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Laboratoire des Signaux et Systèmes
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Abstract—This work proposes a method for estimating fault
severity in the presence of noise using the measured currents for
a 7-phase electrical machine. The method is based on analytical
models in stationary reference frames and analysis of the DC
and fundamental components in the four fictitious machines. The
slope of the decision function from the CUSUM algorithm, which
will be noticeably different depending on the fault severity, is
used to assess the performance of the fault severity estimation
rapidly. The effects on the decision function’s slope of the fault
severity estimation for different noise levels are evaluated. The
simulation results show that even in presence of high noise levels,
the decision function is an efficient fault estimation indicator.
When the noise level is high, the decision function and its slope
are noisier. Conversely, the decision function and its slope are
less noisy when the noise level is low. The results also show that
for the three fault types under study (gain fault, phase shift fault,
and mean value fault), the current components of the fictitious
machines in the stationary frames have distinct robustness to
noise.

Index Terms—Fault severity estimation, 7-phase machines,
Stationary frames, Noisy environment, CUSUM

I. INTRODUCTION

Studies in the last decades, particularly monitoring of
electrical machines, have provided important information on
Fault Detection and Diagnosis (FDD), which is decomposed
into fault detection, isolation and estimation [1]. Despite the
continued dominance of three-phase machines, there is a
growing trend towards designing and utilizing machines with
five, seven, or nine phases, driven by their inherent ability
to tolerate faults and distribute power more effectively [2],
[3]. This paper will focus on a seven-phase electrical machine
whose main application areas are air and sea transport or wind
turbines.

The detection, isolation, and estimation of faults involve
extracting and analyzing fault signatures or features from
measured or estimated variables or parameters. The features
can be extracted in the time, frequency, or time-frequency
domain, depending on fault types. Reference [4] proposes a
time-domain approach to detect and diagnose multiple faults
in a three-phase electrical machine. Reference [5] introduced
an analytical current flow model for a seven-phase machine
and fault analysis performed in time and frequency domains.

The authors would like to thank China Scholarship Council for funding.

After the fault is detected and isolated, the estimation of its
severity is crucial for maintenance and control reconfiguration.
The estimator’s performance depends on the accuracy of
the estimation model and the quality of the measurements.
Indeed, as the systems are increasingly complex, it is more
challenging to develop accurate models [6], [7]. In [8], the
authors designed an intermediate estimator to estimate the
state and fault simultaneously by exploiting the properties of
the fault distribution matrix. The authors in [9] developed a
new real-time fault estimation module. This work is a follow
up of [5] in which an analytical fault model is derived.
The fault characteristics are processed through Cumulative
Sum (CUSUM) algorithm. The slope of the decision function
will be used as fault indicator. The performance of the fault
estimation will be analyzed under noisy conditions and varying
fault severities.

The contributions of this paper are:
1) Development of accurate analytical models in the sta-

tionary frames for phase currents, which are affected by
faults that alter their amplitude, phase, or mean value.

2) Assessment of the fault severity estimation performance
under various levels of noise and different fault types.

Fig. 1 describes the flowchart of the estimation procedure.
The rest of this paper is structured as follows: Section II (right
side of the flowchart) outlines the extraction of the theoretical
relationship between fault severity and fault parameters in the
absence of noise. Section III presents the CUSUM approach.
Section IV explains how the fault severity is estimated from
fault parameters under different noise levels, and estimation
features also contained. In section V, the evaluation of the
estimation performance, based on the analysis of the slope of
the decision function from CUSUM algorithm, is provided in
the different fictitious machines. The conclusions are given in
section VI.

II. NOISE-FREE PHASE CURRENTS ANALYSIS

A. Introduction

The currents in the 7-phase machine can be modeled using
three representation spaces as an extension of the usual space
vector definition used for 3-phase systems [3], [5], [10]:

• Natural frame: 7 phases denoted by variables i1 to i7.
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Fig. 1. Flowchart of fault estimation

• Stationary (α, β) frame: one-phase Homopolar Machine
(HM) with variable i0 with three two-phase independent
fictitious machines, including a Principal Machine (PM)
with ipα and ipβ , a Secondary Machine (SM) with isα
and isβ , and a Tertiary Machine (TM) with itα and itβ .

• Synchronous (d, q) frame: a one-phase HM and three d−q
orthogonal coordinate fictitious machines.

In this paper, the study is limited to the stationary space, and
to the analysis of the DC component (0F ) and/or fundamental
component (1F ) of the phase currents. The healthy and
faulty currents in the natural frame are expressed as follows,
respectively [5]:

ij(j=1...7)h = I
√
2sin(θ + (1− j)φ) (1)

ij(j=1...7)f = I
√
2(1+△ij)sin(θ+(1− j)φ+ϕj)+ γj (2)

where, θ = ωt, ω is the angular frequency; t is the current
time; φ is the natural phase shift equals to 2π

7 in the 7-phase
machine; I is the RMS value of the phase current; △ij will
result in a gain fault, which is a modification of the current
amplitude; ϕj will lead to a phase shift fault, which modifies
the initial phase of the current; and γj , which represents a bias
in the mean value of the current. The lower scripts h and f
stand for the healthy and faulty conditions, respectively.

Equation (2) is used to simulate the different fault effects
on phase currents.

B. Analytical model for fault severity estimation

By combining (2) with the Clarke transformation in (3), the
analytical expressions of the phase currents in the stationary
frames can be derived. The detailed derivation process can be
found in [5].

Under healthy conditions, there is no current in the SM,
TM, and HM. However, under faulty conditions, there are new
components and/or frequency distortions in the actual phase

currents. The frequency analysis is summarized in TABLE I.
It can be observed that [5]:

1) The spectrum of the faulty current in the stationary
frames includes DC (0F ) and/or fundamental compo-
nent (1F ).

2) Only the mean value fault introduces a DC (0F ) com-
ponent in the four fictitious machines.

TABLE I
FAULT FREQUENCIES IN THE STATIONARY FRAMES

Case Current
Harmonic

Case Current
Harmonic

0F 1F 0F 1F

H

PM
ipα ×

G

PM
ipα ×

ipβ × ipβ ×

SM
isα SM

isα ×
isβ isβ ×(1)

TM
itα TM

itα ×
itβ itβ ×(1)

HM i0 HM i0 ×

PS

PM
ipα ×

MV

PM
ipα × ×

ipβ × ipβ ×(2) ×

SM
isα ×

SM
isα ×

isβ ×(1) isβ ×(3)

TM
itα ×

TM
itα ×

itβ ×(1) itβ ×(3)

HM i0 × HM i0 ×

H: healthy; G: gain fault; PS: phase shift fault; MV: mean value fault.
(1) For phase 1, no 1F component for isβ and itβ .
(2) For phase 1, no 0F component for ipβ .
(3) For phase 1, no 0F component for isβ and itβ .

The fault severity x ∈ [0, 1] corresponds to the modification
of parameters △ij , ϕj , and γj for gain, phase shift, and mean
value faults, respectively. The function y = ℧(x) expresses
the relationship between the fault severity x and the amplitude
of the components y for 0F and 1F , as shown in TABLE II
to TABLE IV. These functions, obtained noise-free conditions
are then used to estimate the fault parameter from noisy faulty
features (Fig. 1).

TABLE II
EVOLUTION OF FAULT SEVERITY UNDER GAIN FAULT

i 0F 1F

ipα / y = 1
2 ∗

√
1
7 ∗

√
2x(x + 7)(1 + cos(j − 1)2φ) + 49 ∗ I

ipβ / y = 1
2 ∗

√
1
7 ∗

√
2x(x + 7)(1 − cos(j − 1)2φ) + 49 ∗ I

isα / y = kx, k = 1
2 ∗

√
2
7 ∗

√
1 + cos(j − 1)6φ ∗ I

isβ / y = kx, k = 1
2 ∗

√
2
7 ∗

√
1 − cos(j − 1)6φ ∗ I

itα / y = kx, k = 1
2 ∗

√
2
7 ∗

√
1 + cos(j − 1)4φ ∗ I

itβ / y = kx, k = 1
2 ∗

√
2
7 ∗

√
1 − cos(j − 1)4φ ∗ I

i0 / y = kx, k = 1
2 ∗

√
2
7 ∗ I

III. CUSUM ALGORITHM

The CUSUM algorithm was first proposed by Page in 1954
[11]. It is based on the sequential likelihood ratio analysis.
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

i0
ipα
ipβ
itα
itβ
isα
isβ


=

√
2

7



1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1√
2

1 cos(φ) cos(2φ) cos(3φ) cos(4φ) cos(5φ) cos(6φ)
0 sin(φ) sin(2φ) sin(3φ) sin(4φ) sin(5φ) sin(6φ)
1 cos(2φ) cos(4φ) cos(6φ) cos(8φ) cos(10φ) cos(12φ)
0 sin(2φ) sin(4φ) sin(6φ) sin(8φ) sin(10φ) sin(12φ)
1 cos(3φ) cos(6φ) cos(9φ) cos(12φ) cos(15φ) cos(18φ)
0 sin(3φ) sin(6φ) sin(9φ) sin(12φ) sin(15φ) sin(18φ)





i1
i2
i3
i4
i5
i6
i7


(3)

TABLE III
EVOLUTION OF FAULT SEVERITY UNDER PHASE SHIFT FAULT

i 0F 1F

ipα / y = 1
2 ∗

√
1
7 ∗

√
39 + 10 ∗ cosφx − 10 ∗ cos(j − 1)2φ + 12 ∗ cos(φx − (j − 1)2φ) − 2 ∗ cos(φx + (j − 1)2φ) ∗ I

ipβ / y = 1
2 ∗

√
1
7 ∗

√
39 + 10 ∗ cosφx + 10 ∗ cos(j − 1)2φ − 12 ∗ cos(φx − (j − 1)2φ) + 2 ∗ cos(φx + (j − 1)2φ) ∗ I

isα / y = 1
2 ∗

√
1
7 ∗

√
4 ∗ (1 + cos(j − 1)6φ − cosφx) − 2 ∗ (cos(φx − (j − 1)6φ) + cos(φx + (j − 1)6φ)) ∗ I

isβ / y = 1
2 ∗

√
1
7 ∗

√
4 ∗ (1 − cos(j − 1)6φ − cosφx) + 2 ∗ (cos(φx − (j − 1)6φ) + cos(φx + (j − 1)6φ)) ∗ I

itα / y = 1
2 ∗

√
1
7 ∗

√
4 ∗ (1 + cos(j − 1)4φ − cosφx) − 2 ∗ (cos(φx − (j − 1)4φ) + cos(φx + (j − 1)4φ)) ∗ I

itβ / y = 1
2 ∗

√
1
7 ∗

√
4 ∗ (1 − cos(j − 1)4φ − cosφx) + 2 ∗ (cos(φx − (j − 1)4φ) + cos(φx + (j − 1)4φ)) ∗ I

i0 / y =
√

1
7 ∗

√
1 − cosφx ∗ I

TABLE IV
EVOLUTION OF FAULT SEVERITY UNDER MEAN VALUE FAULT

i 0F 1F

ipα y = kx, k = 2 ∗
√

1
7 ∗ |cos(j − 1)φ)| ∗ I y =

√
7

2 ∗ I

ipβ y = kx, k = 2 ∗
√

1
7 ∗ |sin(j − 1)φ)| ∗ I y =

√
7

2 ∗ I

isα y = kx, k = 2 ∗
√

1
7 ∗ |cos(j − 1)3φ)| ∗ I /

isβ y = kx, k = 2 ∗
√

1
7 ∗ |sin(j − 1)3φ)| ∗ I /

itα y = kx, k = 2 ∗
√

1
7 ∗ |cos(j − 1)2φ)| ∗ I /

itβ y = kx, k = 2 ∗
√

1
7 ∗ |sin(j − 1)2φ)| ∗ I /

i0 y = kx, k =
√

2
7 ∗ I /

The idea is to accumulate information from the sampled data
in such a way as to amplify any mismatch that may occur.

Let us assume n statistically independent samples of the
vector Ỹ = {ỹk, k = 1, · · · , n}. Each sample follows a
probability distribution p(ỹk, ϑ) depending on a deterministic
parameter ϑ. An abrupt change is modeled by an instantaneous
modification of ϑ at the change time nc. Before the change
time nc, ϑ = ϑh, and after the change time, ϑ = ϑf [1]. A
binary hypothesis is considered as follows:

under H0, ϑ = ϑh, 1 ≤ k ≤ n

under H1, ϑ =

{
ϑh, 1 ≤ k ≤ nc

ϑf , nc + 1 ≤ k ≤ n

(4)

The probabilities of Ỹ under hypotheses H0 and H1 are:

p(Ỹ |H0) =
n∏

k=1

p(ỹk, ϑh)

p(Ỹ |H1) =

nc∏
k=1

p(ỹk, ϑh)
n∏

k=nc+1

p(ỹk, ϑf )

(5)

The deterministic parameter ϑ, can be the mean value µ or
the variance σ2 of a signal following a Gaussian distribution
N (µ, σ2):

p(ỹk, ϑ) =
1√
2πσ2

exp

(
− (ỹk − µ)2

2σ2

)
(6)

The Gaussian distribution N (µ, σ2) under two hypotheses
are:
H0 : Ỹ = {ỹk, k = 1, ..., n} ∽ N (µh, σ

2
h)

H1 : Ỹ =

{
Ỹh = {ỹk, k = 1, ..., nc} ∽ N (µh, σ

2
h)

Ỹf = {ỹk, k = nc + 1, ..., n} ∽ N (µf , σ
2
f )

(7)

Note that before the change time nc, mean and variance are
µh and σ2

h, and after change time nc, mean and variance are
µf and σ2

f .
The instantaneous log-likelihood ratio sk at time k, which

represents the difference between the log-likelihood of the
observed data under two different hypotheses, is defined:

sk = ln(
p(ỹk, ϑf )

p(ỹk, ϑh)
) (8)

Therefore combining (6) and (8), sk can be calculated
through the following expressions:

sk = lnσh − lnσf +
(ỹk − µh)

2

2σ2
h

− (ỹk − µf )
2

2σ2
f

(9)

• if there is only mean change, σh = σf , it can be
simplified:

sk =
µf − µh

σ2
h

× (ỹk − µf + µh

2
) (10)

• if there is only variance change, µh = µf , it can be
simplified:

sk = lnσh − lnσf + (
1

σ2
h

− 1

σ2
f

)× (ỹk − µh)
2

2
(11)
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The cumulative sum, used to compute the decision function
in (13), is as follows:

Sn =
n∑

k=1

sk (12)

The decision function represents the deviation of the signal
from a reference value over time. The decision function should
stay close to zero if the signal is stable and does not change
over time. However, if there is a change in the signal, such as
a shift in the mean or the variance value, the decision function
will follow a linear evolution whose slope is sensitive to the
amplitude of the change.

Gn = Sn − min
1≤nc≤n

Snc−1 (13)

IV. NOISY PHASE CURRENTS ANALYSIS

A. Settings for the numerical model

A white Gaussian noise is added to the phase currents to
simulate realistic measurements, and the noise level is defined
by considering the Signal to Noise Ratio (SNR):

SNR = 10× log10
σ2
s

σ2
υ

(14)

where, σ2
s is the variance of the signal, and σ2

υ is the variance
of the Gaussian distributed noise υ ∼ N (0, σ2

υ).
In the following simulations, the SNR is set to 20, 15, 10

and 5 dB, respectively. When the SNR decreases, the noise
level increases. The fault levels are set to [5% to 30%] for the
three cases, corresponding to gain fault △ij varying from 0.05
to 0.3; phase shift fault ϕj varying from 0.05φ to 0.3φ; and
mean value fault γj varying from 0.05I

√
2 to 0.3I

√
2. Two

hundred simulations are run for the healthy conditions and for
each faulty severity and noise level (three single fault types
and four SNR values).

Without loss of generality, the RMS value of the phase
current is set to 4A, and only the results for faults occurring
in the fourth phase of the machine are presented.

B. Fault estimation features

The fault severity estimation under noisy conditions is
performed in two steps:

1) The function ℧−1(·) is obtained under noise-free condi-
tions using the analytical models and the fault features
(y, amplitude of DC and 1F components) and actual
fault severity x.

2) The estimated the fault severity x̂ is obtained from the
fault amplitudes ỹ extracted from noisy measurements,
expressed as x̂ = ℧−1(ỹ).

Fig. 2 shows the estimated fault severity plotted against the
actual fault severity for gain fault case using ipα under two
different SNR levels, 20 dB and 5 dB. Each simulation (three
single fault types and four SNR values) is repeated 200 times.
The red dots represent the average values of the estimated.
Indeed, they are found to be close to the actual fault level.

It can be also observed that the variance increases with the
noise level and remains stable with increasing fault severity
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Fig. 2. Fault severity estimation with ipα under gain fault

as confirmed by the histograms displayed in Fig. 3. They
show that the estimations follow a Gaussian distribution, as
expected. Fig. 4 confirms the stable trend of the variance
with increasing fault severity. The same computations are
performed for all the components in stationary frames of the
phase currents in the four fictitious machines.

V. FAULT ESTIMATION EVALUATION

In the following, the first 200 samples represent the healthy
cases, while the subsequent 200 ones stand for the faulty cases,
as shown in Fig. 5.

The previous analysis showed that only the mean value is
affected by the fault occurrence. The histograms in Fig. 3 also
showed that we can assume the Gaussian distribution for the
estimates. Therefore, the CUSUM algorithm can be applied
using (10), (12), and (13) to measure the magnitude of the
change in the signal and detect changes. Fig. 6 and Fig. 7
shows the results for 5% and 30% fault severity with ipα under
gain fault when SNR equals to 20 dB and 5 dB, respectively.
The following conclusions can be drawn: the abrupt change in
the fault estimate is clearly detected by the decision function,
even if the noise level is high (SNR = 5 dB), and the slope of
the decision function is sensitive to the fault severity.
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Fig. 3. Histograms with ipα under gain fault
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Fig. 4. Variance of the estimates with ipα under gain fault
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Fig. 5. Expected evolution of the sampled fault estimation severity

The slope’s evolution along fault severity for different noise
levels is plotted in Fig. 8 and Fig. 9. We can make the
following comments:

1) The slope increases with the fault severity.
2) The difference in slope between two fault severities is
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Estimated fault severity

5% fault severity 30% fault severity
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Fig. 6. Fault estimation and decision function with ipα under gain fault and
SNR = 20 dB
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Fig. 7. Fault estimation and decision function with ipα under gain fault and
SNR = 5 dB

more significant when the noise level is lower.
3) For the same noise level and fault severity, the slope for

the three fault types is sorted as follows: mean value
fault > gain fault > phase shift fault.

4) Particular attention need to be paid to ipα, ipβ and
isα components. For gain fault, ipβ and isα are more
sensitive to the noise; for phase shift fault, ipα, ipβ , and
isα are more sensitive to the noise; and for mean value
fault, ipβ and isα are more sensitive to the noise.

VI. CONCLUSION

This paper analyzed the performance of fault severity es-
timation under noisy conditions in a 7-phase electrical ma-
chine. The estimation model assumed that the faults affect
the characteristics (amplitude, phase shift, and mean value)
of the winding currents, whose components are derived in
the stationary reference frames. The relationships between the
fault severity and fault features (DC and 1F components) are
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Fig. 8. CUSUM slope using ipα for fault estimation
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Fig. 9. CUSUM slope for fault estimation

first extracted in noise-free conditions. These relations are then
used to estimate the fault severities from noisy features. The
performance of the estimation is evaluated with the CUSUM
algorithm. Indeed, the simulation results for different fault
severities (0 to 30%) and different noise levels (20 dB to

5 dB) showed that the decision function is an efficient fault
indicator and that its slope is proportional to the fault severity.
The results also show the sensitivity to noise depending on the
components of the currents in the different fictitious machines
used for fault severity estimation.
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