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Abstract—Among the data-driven techniques for abnormalities
detection in complex systems, Principal Component Analysis
(PCA) is popular because of its simplicity and it does not require
prior knowledge. However, the used of PCA is limited to station-
ary data. This work proposes a methodology to address this
limitation. It consists of applying Nuisance Attribute Projection
(NAP) in the preprocessing stage before the fault features are
transformed with PCA to remove the nonstationarity effects due
to the variable operating conditions. The proposal is evaluated
to detect inter-turn short-circuits in the stator of a Permanent
Magnet Assisted Synchronous Reluctance Motor (PMaSynRM)
used in the powertrain of electric vehicles. The variances of
the phase currents, computed in moving windows, are used as
fault features. The results, obtained with seven fault severities
and three load conditions, show that monitoring the Hotelling
T 2 in the principal subspace leads to good performance, with
probabilities of missed detection and false alarms lower than 0.02
and 0.05, respectively. To provide a safety metric, an estimate of
the fault level is obtained with an analytical model of the evolution
of the slope of the CUmulative SUM decision function with an
accuracy greater than 97%.

Index Terms—Fault detection, PMaSynRM Inter-turn short-
circuit fault, NAP

I. INTRODUCTION

In process control of multivariate systems, Principal Com-
ponent Analysis (PCA) is widely used because it requires no
prior knowledge and is efficient to highlight the correlation
among variables [1]. However, its application lies on the
assumption that the variables are stationary (constant mean and
variance over all the data time-series observations) and follow
Gaussian distribution. [2]. Nevertheless, in a dynamic environ-
ment such electric vehicles, the variables have nonstationary
properties mostly related to the varying operation conditions.
To address this limitation, extensions based on the analysis
of time-series segmentation with fixed or moving windows
have been proposed. For example, the Dynamic Principal
Component Analysis (DPCA) has been proposed in [3] to deal
with autocorrelations. PCA is applied to a new expanded data
matrix with time-shifted duplicate vectors for all variables.
However, it has been shown in [4] that the resultant score
variables of the DPCA can still be correlated. Consequently,
the Probability of False Alarm (PFA) is higher when using
the Hotelling’s T 2 statistic as fault index. Multi-scale methods
known as Multi-Scale PCA (MSPCA) have also been proposed

for feature extraction for dynamic systems: each variable
is extended to different forms of the variable at different
scales. For example, in [5] wavelets are used to decompose
the variables into various scale representations. Then PCA
is used to obtain the coefficients for wavelet reconstitution.
The PCA algorithm is applied to the reconstructed data for
fault detection. However, the accuracy of this methodology
highly depends on the wavelet coefficients, which are not
always optimal [6]. These extensions of the usual PCA come
with some weaknesses like long response time, computational
complexity, and their effectiveness is not always guaranteed.
Determining the severity level of the defect is one of the
crucial operations of the diagnosis. Indeed, it allows making
the appropriate safety decision. The CUSUM decision function
has proven to be an effective tool for estimating the severity
of faults in electrical systems [7].
This work proposes a simple method for detecting short
circuit faults between the turns of a PMaSynRM for different
mechanical load conditions and levels of fault severity. The
Nuisance Attribute Projection (NAP) is applied to the raw
data in the preprocessing step to eliminate the data variabilities
related to the load variation. This helps to get fault features
that are only sensitive to the fault occurrence. The features are
then normalized before being transformed with PCA to detect
the fault. The effectiveness of the proposal will be evaluated
in terms of probability of false alarm PFA and probability
of missed detection (PMD). Once the defect is detected, the
estimation of the severity level is obtained by the inversion
of the analytical model of the evolution of the slope of the
CUSUM decision function.
The rest of the paper is organized as follows: In Section II,
after recalling the basics of PCA for fault diagnosis, NAP is
presented, and the proposal is described. Section III presents
the results and performance of the fault detection and fault
severity estimation. Section IV concludes the paper.

II. FAULT DETECTION METHODOLOGY

Let us assume that the original data has N observations
for n measured variables, that are arranged in a data ma-
trix X ∈ RN×n. In this matrix, each vector is written as
xT
i = [x1,i, . . . , xN,i] where xj,i is the jth observation of the

ith variable. In this approach, the collected data in healthy
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operating conditions are used to build the reference model
that will be used to evaluate the current data. The PCA and
the NAP are first described, and the proposed fault detection
strategy is further derived.

A. Principal Component Analysis for fault detection

Basically, PCA is used to reduce data dimensionality by
grouping correlated variables in a set of new uncorrelated ones
[8]. For a system with different physical variables of different
magnitudes and scales, the original variable data set must be
processed to give equal importance to all the variables. One
way to achieve this is to give to all variables the same variance
regardless of their magnitudes by using the normalization
method. The normalization of vector xi is done as follows:

µxi =
1
N

∑N
j=1 xji

σxi
=

√
1

N−1

∑N
j=1 (xji − µxi

)
2

x̄ij =
xji−µxi

σxi

(1)

where µxi and σxi are the mean and standard deviation of xi

respectively, and x̄ij is the re-scaled observation. In the rest of
the paper, the scaled data are considered without bar notation
for simplicity.

The normalized data is then subject to a linear transfor-
mation matrix T to express the variation in the observations
such as T = XP, with T ∈ RN×n the principal component
matrix and P ∈ Rn×n the eigenvectors matrix containing the
eigenvalues λi of the correlation matrix Σ of X such as:

Σ = P∧PT (2)

where ∧ = diag(λ1, . . . , λn) is a diagonal matrix whose ele-
ments are sorted in decreasing magnitude order. The reduced l-
dimensional space of the data is obtained by retaining only the
principal components that correspond to the l-highest eigen-
values of the covariance matrix. They represent the feature
space where most of the patterns in the data are represented
(generally up to a given percentage of cumulated variance).
The remaining components with the smallest eigenvalues rep-
resent the noise contribution. Once the number of components
l to retain is determined, the eigenvectors matrix P and the
principal component matrix T are partitioned into the form:

P =
(
P̂l P̃n−l

)
T =

(
T̂l T̃n−l

) (3)

X̂ is the principal part of the data explained by the l
first eigenvectors and the residual part X̃ is explained by the
residual components [9]:

X̂ = P̂lP̂
T
lX

X̃ = P̃n−lP̃
T
n−lX

(4)

They respectively lead to the principal and residual subspaces
used for fault diagnosis. A process monitoring with PCA uses
Hotelling’s T 2 and Q statistics also called Squared prediction
error (SPE) to detect abnormal behaviors. Hotelling’s T 2

and SPE represent the variability in the Principal Component
Subspace (PCS) and the Residual Subspace (RS), respectively.
T 2 can be expressed by using the estimated value Σ̆ of the
correlation matrix as follows [10]:

T 2 = X̂TΣ̆−1X̂ (5)

Under normal conditions, if the data set is multivariate Gaus-
sian distributed, the T 2 can be approximated by a χ2 distribu-
tion with l degrees of freedom and a significance level (1−α).
The system operation is considered healthy if T 2 ≤ T 2

α.

T 2
α = χ2

l,1−α (6)

A variation of the variables’ correlation indicates abnormal
behavior. Under this condition, the sample matrix X increases
its projection to the RS, and the magnitude of X̃ reaches
abnormal values compared to those obtained during healthy
conditions. SPE is the magnitude of X̃ and is written as:

SPE =∥ X̃ ∥2 (7)

The process is considered healthy if the SPE statistic is under
its control limit which is expressed as SPE ≤ SPEα:

SPEα = (µ̆+ σ̆z1−α)
3 (8)

with z1−α as the (1 − α) significance level of a Gaussian
distribution Φ. µ̆ and σ̆ are the estimated mean and standard
deviation of SPE2/3 [10], respectively.

B. Nuisance Attribute Projection

Originally applied to reduce the signal interference from
different channels in speaker recognition, it has been recently
applied to condition-based maintenance to improve fault di-
agnostic. Its principle is explained graphically in Figure 1.
The raw data are organized in the matrix X while X′ is the
data matrix from which the nuisances have been removed.
Therefore, it is expected that X′ is representative of the fault
information. The transformation from X to X′ is obtained with
NAP as follows:

X′ = P̆X (9)

where P̆ ∈ RN×N is the projection matrix.

P̆ = I−
d∑

i=1

∆i∆
T
i (10)

where I is an N × N identity matrix, ∆i represents the
ith NAP direction, d is the number of NAP directions to be
removed from the feature space and d ≤ N . The parameter
d can be determined by making a compromise between the
computational complexity and the projection effect. Indeed,
larger is d, better is the projection effect (nuisance mitigation)
but higher is the computation time. The main objective of the
NAP is to minimize the Projection Effect (PE) defined as
follows:

PE =
∑
i,j

Wij

∣∣∣∣∣∣P̆ · xi − P̆ · xj

∣∣∣∣∣∣ (11)
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Wij is a weight coefficient that quantifies the relation between
two feature vectors. It is defined as follows [11]:

Wij =

{
1 if xi ̸= xj

0 otherwise (12)

The minimization of PE in equation 11 can be transformed
into finding the leading eigenvectors of the following eigen-
problem [12]:

X(W − diag(WU))XT ν = λν (13)

where U is an identity column vector, W the matrix of weight
coefficients Wij , λ the eigenvalues, and ν the eigenvectors.
The solution to this problem is established in [11].

𝐗

𝐗′ Subspace representing
nuisance attibutes

𝚫𝚫𝑇𝐗

Fig. 1: Schematic diagram of NAP principle

C. Elimination of attributes related to varying operating con-
ditions

In our proposed fault detection methodology, a preprocess-
ing step based on NAP is added to the conventional PCA to
address its limitation to deal with dynamic processes.
Initially, the stator three-phase currents are collected in the
time domain under different mechanical loads. For feature
extraction with less burden of large data, the sliding windows
variance, on consecutive non-overlapping windows of fixed
size is proposed to collect the data statistical features. The
sliding windows variance is applied to the three-phase current
signal in the time domain to get the data matrix X. For a
stator phase current signal I(s), the jth observation of the ith
variable xj,i of the matrix X is derived as follows [13]:

xi,j =
1

ω − 1

N∑
I
(s)
m ∈Ωj

(
I(s)m − µ̀

)2

(14)

where µ̀ is the mean of the samples window Ωj =

{I(s)(j−1)ω+1, . . . , I
(s)
j×ω}. To guarantee the data features prop-

erties, and to not violate the non-stationarity property of the
data, the window size should be quite small. In this case study,
the window size equals to the period of the phase current is
used. For a variable speed drive the window size equivalent to
the largest velocity series identified would be recommended.

The features are extracted for the healthy and test data using
the moving variance. The NAP projection is at first computed

using the healthy data to get the model P̆, which is indepen-
dent of the dynamic load variations. To compute the projection
matrix P̆, the weight matrix W is generated to make the fea-
tures independent. The minimization of the projection Effect
(PE) is then achieved by setting the columns of ν to be the
σ most principal eigenvectors of the eigenvalue analysis in
Equation 13. In our case, we set σ = min(dimX, d), dimX

as the dimension of the features, and d as the number of the
NAP directions. The model projection matrix P̆ is used to
remove from the healthy and actual features the effects of
dynamic load variations. The transformed features are then
used as inputs to the PCA for fault detection. The flowchart
displayed in Figure 2 summarizes the proposal.

III. RESULTS AND DISCUSSIONS

In this section, the proposed methodology is applied to the
detection of stator inter-turn short-circuits in a PMaSynRM.

A. Data generation and feature extraction

To evaluate the proposal, the model of the PMaSynRM
presented in [14] and [15] is used. The characteristics of the
electrical machine, and simulation parameters are displayed in
Table I. The PMaSynRM winding under an inter-turn short-
circuit fault in phase a is shown in Figure 3.

Under this faulty condition, the phase a current ia is divided
into: is the current in the defective part of the winding and
if the current in the inter-turn fault’s contact branch. La1 and
La2 represent the inductances of the healthy and faulty sub-
coils of the phase a winding, respectively. Ma1b and Ma1c are
the mutual inductances between the healthy sub-coil La1 and
the coils Lb, and Lc, respectively. On the other hand Ma1a2,
Ma2b and Ma2b represent the mutual inductances between the
sub-coil La2 and the healthy sub-coil La1, and coils Lb, and
Lc, respectively.

TABLE I: The PMaSynRM characteristics

Motor characteristics
Number of poles 8
Number of PMs per pole 5
Rated power [kW ] 208
Maximum operating speed [rpm] 14000
Number of turns 8
Stator phase winding resistance value at 20◦ [mΩ] 6.1

Simulation parameters
Permanent Magnet flux amplitude [Wb] 6.24 ×10−2

Moment of inertia [kgm2] 0.0357
Input DC voltage amplitude [V ] 412

Three load conditions (Γ1 = 18Nm, Γ2 = 134Nm,
Γ3 = 260Nm), each 3s long, are simulated at a controlled
rotating speed of 1500rpm. The short-circuits are emulated by
changing the stator resistances and inductances. The faults of
1s duration are introduced after 1s for each case study. Seven
severity levels are considered in this study, ranked from 2 to
8. This rank is related to the number of turns short-circuited
in the winding of phase a.

Figure 4 displays the current flowing in the phase windings
a of the PMaSynRM under healthy and faulty (fault severity
level 2) conditions for the three different load cases.
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Fig. 2: Flowchart of the NAP-based PCA methodology
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Fig. 3: Stator windings circuit under an inter-turn fault
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Fig. 4: Stator current in phase a under healthy and faulty
(level 2) conditions

The fault characteristics are the variances of the phase
currents. They are calculated using a moving window whose
length is equal to the period of the currents, and stored in the
data matrix X.

B. Simulation results

As displayed in Figure 2, the procedure is composed of two
parts: the first one (on the left side) uses the healthy data to
obtain the projection matrix P̆ that is used to transform the
actual data (test data) for fault detection. The number of NAP
directions is set to d = 3. Figure 5 displays for the healthy data
the original features and the projected ones for three different
loads. It can be clearly seen that after projection with the NAP,
the new features are insensitive to load variations.

Fig. 5: Comparison of features before and after NAP

The new healthy features are used to design the model for
the PCA. The threshold of the cumulative percentage variance
is set to 90%. Figure 6 shows that the first two principal
components capture 98.67% of the information. Therefore, in
the PCA model, the principal subspace is spanned with the
first two components while the third one defines the residual
subspace.
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Fig. 6: Variance captured by each principal component

The Hotelling T 2 and the squared prediction error SPE
will be used as fault indicators. The thresholds T 2

α and SPEα

are set at 1−0.99 confidence level, are computed for χ2 and z
distributions, respectively. The results for the fault level 2 are
shown in Figure 7. The dashed lines represent the thresholds.

Figure 8 shows the overall performance comparison of the
T 2 and SPE monitoring in terms of probability of missed
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Fig. 7: Fault level 2 detection with NAP-based PCA
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Fig. 8: Performance of NAP-based PCA fault detection

fault detection PMD and probability of false alarm PFA for
the seven fault severities and three loads. PMD and PFA
are usually set to 0.02 and 0.05, respectively [16]. In Figure
8, these typical values are highlighted with dashed lines. For
all case studies, it is observed that with the T 2, the fault
detection performance is 100%. However, with SPE, the
PMD is higher than the threshold for severities 2 and 5.
These results show that for detecting inter-turn short circuits
in an electrical machine, monitoring the Hotelling T 2 in the
principal subspace is more efficient. This analysis indicates
that, in our case study, the system modelling errors are
projected onto the residual component which makes it less
sensitive to the fault.

C. Fault estimation

Let us consider µT 2
0

as the mean value of the selected fault
index T 2 under healthy condition. As it can be observed in
Figure 7 the average value undergoes an abrupt change to a
new value denoted as µT 2

1
when the defect appears. Under

the assumption that the variance σ2
T 2 of T 2 is constant, the

instantaneous likelihood ratio s(i) of the ith observation of
the distribution of T 2 is given as follows [17]:

s(i) =
µT 2

1
− µT 2

0

σ2
T 2

(
T 2(i)−

µT 2
1
+ µT 2

0

2

)
(15)

The CUSUM function SN for the N observations of T 2 and
the CUSUM decision law DSN

are given as follows [17]:

SN =
∑N

i=1 s(i)

DSN
=

(
SNi − min

1≤t≤i
(SNt)

)
(16)

A fault is detected when DSN
is greater than the threshold

T 2
α. The top of the Figure 9 shows a clear change in the T 2,

despite fluctuations, while the bottom of the figure shows the
evolution of the CUSUM decision function for the fault level
2. The latter also provides a relevant fault indicator. Compared
to T 2 monitoring shown in Figure 8, the CUSUM monitoring
leads to similar performance.

Fig. 9: CUSUM for fault monitoring

The severity of the faults varies from 0.25 to 1, corre-
sponding to the number of short-circuited turns from 2 to 8.
Figure 10 shows the evolution of the slope of the CUSUM
decision function as a function of fault severity for the three
load levels. It can be observed that the slope of the decision
function increases monotonically with the severity of the
defect regardless of the mechanical load. Therefore, it is a
relevant characteristic that can be used to estimate the fault
severity.

Fault level 2 Fault level 3 Fault level 4 Fault level 5 Fault level 6 Fault level 7 Fault level 8

102
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104

105

C
U

SU
M

sl
op

e

CUSUM slope evolution with fault severity for load 1, 2 and 3 

Load 1 Load 2 Load 3

Fig. 10: Slope of CUSUM decision function

For the three load conditions, the evolution of the slope of
the CUSUM decision dSN as a function of fault severity f
can be approximated by an exponential function as follows:

dSN = aeb×f (17)

where a and b are coefficients determined from the three
load conditions. The upper section in Figure 11 shows the
evolutions of the actual and analytical approximation of dSN

for the three load conditions. At the bottom, the actual and es-
timated fault severities are shown. The estimation performance
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Fig. 11: Fault severity estimation

is evaluated through the Mean Square Error (MSE) and Cor-
relation Coefficient (CC). The results are: MSE = 0.00257,
CC = 0.98 for load 1, MSE = 0.00173, CC = 0.98 for
load 2, and MSE = 0.00306, CC = 0.97 for load 3. This
validates the approximation of the evolution of the slope of
the CUSUM decision and the estimation of the fault severity
with over 97% accuracy.

IV. CONCLUSION

In this paper, a fault detection methodology is proposed
for inter-turn short-circuit fault monitoring in an electrical
drive. An accurate model of the electrical powertrain is used
to generate the dataset composed of measured phase currents
under seven fault severities for three different loads. The vari-
ances of the currents flowing in the windings of the electrical
machine are used as fault features. They are computed in a
moving window whose length is equal to the period of the
phase currents. The fault detection methodology combines
the Nuisance Attribute Projection (NAP) with Principal Com-
ponent Analysis (PCA). NAP is used in the preprocessing
stage to remove from the fault features the effects of load
variations, which are inherent in electric drives. This extra
step only causes 2.12% increase of the computation time of
the fault diagnosis. The probabilities of missed detection and
false alarms (PFA and PMD) are computed to evaluate the
method’s performance when using the Hotelling T 2 or the
Squared Prediction Error SPE as fault indexes. The results
show that monitoring the T 2 in the principal subspace is the
most efficient. An analytical model of the slope of the CUSUM
decision function is derived, from which the fault severity is
estimated. Compared to the actual fault level, the accuracy of
the estimation is higher than 97%.
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