pVi) denotes the Kullback–Leibler (KL) divergence
between pRj,i

and pVi
.

Proof. We should prove that:

lim
|Ij |→∞

E
[(
Sj(Ij)− h̄j(Ij)

)2]
= 0. (4)

To do this we show that Sj(Ij) is an unbiased estimator of
h̄j(Ij) and that its variance goes to zero as |Ij | → ∞.

For the bias we have:

ERj,i
[Sj(Ij)] = −

1

|Ij |
∑
i∈Ij

ERj,i
[log(pVi

(Rj,i)]

= − 1

|Ij |
∑
i∈Ij

ERj,i

[
log

(
pVi

(Rj,i)

pRj,i
(Rj,i)

)]
− ERj,i

[
log

(
pRj,i(Rj,i)

)]
(5)

= h̄j(Ij), (6)

where from Eq. (5) to Eq. (6), we use the definitions of entropy
and KL divergence. Also, we consider that if there are any
terms in the expectation for which pRj,i

(r) = 0, then those
terms are zero through the continuity definition that 0 log 0 =
0 [27], so in reality we are only dividing by pRj,i for the
positive terms that impact the expectation.

Finally, to compute the variance of Sj(Ij) we make use of
the fact that the opinion scores can be considered independent
and the assumption that the variance of W−1

j,i is finite:

var [Sj(Ij)] =
1

|Ij |2
∑
i∈Ij

var
[
W−1

j,i

]
≤ c

|Ij |
−→

|Ij |→∞
0, (7)

which completes the proof.

Proposition 1 basically states that the statistic Sj(Ij) con-
verges to the overall unreliability of the subject j, since for a
large value of |Ij |, the following approximation can be used:

Sj(Ij) ≈
1

|Ij |
∑
i∈Ij

H(pRj,i)+
1

|Ij |
∑
i∈Ij

DKL(pRj,i ||pVi). (8)

Remembering that the subject’s inconsistency is a measure of
the inability to repeat exactly the same opinion score when

rating several times the same stimulus, it is not difficult to
observe that the more the subject j is inconsistent when
rating the stimulus i, the larger is the entropy H(pRj,i) of the
random variable Rj,i. Hence, the quantity 1

|Ij |
∑

i∈Ij
H(pRj,i

)
in Eq. (8) captures the average inconsistency of the subject j.
On the other hand, the following 1

|Ij |
∑

i∈Ij
DKL(pRj,i ||pVi)

indicates on average how far the opinion scores of the subject
j are expected to be from the accurate opinion scores. Hence,
1

|Ij |
∑

i∈Ij
DKL(pRj,i

||pVi
) measures the average inaccuracy

of the subject j.
In the light of the above interpretation of Proposition 1

it turns out that asymptotically the value of the statistic
Sj(Ij) = 1

|Ij |
∑

i∈Ij
W−1

j,i measures the average unreliability
of the subject j. Each single term, i.e., W−1

j,i , of this statistic
can therefore be considered as the measure of the unreliability
of the opinion score given by the subject j to the quality of the
stimulus i. This motivates our definition of Wj,i as a measure
of reliability.

It is worth noting that in information theory, the logarithm of
the probability of an event is called the self-information of the
event. It can be interpreted as a measure of the likelihood of the
event, and thus the level of surprise that the observation of the
event entails. Therefore, − log (pVi

(Rj,i)) can be interpreted
as the measure of how surprising (thus potentially unreliable)
is the opinion score Rj,i if it is supposed to come from pVi .
This is another way to motivate why the Wj,i defined in Eq. (1)
measures the reliability of the opinion score Rj,i.

Notice that Proposition 1, which is the main theoretical
foundation of the proposed reliability measure, is based on
the notion of entropy of a probability distribution (the KL
divergence is the relative entropy between two probability dis-
tributions). For this reason, the algorithm proposed in the next
section, grounded in the proposed reliability measure, shall
be denoted as Entropy-based Subjective Quality Recovery
(ESQR).

IV. RECOVERING THE SUBJECTIVE QUALITY: THE ESQR
ALGORITHM

We now introduce the proposed ESQR algorithm to recover
the subjective quality. The key idea of the method is to weight
each opinion score in the computation of the subjective media
quality using the reliability measure described in Section III.

To measure the reliability of each opinion score using the
formula in Eq. (1), the distribution of accurate opinion scores
pVi

of each stimulus i is required. In practice, as already
mentioned, this distribution is unknown, so an estimate of it is
needed. Therefore, the ESQR algorithm implements two main
steps:

1) For each stimulus i, an estimate p̂Vi
of the distribution

of accurate opinion scores is obtained from the observed
sample of opinion scores {Rj,i}i∈Ij ,j∈J .

2) Then, p̂Vi
is used in Eq. (1) to get an estimate Ŵj,i of the

reliability of each opinion score. Ŵj,i is used to define
our estimator of the ground-truth subjective quality qi of
each stimulus i as it follows:

Qi =

∑
j∈Ji

Ŵj,i.Rj,i∑
k∈Ji

Ŵk,i

. (9)
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Note that from the definition of Qi above, the contribution of
the subject j ∈ Ji to the determination of the ground truth
quality of the stimulus i ∈ I is weighted by:

ωij =
Ŵj,i∑

k∈Ji
Ŵk,i

. (10)

A. Estimating pVi

Unlike previous approaches, we do not make assumptions
on the shape of the distributions pVi

, i ∈ I. Therefore, we
use a non-parametric approach to estimate the distribution of
accurate opinion scores.

The simplest non-parametric estimation of pVi is based on
computing the histogram of opinion scores. In fact, pRj,i can
be estimated by the histogram of the opinion scores that the
subject j gave for the quality of the stimulus i. For instance, if
a single opinion score is collected per stimulus, then pRj,i

is a
probability mass function that attributes a one to the observed
opinion score and 0 to all the other opinion scores on the
quality scale. The observed distribution of opinion scores for
each stimulus i can then be estimated as:

p̄Vi
(r) =

1

|Ji|
∑
j∈Ji

pRj,i
. (11)

In practice, this estimate p̄Vi
can be influenced by the

potential presence of noise in the raw opinion scores collected
from the subjects. To obtain a more accurate estimation that
closely aligns with the true distribution pVi

we suggest a
different approach for weighting different subjects’ contri-
butions, as opposed to the uniform weighting (1/|Ji|) used
in Eq. (11). Specifically, our proposition is based on the
observation that the more a subject’s opinion scores correlate
with those of other subjects, the more trustworthy that subject
is. Consequently, to enhance the precision of our estimate
of pVi

we propose applying a weighting coefficient, denoted
as ϵj to each histogram pRj,i

which depends on the overall
correlation between subject j and the other subjects.

We employ Cjk, the Spearman Rank Order Correlation
Coefficient (SROCC) between the opinion scores of the subject
j and those of the subject k, as a non-parametric measure
of correlation. To compute the average correlation between
subject j’s opinion scores and those of all the other subjects,
we utilize the Fisher Z-Transformation (FZT), as suggested
in [28]. For each subject j, the FZT is applied to the SROCC
values Cjk k = 1, 2, . . . , j−1, . . . , j+1, . . . , |Ji|. The average
of the obtained values is computed. The inverse of the FZT,
here denoted by FZT−1, is then applied to the obtained average
to obtain the overall correlation Ĉj between the opinion scores
of the subject j and those of the other subjects. Finally, the
importance ϵij of the histogram pRj,i in the estimation of the
distribution pVi

is expressed as:

ϵij =
|Ĉj |∑

k∈Ji
|Ĉk|

i ∈ I, j ∈ 1, 2, . . . , |Ji|. (12)

Therefore, the final estimate p̂Vi
of the distribution pVi

, used
to recover the subjective quality of each stimulus i as defined
in Eq (9), is obtained from the following formula:

p̂Vi =
∑
j∈Ji

ϵij .pRj,i i ∈ I. (13)

Algorithm 1: Entropy based Subjective Quality Re-
covery (ESQR)
Data: Rj,i, i ∈ Ij ; j ∈ J // stimuli i, subjects j

1 Cjk ← SROCC(Rj,., Rk,.) j, k ∈ J // pairwise

subject scores correlation

2 Ĉj ← FZT−1
(∑

k∈J FZT(Cjk)

|J |

)
j ∈ J // overall

subject-to-subject correlation

3 ϵij ← |Ĉj |∑
k∈Ji

|Ĉk|
i ∈ I; j ∈ Ji // importance of

the ratings of subject j in the PVi
estimation

4 p̂Vi
←

∑
j∈Ji

ϵijpRj,i
i ∈ I // estimate the

distribution PVi

5 Ŵj,i ← 1
− log(p̂Vi

(Rj,i))
i ∈ Ij ; j ∈ J // estimate

each opinion’s score reliability

6 Qi ←
∑

j∈Ji
Ŵj,iRj,i∑

k∈Ji
Ŵk,i

i ∈ I // estimate the

quality

Result: Qi, i ∈ I

It is worth noticing that other more sophisticated estimations
of p̂Vi

might be possible. However, we argue that even a
simple and possibly noisy approximation of pVi , such as the
one proposed above, is a good starting point for the second
step of the proposed ESQR algorithm, where atypical subjects
are further penalized using the reliability measure introduced
in Section III. The experiments in Section V support this claim
with empirical evidence.

The proposed ESQR algorithm is summarized in Algo-
rithm 1. The input of Algorithm 1 is the set of the observed
opinion scores Rj,i i ∈ Ij ; j ∈ J . The output is the recovered
subjective quality of each stimulus i. The notation Rj,. is used
to indicate all the opinion scores of the subject j.

B. Confidence Interval of the Recovered Quality

Using a similar formula as in [23] to compute the standard
deviation of a weighted sum of opinion scores, for each
stimulus i, an unbiased estimator of the standard deviation
of Qi can be computed as follows:

σQi
=

√√√√ |Ji|
|Ji| − 1

∑
j∈Ji

Ŵj,i(Rj,i −Qi)2∑
k∈Ji

Ŵk,i

. (14)

From the standard deviation in Eq (14), the 95% confidence
interval (CI) of the recovered quality stimulus i can be
computed as:

CIQi = Qi ± 1.96
σQi√
|Ji|

. (15)

Eq. (15) assumes that the estimator Qi is normally distributed.
In Appendix A, we provide theoretical conditions for this to
happen, and we show through simulation that these conditions
are indeed reasonable in a practical scenario. Also, notice that
this normality assumption only applies to the estimator of the
ground-truth quality, and not the individual opinion scores,
which can follow any arbitrary distribution in our framework.
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V. NUMERICAL EXPERIMENTS

A. Experimental Settings

The evaluation of subjective media quality recovery meth-
ods is challenging, since there is no observable “true” quality
of stimuli to be used as ground truth. In related work, e.g., [1],
[5]–[7], [23], the effectiveness of quality recovery approaches
is assessed in terms of: i) robustness to the insertion of
synthetic noise in the quality scores; ii) and uncertainty on
the recovered subjective media quality. We will therefore use
similar experiments in this paper to evaluate the effectiveness
of the proposed ESQR algorithm.

We compare the proposed ESQR algorithm with five state-
of-the-art quality recovery approaches, i.e.: the MOS, the
algorithm recommended in the ITU-R BT.500 [4], very re-
cent algorithms such as ZREC [23], RMLE [6], and finally
the Netflix SUREAL software that implements the so-called
“alternating projection” algorithm [5]. The latter has been
recommended by the ITU in 2021 as the most comprehensive
method for subjective quality recovery (as per Section 12.6 of
ITU-R P.913 [20]).

The computational experiments were conducted using the
data gathered in six different subjective tests. The related
datasets are named: VQEG-HD1 [29], VQEG-HD3 [29],
VQEG-HD5 [29], Netflix Public [1], KoNViD-1k [30] and
the MoviesLens-1M [31]. While the last two datasets, i.e.,
the KoNViD-1k [30] and the MoviesLens-1M [31] were
obtained from crowdsourcing subjective tests, the others are
the results of highly controlled lab experiments. Notice that
for crowdsourcing experiments, the matrix of opinion scores
is typically sparse, as stimuli are evaluated only by a subset of
subjects. Thus, we present results for crowdsourcing datasets
in a separate section below.

For the three VQEG experiments, there were 24 participants
and each of them rated around 168 stimuli, yielding for each
of the three tests, a total of 24 × 168 opinion scores to be
analyzed. The Netflix Public dataset is a relatively small-scale
dataset, which includes the opinion scores of 26 subjects on the
perceptual quality of 70 processed video sequences and nine
source content. The KoNViD-1k subjective test involves 624
participants, who have scored 1200 short video sequences. For
the MovieLens-1M, 6040 subjects have expressed their opin-
ion score on 3952 movies. For all the six datasets considered
for our experiments, the authors made use of five-point quality
scales when gathering the opinion scores from the subjects.
Hence, the opinion scores in each dataset range from 1 to 5.

B. Uncertainty of quality estimates

A typical approach to measure the uncertainty of the subjec-
tive quality recovered by a given method consists in computing
the size of confidence intervals [5], [7], [23]. The larger the CI,
the higher the uncertainty on the recovered subjective quality.

Table I shows the comparison between the average size of
the CIs of the recovered subjective quality by each method on
the four datasets resulting from tests performed in controlled
environments. The percentages reported between parenthesis
indicate by how much the application of each method reduced
on average the size of the CIs that can be computed from the

TABLE I
UNCERTAINTY OF QUALITY ESTIMATES: COMPARISON OF THE SIZE OF
CIS ESTIMATED BY THE DIFFERENT QUALITY RECOVERY APPROACHES.
PERCENTAGES INDICATE RELATIVE SIZE OF THE CIS WITH RESPECT TO

MOS CIS.

Methods
AVG CI SIZE

NETF PUB VQ-HD1 VQ-HD3 VQ-HD5
MOS 0.509 (——) 0.493 (——) 0.565 (——) 0.575 (——)
BT500 0.515 (+1.18%) 0.613 (+24.34%) 0.586 (+3.72%) 0.575 (+0.00%)
ZREC 0.417 (-18.07%) 0.437 (-11.36%) 0.458 (-18.94%) 0.475 (-17.39%)
SUREAL 0.445 (-12.57%) 0.459 (-6.90%) 0.481 (-14.87%) 0.489 (-14.96%)
RMLE 0.453 (-11.00%) 0.417 (-15.42%) 0.472 (-16.46%) 0.483 (-16.00%)
ESQR 0.355 (-30.26%) 0.361 (-26.77%) 0.436 (-22.83%) 0.439 (-23.65%)

raw opinion scores, i.e. the MOS’s CIs (computed for each
stimulus i as MOS ± 1.96 × SOS/

√
|Ji|, where SOS stands

for Standard deviation of Opinion Scores). For instance, as it
can be seen in Table I, the average of the sizes of the MOS’s
CIs on the Netflix public dataset is 0.509, while the average of
the sizes of the CIs of the recovered qualities by the proposed
ESQR algorithm is 0.355. Hence, by using the proposed ESQR
algorithm instead of the MOS on the Netflix public dataset,
on average, the size of the CIs of the recovered subjective
qualities is reduced by 30%, i.e., 100× (1− 0.355/0.509).

Looking at the results in Table I, it can be noticed that on
all datasets, the proposed ESQR algorithm always recovered
subjective qualities characterized by smaller CIs than those of
all the other approaches on average. Hence, in practice, the
proposed algorithm is expected to provide estimates of the
subjective quality that are prone to lower uncertainty.

It is interesting to notice that more recent approaches such as
ZREC, RMLE and the Netflix SUREAL software offered bet-
ter performances than the MOS and the algorithm proposed in
the ITU-R BT.500. The performances of the Netflix SUREAL
software, RMLE and ZREC were however outperformed by
that of the proposed ESQR algorithm. In fact, the application
of the ESQR algorithm has yielded a reduction of the size
of CIs by more than 22% in all cases, while all the other
approaches never did better than 19%. The CIs resulting from
the output of the algorithm proposed in the ITU-R BT.500 are
indeed larger than the MOS’s CIs on average. This is actually
not a peculiarity of this work as the same observation was
made in [5].

1) CIs Prediction Accuracy: When comparing confidence
interval sizes, a natural question arises: does a smaller con-
fidence interval actually imply reduced uncertainty, or is it
merely a result of underestimating the true uncertainty linked
to the quality estimation? In real datasets, there are no ground-
truth CIs against which estimated CIs can be benchmarked.
Therefore, we must resort to simulations to verify the accuracy
the CI estimates of ESQR and competing methods.

We simulated the opinion scores of 25 subjects for 100
stimuli. For each stimulus i, we assumed that reliable opinion
scores on its quality follow a normal distribution with a
mean of qi and a standard deviation of σi. Consequently, qi
represents the ground truth quality for stimulus i. The ground
truth CI of the quality of stimulus i is then:

CIi = qi ± 1.96
σi√
Ms

, (16)

where Ms = 25 is the number of simulated opinion scores
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TABLE II
CI PREDICTION ACCURACY

Method MOS BT500 ZREC SUREAL RMLE ESQR
∆m 0.127 0.062 0.058 0.051 0.087 0.056
ρm 1.470 1.263 1.242 1.242 1.256 0.979

for each stimulus. The ground truth quality values qi were
derived by uniformly sampling 100 numbers within the range
of [1.5, 4.5]. To simulate the fact that subjects exhibit lower
inconsistency at the quality scale’s extremes, as observed in
real subjective experiments [25], we employed the SOS hy-
pothesis [25]. More precisely, we set σi = 0.2×(−q2i+6qi−5),
ensuring that the standard deviation of the distribution of reli-
able opinion scores diminishes at the quality scale’s extremes.

We will denote N(qi, σi) as the distribution of reliable
opinion scores for the stimulus i. In our simulation, each
stimulus is assessed by 25 subjects. We followed the scoring
model proposed in [3], where each subject could provide a
reliable opinion score with a probability of 1 − η and an
unreliable one with probability η. We divided the 25 subjects
into two clusters, i.e., a group of 20 accurate subjects, and a
group of 5 inaccurate ones. For the accurate subjects, we set
η = 0.01 (1%), meaning that 99% of their opinion scores were
sampled from the distribution N(qi, σi) of reliable opinion
scores and rounded to the closest integer from 1 and 5, while
the remaining 1% were randomly selected between 1 and 5.
The 5 inaccurate subjects had η randomly chosen between
0.6 and 1, meaning that at least 60% of their opinion scores
were randomly selected between 1 and 5, and the rest were
drawn from N(qi, σi). We conducted this simulation with 30
different seeds, resulting in 30 distinct simulated datasets.

We applied all quality recovery methods to each of the
simulated datasets. Let ĈI

m

id represent the CI estimated by
method m for stimulus i in simulated dataset d. To evaluate
the accuracy of method m in estimating the ground truth CIs,
we compared ĈI

m

id to CIi using two main indices:

∆m =
1

30× 100

30∑
d=1

100∑
i=1

|ct(ĈI
m

id)− ct(CIi)| (17)

ρm =
1

30× 100

30∑
d=1

100∑
i=1

sz(ĈI
m

id)/sz(CIi) (18)

where ct() and sz() stand for center and size of the CI
respectively. ∆m is, therefore, the average distance between
the center of the estimated CI of method m and the center
of the ground truth CI. Meanwhile, ρm is the average ratio
between the size of the CI estimated by method m and the
size of the ground truth CI. Clearly, the closer ∆m is to zero,
the better; and the closer ρm is to 1, the better.

Table II summarizes the results. Regarding ∆m, the best
methods are ESQR, ZREC, and Netflix Sureal software, with
the center of the estimated CI differing from that of the ground
truth CI by around 0.05. The MOS exhibited the lowest per-
formance (∆m = 0.127), followed by RMLE (∆m = 0.087).
When it comes to predicting CI sizes, ESQR outperformed
all other approaches, with a related value of ρm = 0.979
significantly closer to 1 than that of all the other methods

(a) NETF PUB (b) VQ-HD1

(c) VQ-HD3 (d) VQ-HD5

Fig. 2. Robustness to noise insertion. RMSE between the quality recovered
on the original dataset and under different noisy conditions. The noise was
added by replacing a given fraction of the opinion scores (see the x-axis) of
each subject with integer numbers sampled at random between 1 and 5. The
simulation was run with 30 different seeds and the curve for each quality
recovery method reports the average RMSE from the 30 trials.

for which ρm > 1.242. Thus, ESQR slightly underestimated
(by less than 3% of the actual size) the sizes of the ground
truth CIs on average, while all the other methods overestimated
them significantly (by more than 24% of the actual size ).

The results in Table II suggest that the proposed ESQR al-
gorithm can better predict the ground truth CIs and thus better
quantify the actual uncertainty characterizing the quality of a
stimulus compared to the other quality recovery approaches.
We believe this stems from the fact that ESQR makes no
restrictive assumptions about the subjects’ scoring behavior.

C. Robustness to Synthetic Noise

Following the same protocol of [1], [5]–[7], [23], all the
quality recovery methods are first used to recover the subjec-
tive media quality on each dataset. Then, some synthetic noise
is added to each dataset. After adding the noise, the subjective
quality is estimated again, this time using the noisy dataset.
Finally, the recovered quality on the noisy dataset is compared
in terms of RMSE to the one obtained before adding noise to
the dataset. This allows us to determine which method is more
robust to noise.

The noise is added to the datasets using two different
approaches that simulate different applications:

1) Noise insertion: a small fraction of the opinion scores of
each subject is replaced by an integer sampled at random
in the interval [1, 5];

2) Spammer annotators: some simulated subjects scoring
the quality at random are added to the dataset.

In practice, our first approach to adding noise simulates, for
instance, the type of noise that would be generated by the
subjects’ fatigue or unexpected subjects’ distraction. In fact,
it is reasonable to assume that, due to fatigue or distraction,
each subject might inaccurately score the quality of a very
small fraction of stimuli. The second noise model simulates
situations such as the unexpected crash of the software used
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(a) NETF PUB (b) VQ-HD1

(c) VQ-HD3 (d) VQ-HD5

Fig. 3. Robustness to spammer annotators. RMSE between the quality
recovered on the original dataset and under noisy conditions. The noise was
generated by adding simulated subjects (see the x-axis) that score the quality
of each stimulus with an integer number sampled at random between 1 and
5. The simulation was run with 30 different seeds and RMSE of the 30 trials
for each quality recovery method is shown.

to collect opinion scores, causing a mismatch of the opin-
ion scores of certain subjects (see for instance the Netflix
subjective test described in [1]). In that case, the subjects
whose opinion scores have been mismatched correspond to
subjects rating at random. Another application is the case in
which a subject accepts to participate in the subjective test but
just provides ratings at random in order to complete the test
as quickly as possible. These subjects are referred to in the
literature as spammer annotators [32].

Figure 2 reports the results obtained using the first noise
model. The fraction of replaced opinion scores is reported
on the x-axis. The y-axis reports, for each quality recovery
method, the RMSE error between the quality recovered on
the original dataset and the one obtained after replacing the
fraction of opinion scores on the x-axis with random integers.
For instance, looking at the VQEG-HD1 dataset in Figure 2,
the RMSE between the values of the recovered qualities by
the proposed ESQR algorithm on the original dataset and the
values computed after replacing 4% of the opinion scores of
each subject in the dataset with random integers is 0.06.

In this first case, as it can be seen from Figure 2, the
proposed ESQR algorithm outperformed all the other methods
in all testing conditions. In fact, the curve of RMSE values
associated to the ESQR algorithm lies below the ones of all the
other methods. This result suggests that the proposed ESQR
algorithm would guarantee better robustness than the other
quality recovery methods to the noise generated for instance
by the subjects’ fatigue.

One can notice that the Netflix SUREAL software and
ZREC showed performances very similar to that of the MOS.
The RMLE approach instead showed better performance than
the MOS, the BT.500 algorithm, ZREC and the Netflix
SUREAL software.

The results related to our second approach to add the noise
are summarized in Figure 3. The x-axis reports the number
of simulated subjects added to the dataset. These simulated

subjects rate the stimuli by choosing at random an integer
between 1 and 5. In this case, the proposed ESQR algorithm,
ZREC and the Netflix SUREAL software showed comparable
performances. In particular ESQR delivered the best perfor-
mance on the Netflix public dataset and provided similar
performance to that of the Netflix SUREAL software on the
VQEG-HD5 dataset. The Netflix SUREAL software showed a
better performance than the proposed ESQR algorithm on the
VQEG-HD1 and VQEG-HD3 datasets. The RMLE approach
showed a performance that is higher than that of the MOS but
significantly lower than those of all the other methods.

The joint analysis of Figure 2 and Figure 3 reveals a crucial
observation: the proposed ESQR algorithm demonstrates ro-
bustness, irrespective of the noise simulation approach. Unlike
other quality recovery methods tested, ESQR performance
does not exhibit sensitivity to the specific noise simulation
employed. For instance, in Figure 2, sophisticated methods
like ZREC and the Netflix SUREAL software do not outper-
form the MOS, yet they perform well in the second noise
simulation case, as depicted in Figure 3. Conversely, RMLE
excels in the first case in Figure 2 but falters in the second case
in Figure 3. ESQR consistently maintains high performance
across both cases, standing out as the top performer in the
first noise simulation case and one of the best methods in the
second case.

This stability in ESQR’s performance during transitions be-
tween scenarios can be attributed to our avoidance of assump-
tions about subjects’ scoring behavior, a characteristic of para-
metric approaches. Such assumptions often face challenges
due to specific application characteristics. For example, the
parametric model in the Netflix SUREAL software assumes a
subject permanently possesses bias and inconsistency, making
it less effective in capturing the scoring behavior of subjects
who only occasionally misjudge quality. This likely explains
the similar performance of the Netflix SUREAL software to
that of the MOS in the first noise simulation case.

D. Crowdsourcing experiments

This section evaluates the accuracy of ESQR when the
matrix of ratings is sparse. This type of matrix is typically
obtained from crowdsourcing tests where a very large number
of stimuli is employed, but each subject is required to rate
only a small subset of them. This yields a stimuli-to-subjects
table with numerous empty cells and thus a sparse matrix of
ratings.

When the matrix of ratings is sparse, the correlation between
the ratings of each pair of subjects cannot always be calculated.
This makes it difficult for ESQR to derive a more accurate es-
timate of the distribution pVi

than the distribution of collected
ratings. In this case, our implementation of ESQR considers
the distribution p̄Vi (Eq. (11)) of gathered ratings during the
test as the estimate of pVi

for each stimulus i in order to
compute the reliability of each individual opinion score.

In light of the results discussed in Section V-C, the quality
recovery approaches with the most competitive performance
with respect to the proposed ESQR algorithm in terms of ro-
bustness to noise are the RMLE (see Figure 2), ZREC and the
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TABLE III
CROWDSOURCING EXPERIMENTS: CI SIZES OF ESQR VS NETFLIX,

SUREAL, ZREC. PERCENTAGE REDUCTION WITH RESPECT TO MOS CI.

Methods
AVG CI SIZE

KoNViD-1k MoviesLens-1M
SUREAL 0.326 (-15.76%) 0.203 (-15.25%)
ZREC 0.318 (-18.04%) 0.205 (-14.58%)
ESQR 0.289 (-25.51%) 0.195 (-18.75%)

Netflix SUREAL software (see Figure 3). The analysis in this
section could have therefore been done by considering ZREC,
the Netflix SUREAL software and the RMLE approach.
Unfortunately the RMLE approach involves an optimization
problem whose solution is computationally very demanding on
large-scale datasets as the ones considered in this section. This
made it impossible to perform the experiments with RMLE on
these datasets in a reasonable amount of time. For this reason,
we considered only ZREC and the Netflix SUREAL software.

The sizes of the CIs of the recovered subjective qualities
by the proposed ESQR algorithm, ZREC and the Netflix
SUREAL software are compared in Table III. As in the
case of datasets collected in controlled environments, the
proposed ESQR algorithm provided a recovered subjective
quality prone to lower uncertainty, i.e. smaller CIs. The use
of the Netflix SUREAL software and ZREC induced no more
than 18% reduction of the size of the raw data CIs, while
ESQR achieved 25%. The reduction percentages achieved
by the Netflix SUREAL software are slightly higher than
the percentages it reached on datasets obtained in controlled
environments (see Table I). This is consistent with the fact
that greater benefit can be expected from sophisticated quality
recovery approaches when used on challenging datasets such
as those derived from crowdsourcing subjective tests.

The reduction percentages obtained for the proposed ESQR
algorithm in Table III, although being greater than those of
the Netflix SUREAL software and ZREC, were in one case
smaller than the ones in Table I, which were obtained on
datasets collected in controlled environments. This is because
the current version of the proposed ESQR algorithm to ana-
lyze a sparse matrix of ratings directly uses the distribution
of gathered ratings to estimate the reliability of individual
opinion scores. We strongly believe that, as for the Netflix
SUREAL software, the application of the ESQR algorithm
would bring larger benefits on crowdsourcing datasets if an
approach to “clean” the distribution of collected opinion scores
is employed as in the case of a plain matrix of ratings where
pairwise correlations are used. Finding such an approach will
thus be one of the main points for a future contribution.

We compared the proposed ESQR algorithm to the Netflix
SUREAL software and ZREC in terms of robustness to
synthetic noise and spammer annotators added to a sparse
matrix of ratings. The results are shown in Figure 4 and
Figure 5. As in Section V-C, the quality recovered on the
original dataset was compared in terms of RMSE to the one
recovered from a noisy version of each dataset. To add noise,
a fraction (see the x-axis) of opinion scores was selected at
random and replaced with integers randomly sampled between
1 and 5. The ratings of a spammer annotator are simulated

(a) KoNViD-1k (b) MoviesLens-1M

Fig. 4. Crowdsourcing experiments, robustness to noise insertion. Com-
paring the robustness to synthetic noise of the ESQR algorithm, the Netflix
SUREAL software and ZREC on two crowdsourcing datasets. A given fraction
of the opinion scores (see the x-axis) in each dataset was replaced with integers
sampled at random between 1 and 5. The RMSE between the quality recovered
on the original dataset and the one obtained in each noisy situation is reported
on the y-axis.

(a) KoNViD-1k (b) MoviesLens-1M

Fig. 5. Crowdsourcing experiments, robustness to spammer annotators.
Comparing the robustness of the ESQR algorithm, the Netflix SUREAL soft-
ware and ZREC to the insertion of spammer annotators on two crowdsourcing
datasets. A certain number of spammer annotators (see the x-axis) was added
to each dataset. The opinion scores of a spammer annotators are integers
sampled at random between 1 and 5. The RMSE between the quality recovered
on the original dataset and the one obtained after adding spammer annotators
is reported on the y-axis.

by selecting random integers between 1 and 5. As we see in
Figure 4, in the case of noise insertion, the proposed ESQR
algorithm showed higher robustness to the added noise. In
fact, it always recovered a subjective quality from the noisy
dataset with the lowest RMSE with respect to the one obtained
on the original version of the dataset. This suggests that, by
adding additional noise to a challenging dataset, the proposed
ESQR algorithm would offer more robustness to it than the
Netflix SUREAL software and ZREC. For what concerns the
insertion of spammer annotators (see Figure 5), ESQR shows
better performance than the Netflix SUREAL software, but
this performance is outperformed by that of ZREC.

E. Reliability of opinion scores

In this section we analyze the effect of the proposed
reliability measure (Eq. (1)) as a weight of the contribution
of each stimulus to the quality recovery. We compare the pro-
posed reliability weights with the weights defined by Netflix
SUREAL and ZREC. Let ωSUREAL

ij , ωZREC
ij and ωESQR

ij be the
weights of the contribution of subject j to the determination
of the quality of each stimulus i for SUREAL, ZREC and
the proposed ESQR algorithm, respectively. Eq. (10) defines
ωESQR
ij , while SUREAL and ZREC define the contribution as:

ωSUREAL
ij =

(
σSUREAL
j

)−2∑
k∈J

(
σSUREAL
k

)−2 (19)
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ωZREC
ij =

(
σZREC
j

)−2∑
k∈J

(
σZREC
k

)−2 (20)

where σSUREAL
j and σZREC

j are the estimated inconsistency of
the subject j by the Netflix SUREAL software and ZREC
respectively. Notice that, for SUREAL and ZREC, the weights
only depend on the subject and are constant across stimuli
evaluated by the same subject.

Eq. (19) and Eq. (20) reveal that ZREC and SUREAL
weigh opinions similarly in determining ground truth quality.
Consequently, we exclusively report results comparing ESQR
to SUREAL in the following section, as similar conclusions
arise with ZREC.

In Figure 6, we report ωSUREAL
ij and ωESQR

ij computed on
the Netflix public dataset. The ability of ESQR weights to
modulate the importance of opinion scores per stimulus and
not only per subject as SUREAL gives higher flexibility
and precision in quality estimation. For instance, from the
left heatmap in Figure 6 one can notice that, according
to SUREAL, all the opinion scores of the subject #7 are
considered unreliable. The heatmap of ESQR contradicts that
by identifying stimuli for which the opinion scores of subject
#7 are still accurate enough to contribute to estimating ground
truth quality. In fact, for the following stimuli: #3, #43, #56
and #58 the ESQR contribution weights of subject #7 are
rather high. A quick look at the dataset revealed that for
these stimuli, subject #7 gave the opinion score chosen by
the majority of subjects. Hence, contrarily to SUREAL, ESQR
rightly attributed high importance to these opinion scores since
they can be considered as accurate. Similarly, looking at the
left heatmap in Figure 6, it can be observed that SUREAL
attributes very high importance to all the opinion scores of
subject #23. The ESQR heatmap however points out some
stimuli for which the opinion scores of that subject are less
reliable. For instance, subject #23 is the only one that scored
the quality of stimulus #44 as being “bad” while all the other
subjects found it at least “fair”.

Another interesting example is the situation of stimulus
#19 for which all the subjects gave the same opinion scores.
Despite all the subject agreed on one opinion score, SUREAL
attributed different importance to the subjects when recovering
the quality of that stimulus. This is not the case for ESQR that
attributed the same contribution weight to all subjects as it can
be seen from the right heatmap in Figure 6.

All these examples provide insights of why the proposed
ESQR approach achieves in general better robustness and
lower uncertainty than SUREAL and ZREC in the numerical
experiments presented in this paper.

F. Quality estimates of ESQR vs. other methods

We evaluate the similarity between the subjective quality
recovered by ESQR and that of other state-of-the-art quality
estimation algorithms on the six considered datasets. ESQR
estimates generally align with prior methods, deviating only in
specific cases where assumptions are potentially violated. The
smallest Pearson correlation found between ESQR and other
methods is 0.996 (0.994 for Spearman correlation), indicating

Fig. 6. Reliability of opinion scores. The figure shows the contribution
weights ωSUREAL

ij (left) and ωESQR
ij (right) of each subject j to the deter-

mination of the ground truth quality of each processed video sequence i in
the Netflix public dataset. The ESQR weights can capture the reliability of
individual opinion scores.

MOS: 4.31, ESQR: 4.65
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Fig. 7. Quality estimates of ESQR vs. other methods. Opinion scores
distribution for a stimulus with high discrepancy between Q (ESQR) and the
mean opinion score (MOS).

very high consistency on average. The RMSE further confirms
these results, with a maximum value of 0.167, notably small
on a 5-level quality scale.

It is instructive to analyze cases where the quality estimated
by ESQR differs significantly from that of alternative methods.
An example of stimulus where the output of ESQR deviates
significantly from the MOS (difference = 0.34) is the one
whose distribution of scores is showed in Figure 7. In fact,
while 14 subjects out of 26 deemed that the quality of that
stimulus was excellent and scored it with a 5, there is one
subject that found the quality bad and gave a 1 as opinion
score. The MOS attributes to this opinion score the same
importance that is attributed to the other opinion scores; this
yields a MOS = 4.31. The proposed ESQR algorithm instead
under-weights that potentially noisy low opinion score and
recovers a larger subjective quality (4.65).

To study significant differences between ESQR and the
popular Netflix SUREAL, we compare the quality estimates
by the two methods for the large-scale dataset MoviesLens-1M
through the scatter plot in Figure 8a. We observe that the out-
put of ESQR mostly differs from that of the Netflix SUREAL
software at the extremes of the quality scale, i.e., where
the distribution of the opinion scores is typically strongly
asymmetric. In these cases, the Gaussianity assumption made
by Netflix SUREAL concerning the quality distribution is not
met, leading the method to introduce substantial bias in the
estimates. We observed a similar behavior for KoNViD-1k.

Figure 8b reports the score distribution for the stimulus
having the largest estimated quality difference between the
ESQR algorithm and Netflix SUREAL. The Netflix SUREAL
software recovered a subjective quality equal to the MOS.
The ESQR algorithm instead recovered a subjective quality
that is significantly lower than the MOS. The difference,
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(b) Stimulus with largest difference

Fig. 8. Quality estimates of ESQR vs. other methods. Comparing the
output of the ESQR algorithm to the one of the Netflix SUREAL software on
the MovieLens-1M dataset. On the right, the distribution of opinion scores of
the stimulus for which the outputs of the two approaches differ the most.

TABLE IV
ABLATION STUDY ON THE ESQR ALGORITHM

Index ESQR
Without
Pairwise

Correlation

Without
Reliability
Measure

Rob. to Noise (RMSE) 0.06 0.06 0.10
Rob. to Spammer Annot. (RMSE) 0.06 0.12 0.04
Average Size of CIs 0.36 0.38 0.51
Per Stimulus Reliability yes yes no

0.51, represents more than 10% of the whole quality scale.
This confirms that, despite most of the time ESQR provides
estimates coherent with previous methods, there are stimuli for
which different quality recovery approaches strongly disagree.

G. Ablation Studies

In our ESQR algorithm ablation study we examined two
aspects: i) removing pairwise correlation, thus directly using
the observed distribution p̄Vi

(Eq.(11)) instead of the estimate
p̂Vi

(Eq.(13)) that involves the weights ϵij ; ii) eliminating the
reliability measure, and thus using the expected value com-
puted from p̂Vi as the subjective quality estimate. Results are
shown in Table IV. We focus only on the Netflix Public dataset
since similar conclusions were drawn from other datasets. To
evaluate the robustness against noise and spammer annotators,
we computed the average RMSE across the noisy scenarios in
Figure 2 and Figure 3.

As it can be noticed from Table IV, without pairwise
correlation, the algorithm is less robust to spammer annotators,
and without the reliability measures, it’s less robust to noise
and computes a quality estimate with larger CIs and thus prone
to more uncertainty. The full ESQR algorithm demonstrates
superior performance balance, highlighting the importance of
all introduced elements.

H. Computational Time Analysis

Each method was executed 30 times on each dataset, and the
average computational time was recorded. These experiments
were conducted using MATLAB on a computer equipped with
a 2.6 GHz 6-Core Intel Core i7 processor and 16 GB of RAM.

Excluding RMLE, all approaches processed the small-scale
datasets (VQEG-HD1, VQEG-HD3, VQEG-HD5, and Netflix
Public) in less than 4 ms on average. Specifically, Netflix
SUREAL and ZREC took less than 1 ms each, while ESQR
required just over 3 ms. A notable increase in computational

time (up to 70 seconds) was observed with RMLE on small-
scale datasets. This highlights the computational demands of
parametric methods in estimating optimal parameter values.
The efficient processing by SUREAL and ZREC is attributed
to the approximation of the parameter estimation process
through an iterative procedure and utilization of statistical
moments, respectively.

Finally, it is interesting to note that, despite being slightly
slower than ZREC and the Netflix SUREAL software, ESQR
completed the recovery of the subjective quality on the
MovieLens-1M dataset, involving up to 1 million ratings, in no
more than 12 seconds. This clearly suggests that the efficiency
of ESQR is not questionable for practical exigencies.

VI. CONCLUSIONS

In this paper, we introduce ESQR, a novel Entropy-based
Subjective Quality Recovery algorithm to estimate subjective
media quality from noisy opinion scores. The primary idea
behind our approach is to treat quality estimation as a non-
parametric problem, diverging from the prevalent practice in
the literature that involves modeling scoring behavior through
predefined and often simplistic distributions. Specifically, we
establish a reliability measure for each stimulus capturing
the degree of surprise that a given score brings compared to
the overall score distribution. We then utilize this measure
to weigh the contribution of individual opinion scores to the
overall quality of a stimulus.

When comparing ESQR to five state-of-the-art quality re-
covery methods across six diverse datasets, our results indicate
that: i) ESQR produces subjective quality estimates character-
ized by reduced uncertainty; ii) ESQR demonstrates superior
robustness to noise compared to other methods; and iii) ESQR
maintains its accuracy across a broader range of applications
and datasets.

Future work will explore a refinement of the introduced
reliability measure to explicitly consider the ordinal nature of
quality scales, as entropy-based approaches may overlook this
essential aspect.

APPENDIX A
ASYMPTOTIC DISTRIBUTION OF QUALITY ESTIMATOR

Consider a stimulus that has been scored independently by
M subjects. The subject j has given a score 1 ≤ Rj ≤
K < ∞ drawn from a distribution pRj . Based on the scores
{R1, ..., RM} a quality recovery algorithm is proposed as a
weighted average:

Q(M) =

∑M
j=1 h(Rj)Rj∑M

l=1 h(Rl)
. (21)

In the ESQR algorithm we would have h(Rj) =
− log(p̂V (Rj))

−1 where p̂V is an approximation to the scoring
distribution. In this section, to simplify our theorical analysis
we assume that we are in fact using the true scoring dis-
tribution pV . Other algorithms (see Eq. (19)) have the same
structure so our analysis can also be extended to those cases.
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Proposition 2. If there exists c > 0 such that |h(Rj)| ≤ c for
all j, and as M →∞ for any q ∈ [1, K] we have that:

M∑
j=1

var [h(Rj)(Rj − q)]→∞, (22)

then the asymptotic distribution of Q is:

lim
M→∞

P(Q ≤ q) = Φ

(
−µq

σq

)
, (23)

where Φ is the distribution function of a standard normal
random variable and:

µq =

M∑
j=1

E [h(Rj)(Rj − q)] , (24)

σ2
q =

M∑
q=1

var [h(Rj)(Rj − q)] . (25)

Proof. Using (21) we may write the distribution of Q as:

FQ(q) = P(Q ≤ q) = P

 M∑
j=1

h(Rj)(Rj − q) ≤ 0

 . (26)

Since |h(Rj)| ≤ c, for some c, and q ∈ [1, K] then the random
variables in the summation are uniformly bounded for all j as
|h(Rj)(Rj − q)| ≤ c(K − 1). Under (22) we can now apply
Lindeberg’s central limit theorem (CLT) [33, Example 27.4]
to obtain the desired result.

Notice that event though we have a closed form approxi-
mation for the distribution of Q using the the CLT we cannot
guarantee that Q will be normally distributed since µq and
σq are functions of q. The approximation will yield a normal
distribution if and only if µq/σq is a linear function of q. By
looking at (24) we see that µq is indeed a linear function of
q. Then we have the following corollary:

Corollary 1. Under the hypotheses of Proposition 2, Q is
asymptotically normal if and only if (25) is independent of q.

It is clear that a good approximation will be retained as long
as µq/σq is approximately linear in q where Φ changes more
rapidly. We now perform some numerical simulations to study
whether the quality estimate can be assumed to be normal. In
order to do this, we need to test two things:
T1) Using the CLT is a good approximation for FQ for the

number M of subjects typically considered. This would
validate that (23) is a good approximation for practical
finite values of M .

T2) The argument of (23) is a linear function of q where Φ
changes rapidly, which, together with T1) would validate
that the estimator is approximately normal in practice.

For the tests, we perform simulation with M = 24 subjects.
We consider a model very similar to that of section V-B.
We assume that each subject independently rates the same
stimulus, giving a score on {1, 2, 3, 4, 5}. The scores is given
according to the true distribution pV with probability 1− pe,
and a uniform score with probability pe. The probability pe,
different for each subject, is obtained as a uniform random

1 2 3 4 5
True average score

0.000

0.005

0.010

Er
ro

r

(a) Normal. Average L1 error is 0.004.
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(b) Beta. Average L1 error is 0.004.

Fig. 9. Test T1. Scatter plot of the L1 error between (23) for finite M and
the empirical estimation of Q as a function of the true average score.
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(a) Normal. Average L1 error is 0.003.
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(b) Beta. Average L1 error is 0.003.

Fig. 10. Test T2. Scatter plot of the L1 error between (23) for finite M and
a normal distribution with the same mean and variance as Q, as a function
of the true average score.

variable on (0, 0.05). The distribution pV is obtained by
discretizing continuous distributions, namely:

• A normal random variable of mean xe and deviation
a, where xe is drawn from a continuous uniform ran-
dom variable on (1, 5) and a = 0.2 × (−x2

e + 6xe −
5) [25]. The discretization is done considering the points
{1.5, 2.5, 3.5, 4.5} of the normal variable.

• A beta random variable with parameters a and b drawn
as independent continuous uniform variables on (1, 10).
The discretization is done by dividing the support (0, 1)
into 5 consecutive equally spaced intervals.

To test the validity of T1) and T2) we proceed as follows:
• Let q be a uniform grid of nd points in [1, 5], that is:

q =

{
4i+ (nd − 5)

nd − 1
: i = 1, ..., nd

}
. (27)

These points are were FQ will be estimated.
• Choose an input distribution for V , normal or beta.
• Do the following experiment np times:

1) Choose the parameters θ for the true score, with θ =
(xe, a) for normal and θ = (a, b) for beta.

2) For each q ∈ q obtain estimates µ̂q and σ̂q of (24)
and (25), respectively, through samples averages using
ns = 5000 independent realizations of the scores of the
M subjects. Then obtain the estimate of the CDF of Q

using the CLT as: F̂Q,CLT(q) = Φ
(

µ̂q

σ̂q

)
.

3) For each q ∈ q obtain an independent estimate of the
distribution of Q using ns independent realizations of
the scores as:

F̂Q,emp(q) =
#Samples of Q ≤ q

ns
. (28)

Also, compute the sample mean µ̂Q,emp and sample
variance σ̂2

Q,emp.
4) Computations for T1: F̂Q,CLT uses Prop. 2 (the CLT) to

approximate the distribution of Q, while F̂Q,emp does not
make any modeling assumptions. If the CLT is a good
approximation, then both estimators should give similar
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values, which validates T1). To check this, we estimate
this error using the L1 norm of the error between the two
estimators by using the discrete samples in q. To do this
we compute the error: ei =

∣∣∣F̂Q,CLT(qi)− F̂Q,emp(qi)
∣∣∣

where qi =
4i+(nq−5)

nq−1 and estimate the L1 error between
the two estimators using the trapezoidal rule. where ∆ is
the spacing between two values of q.

5) Computations for T2: validating T1, this does not
mean that Q is approximately normal. To verify this we
compare F̂Q,CLT with the distribution of a normal with
mean µ̂Q,emp and variance σ̂2

Q,emp by computing the L1

in the same manner as with F̂Q,emp.

After the np repetitions we have computed the np estimates
of F̂Q,CLT, F̂Q,emp, and the distribution of a normal with mean
µ̂Q,emp and variance σ̂2

Q,emp, for different parameters of the
input distribution. We also computed the L1 error between the
F̂Q,CLT and the other two estimates. If both errors are small
then T1 and T2 are validated, which means that, at least for
the proposed distributions, the CLT is a good approximation
for values as small as M = 24 subjects and that Q is
approximately normal.

In Fig. 9 we can see the scatter plot of the L1 error of
the true distribution of Q and F̂Q,CLT, the approximation (23)
using the CLT for finite M , for np = 500 repetitions and the
three score distributions. We see that the total worst case error
is very small, below 0.012, for all the possible true scores.

In Fig. 10 we see the scatter plot of the L1 error between
F̂Q,CLT and a normal distribution with the same mean and
variance as Q. Again for all the results the worst error is very
small, around 0.006 for Gaussian and 0.012 for the Beta.
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