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Abstract—This paper aims to present a statistical methodology
for inter-turn short-circuit fault detection in a PMaSynRM
for electrified vehicles in closed-loop operation. The proposed
methodology is based on the combination of the Principal
Component Analysis (PCA) and Exponentially Weighted Mov-
ing Average (EWMA) whose performance strongly depends on
its control parameters. The False Alarm (PFA) probability is
minimized to tune the control parameters correctly. Additionally,
we develop a strategy based on comparing the eigenvalues of the
data in the PCA subspaces to automatically select the statistical
index allowing the best fault detection with the minimum missed
detection probability (PMD). A hybrid Finite Element-Analytical
model of a PMaSynRM has been simulated to generate synthetic
data. For seven fault severities and three different loads, the
performance is evaluated. We show that for all operating and
fault conditions, fault detection is ensured in the worst case with
PMD < 0.02 and PFA < 0.055. The proposed methodology
outperforms traditional approaches, and its efficiency is proven.

Index Terms—Fault detection, PMaSynRM Inter-turn short-
circuit fault, PCA, EWMA, optimization

I. INTRODUCTION

The reliability of electric motor drive systems in electric

vehicles (EVs) has attracted considerable interest in recent

years. Among the electric machines faults, inter-turn short-

circuits are the most common ones [1]. They are usually

the cause of several other winding defects [2]. Then, for

security reasons, early inter-turn short-circuit fault detection

is very important. To generate the motor data to analyse

for fault detection, a hybrid Finite Element-Analytical model

of a three-phase Permanent Magnet-Assisted Synchronous

Reluctance Motor (PMaSynRM) developed in [3] and [4] has

been developed. It has been simulated in closed-loop with

a two-leve inverter, and validated under different operating

conditions.

In recent inverter-fed motor applications, conventional mo-

tor monitoring tools face challenges due to high noise level,

the dynamic changes that affect the excitation frequencies and

closed-loop action that could affect the fault signatures [5].

To meet the need for comprehensive failure diagnosis tools,

valid for all applications under different operating conditions,

statistical analysis tools are an alternative to conventional

methodologies [6]. For multivariate systems, the Principal

Component Analysis (PCA) has been widely used because of

its good performance in highlighting variables’ correlation and

its no prior knowledge requirement [7]. However, conventional

PCA-based fault detection solutions using the fault indices

Hotelling T 2 and Squared Predicted Error (SPE), are less

suitable to detect mild changes [8]. This limitation leads to

the adoption of the Exponentially Weighted Moving Average

(EWMA) monitoring chart where the state of the process at

a point depends on the exponentially weighted average of all

prior data. The sensitivity of the EWMA control procedure

to gradual faults in the process highly depends on the choice

of its tuning parameters [9]: the weighting factor η and the

control limits’ parameter L.

In this paper, a methodology to optimally tune the pa-

rameters η and L is proposed. We show how to calibrate

these parameters using an optimization scheme that minimizes

the probability of false alarm (PFA). This methodology is

illustrated in the case of inter-turn short-circuit fault detection

for a PMaSynRM. Additionally,. The issue of noise influence

in PCA feature space selection is addressed using an eigen-

value comparison test. Then, the most efficient framework and

index can be automatically selected leading to the reduction

of the probability of missed detection (PMD). The rest of the

paper is organised as follows. In section II, after recalling the

basics on PCA and EWMA for fault diagnosis, the proposed

methodology is presented and the optimization procedure

described. Section III presents the results and performance of

the method. Section IV concludes the paper.

II. FAULT DETECTION METHODOLOGY

Let us consider N observations for n measured variables

arranged in a data matrix X ∈ R
N×n, with zero mean

and unit variance. In this matrix, each vector is written as

x
T

i = [xi,1, . . . , xi,N ] where xi,j is the jth observations of the

ith variable. In this approaches, the collected data in healthy

operating conditions are used to build a reference model. Then

the elements of this model are used to evaluate the faulty data.
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The fault detection methodology proposed in this paper

is based on the improvement of the limitations shown in

conventional approaches using PCA and EWMA. These two

approaches are first described and the improved optimized

solution is further derived.

A. Principal Component Analysis for fault detection

Basically, PCA is used to reduce data dimensionality by

grouping correlated variables in a set of new uncorrelated ones

[10]. Then, the data matrix X is subject to a linear transfor-

mation matrix T to express the variation in the observations

such as T = XP, with T ∈ R
N×n the principal component

matrix and P ∈ R
n×n the eigenvectors matrix containing the

eigenvalues λi of the correlation matrix Σ of X such as:

Σ = P∧PT (1)

Where ∧ = diag(λ1, . . . , λn) is a diagonal matrix with

diagonal elements in decreasing magnitude order. The reduced

l-dimensional space of the data is obtained by retaining only

the principal components that correspond to the l-highest

eigenvalues of the covariance matrix. They represent the fea-

ture space where most of the pattern in the data are represented

(generally up to a given percentage of cumulated variance).

The remaining components with the smallest eigenvalues rep-

resent the noise contribution. Once the number of components

l to retain is determined, the eigenvectors matrix P and the

principal component matrix T are partitioned into the form:

P =
(
P̂l P̃n−l

)

T =
(
T̂l T̃n−l

) (2)

X̂ is the principal part of the data explained by the l

first eigenvectors and the residual part X̃ is explained by the

residual components [11]:

X̂ = P̂lP̂
T

lX

X̃ = P̃n−lP̃
T

n−lX
(3)

They respectively lead to the principal and residual subspaces

used for fault diagnosis.

A process monitoring with PCA uses Hotelling’s T 2 and Q

statistics also called Squared prediction error (SPE) to detect

abnormal behaviours. The Hotelling’s T 2 and SPE represent

the variability in the Principal Component Subspace (PCS) and

the Residual Subspace (RS), respectively. T 2 can be expressed

by using the estimated value Σ̆ of the correlation matrix as

follows [12]:

T 2 = X̂
T
Σ̆
−1

X̂ (4)

Under normal conditions if the data set is multivariate Gaus-

sian distributed, the T 2 can be approximated by a χ2 distribu-

tion with l degrees of freedom and a significance level (1−α).
The system operation is considered healthy if:

T 2 ≤ χ2

l,1−α (5)

A variation of the variables’ correlation indicates an abnormal

behaviour. Under this condition, the sample matrix X increases

its projection to the RS and the magnitude of X̃ reaches

abnormal values compared to those obtained during healthy

conditions. SPE is the magnitude of X̃ and is written as:

SPE =‖ X̃ ‖2 (6)

The process is considered healthy if the SPE statistic is under

its control limit which is expressed as follows:

SPE ≤ (µ̆+ σ̆z1−α)
3 (7)

with z1−α as the (1 − α) significance level of a Gaussian

distribution Φ. µ̆ and σ̆ are respectively the estimated mean

and standard deviation of SPE2/3 [12].

Unfortunately the process monitoring using T 2 and SPE

is not always effective as they only use the current observa-

tion information for decision making. Hence, these detection

indices are relatively insensitive to minor changes in the

process variables, and thus may result in missed detections. To

overcome these limitations, an alternative approach has been

developed, where PCA is used as a modelling framework for

fault detection using an EWMA control scheme [13].

B. PCA-based EWMA control scheme for fault detection

In the EWMA control scheme, the moving average is cal-

culated by multiplying the historical observations with weight

coefficient that exponentially decays with time. The EWMA

decision statistic criterion is then described as follows:

zt = η × xi,t + (1− η)zt−1 (8)

where η is a weight parameter, with 0 < η ≤ 1 , and xi,t is

the value of the monitored variable i at time t. The starting

value xi,0 is set equal to the mean µ0 of the process in-control.

Generally, smaller values of η increase the chart’s sensitivity

to smaller shifts in the process mean, while larger values of η

increase its sensitivity to larger shifts. The standard deviation

of zt is approximated as follows:

σzt =

√
η

2− η
(9)

The EWMA control scheme declares an anomaly when the

value of zt falls outside of the interval between the upper

and lower bounds of the control limits . The upper and lower

control limits, denoted as UCL and LCL are set as:

UCL = µ0 + Lσzt

LCL = µ0 − Lσzt
(10)

Where L is a multiplier of EWMA standard deviation σzt.

As stated in Section I, the sensitivity of the control procedure

to small or gradual faults highly depends on the settings

of L and η. The fault detection using PCA-based EWMA

scheme involves the evaluation of these residuals from the

PCA framework using a statistical EWMA to set the control

limits UCL and LCL. It allows to determine if the system
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is healthy or faulty. If the EWMA statistic exceeds any of

the control limits, this is an indicator of an abnormal (faulty)

behavior [13].

C. Optimized proposed fault detection scheme

The proposed solution for this study has to tackle two main

limitations of the EWMA control scheme: (1) the selection of

the correct PCA feature space, (2) the tuning of the weight

and the control limit parameter.

1) In the conventional PCA-based EWMA fault detection al-

gorithm, one major limitation using the EWMA monitoring

scheme is in the exclusive use of the residual components

of the PCA model. Indeed, this is valid in ideal systems

where the presence of faults affects mostly the components

in the residual subspace, but this is not always true. In

some cases, the system modelling errors could be projected

onto the residual subspace making it less sensitive to the

fault and the principal subspace more sensitive. So, it is

necessary to analyse the information in both subspace as

a whole set to obtain more accuracy in the fault diagnosis

results.

In our work, we propose to apply the EWMA monitor-

ing scheme to either the principal and residual subspace

depending on the evaluation of the eigenvalues of the

test data in the PCA subspaces. We compare the smallest

eigenvalue in the principal subspace to the highest one in

the residual subspace. The higher the ratio between these

aforementioned eigenvalues is, the more the fault signature

is found highly represented in the residual component and

vice versa. The correct subspace can then be automatically

selected.

2) Usually, the EWMA control limit parameters L and η are

chosen depending on the type of system under monitoring.

In most of applications, the EWMA standard deviation

amplifier L is set equal to 3 while the weighted parameter

η is set depending on the importance one wants to give to

the current observation in the calculation of the EWMA.

To accurately tune these parameters, we propose to set

them from the solution of an optimization problem. For

that purpose we show how to obtain them following the

minimization of the probability of false alarm (PFA)

on healthy data. This probability is a useful criterion to

set a preliminary detection threshold without any a priori

knowledge on the faulty data. All the data that are above

this threshold will be falsely considered as faulty (false

positive). The others are truely considered as healthy (true

negative). Then the PFA is given as :

PFA =
NFP

NFP +NTN
(11)

Where NFP is the number of false positive values and

NTN is the number of true negative ones. The problem

in our case is to find the couple of (η, L) that minimizes

the PFA. The fact that the conventional PFA parameters

NTN and NFP are only defined by crossing the two

EWMA control limits makes the problem divergent. To get

a convergent problem we define a new objective function

relating the distance between the EWMA observations zi
and their control limits UCL and LCL as follows:

min
η,L

√
(zmax(ηj , Lj)− UCL(ηj , Lj))

2

min
η,L

√
(zmin(ηj , Lj)− LCL(ηj , Lj))

2

s.t. 0 < ηj ≤ 1, 0 < Lj ≤ 3

(12)

Where (ηj , Lj) are the potential solutions, zmax , zmin

are respectively the maximum and the minimum of the

EWMA observations. The multi-objective function can be

reformulated into a mono-objective one such as:

min
η,L

Fobj(ηj , Lj)

s.t. 0 < ηj ≤ 1, 0 < Lj ≤ 3
(13)

Where:

Fobj(ηj , Lj) =
√

(zmax(ηj , Lj)− UCL(ηj , Lj))2

+
√

(zmin(ηj , Lj)− LCL(ηj , Lj))2
(14)

The proposal is described in the flowchart displayed in

Figure 1.

III. RESULTS AND DISCUSSIONS

In this section, the PCA-based EWMA methodology is used

to detect stator inter-turn short-circuit fault in a PMaSynRM.

A. Data generation

To assess the performance of the proposed fault detection

scheme, the model of the PMaSynRM presented in [3] and [4]

is used. The motor characteristics and simulation parameters

are displayed in Table I. The PMaSynRM winding under an

inter-turn short-circuit in phase a in shown in Figure 2.

Under this fault condition, the phase a current ia is divided

into is the current in the defective part of the winding and if
the current in the inter-turn fault’s contact branch. La1 and La2

represent the inductances of the healthy and faulty sub-coils

of the phase a winding respectively. In one hand, Ma1b and

Ma1c denote the mutual inductances between the healthy sub-

coil La1 and the coils Lb, and Lc respectively. On the other

hand Ma1a2, Ma2b and Ma2b denote the mutual inductances

between the sub-coil La2 and the healthy sub-coil La1, and

coils Lb, and Lc respectively.

Three different mechanical load conditions (Γ1 = 18Nm,

Γ2 = 134Nm, Γ3 = 260Nm) have been applied to the

machine during 3s each, with a controlled rotating speed at

1500rpm. The generated data include the motor stator phase

currents ia, ib and ic. The faults which are changes in the

values of the stator resistances and inductances are introduced

after 1s of healthy state for each load case. The duration of

the fault is also 1s. To assess the abilities of the various fault

detection of the methodology, seven different severity levels

are considered in this study. The fault severity levels are ranked
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Fig. 1: Optimized PCA-based EWMA methodology

 V a1 V a2

e a1 e a2

R f if

M a1a2

e b

e c

M a1c M a2c

L c

Lb
M a1b

M a2b

La1 La2ia

ib

ic

is

Fig. 2: Stator windings circuit under an inter-turn fault

TABLE I: The PMaSynRM characteristics

Motor characteristics

Number of poles 8

Number of PMs per pole 5

Rated power [kW ] 208

Maximum operating speed [rpm] 14000

Number of turns 8

Stator phase winding resistance value
6.1

at 20◦ [mΩ]
Simulation parameters

Permanent Magnet flux amplitude [Wb] 6.24 ×10−2

Moment of inertia [kgm2] 0.0357

Input DC voltage amplitude [V ] 412

from to 2 to 8. This rank is related to the number of turns short-

circuited in the phase a of the winding. As an example, the

time series stator’s current for the phase a of the PMaSynRM

drive is shown in Figure 3. The fault occurrence with severity

level 2 and load change (Γ1, Γ2, Γ3) are displayed highlighting

the healthy and faulty current information.

In our case studies, using the time series currents of the three

phases, the statistical moments are first calculated for con-

secutive independent windows of the current signal samples

containing at least one signal period. The goal of these features

is to highlight the quantitative insights of these currents and be

used as the variables for the fault diagnosis study. Among these

0 1 2 3 4 5 6 7 8 9
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-800
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-200

0

200
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800

i a
 [

A
]

1.5 1.51 1.52

-50

0

50

4.55 4.56 4.57
-400
-200

0
200
400

7.6 7.61 7.62

-500

0

500 Fault introduced

Fault introduced

Fault introduced

Fault ended

Fault ended

Fault ended

Fig. 3: Time series stator current in phase a for the healthy

and faulty motor (level 2) for the three loads

features, the variance appears to be the best representative

one to characterize the considered fault signature. Then the

variances, σ2

a, σ2

b , σ2

c of the phase currents in healthy and

faulty conditions have been calculated and organised in the

data matrix to be used as the input of our fault detection

procedure. The following results highlight the performances

of our proposal.

B. Simulation results

As stated in Figure 1, the procedure is decomposed in two

parts: one using the healthy data for modelling the process and

the other considering the faulty data for the fault detection.

With the healthy data, the process is trained to construct the

PCA model. In this study, the threshold of cumulative variance

is settled to 75%. In our PCA model, this results in retaining

the first two components for the principal subspace and the

third one for the residual subspace. This principal subspace

captures in the first two principal components 43.31% and

32.94% for Γ1, 75.62% and 14.36% for Γ2, 53.82% and

24.91% for Γ3 (see Figure 4).

With the faulty data, the fault detection ability of the

proposed PCA-based EWMA fault detection algorithm is

assessed. All the seven severity levels and the three load

levels are considered. The conventional PCA-based EWMA

fault detection algorithm with the application of T 2 and SPE
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statistics with the parameters η = 0.5 and L = 3 are used for

comparison. The results for load 1 and fault severity level 2
are shown in Figure 5.

Fig. 5: Conventional PCA-based EWMA fault detection

In this Figure 5 the dashed lines represent UCL and LCL.

The results using PCA-based EWMA on the SPE statistic,

show that it failed to detect some faults and produce a high

number of false alarms. The results using PCA-based EWMA

on the T 2 statistic allow to detect the fault with few false

alarms. This result is because the conventional PCA-based

EWMA with the arbitrary choice of the parameters η and L

is not always sensitive to the fault due to the control limits

that are not particularly calibrated with the considered healthy

data.

Figure 6 shows the overall performance in terms of proba-

bility of missed fault detection PMD and probability of false

alarm PFA for our case studies of three load levels and all

fault severity levels. Usually, for fault detection, the acceptable

PMD and PFA are typically set to 0.02 and 0.05 respectively

[14]. In Figure 6, these typical values are highlighted with

dashed lines. One can notice that the conventional PCA-based

EWMA fails to provide acceptable PFA using T 2 and SPE.

The PMD performance for low severity levels are good only

when using T 2 for the highest load conditions. These results

are also acceptable when using SPE for the lowest load

conditions. Indeed, the fault signatures are not always high

enough in the residual subspace to allow the detection in the

presence of noise.

To cope with these limitations, our proposed methodology

include the optimization tuning of η and L for a minimized

PFA value through an objective function. Figure 7 shows the

surface of the objective function using T 2 and SPE for a
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Fig. 6: Performance of the conventional PCA-based

EWMA fault detection

range of values of η and L such as 0 < η ≤ 1 and 0 < L ≤ 3.

The optimization solutions leads to the couple (η, L) depicted

as the red point in Figure 7.
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The overall performance with the optimized couples (η, L)
defined for each load condition is shown in Figure 8. Com-

pared to the conventional approach, the performance is im-

proved but show a sensitivity to the load value and fault

severity level depending on the chosen detection index.
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Fig. 8: Performance of the improved PCA-based

EWMA with two fault indices

The last step of the proposal concerns the automatic se-

lection of the detection index by using the ratio of selected

eigenvalues in the PCA framework. In our case study the

reference of the ratio is set equal to 2 to set the most efficient

fault detection index. A ratio less than 2 sets the T 2 as

detection index while a ratio greater than 2 sets the SPE

as the detection index.

Figure 9 shows the results of the fault detection of the

proposed optimized PCA-based EWMA scheme with the
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automatic selection of the detection index in the case of fault

severity level 2, and for the three load conditions.

Fig. 9: Fault detection with the improved PCA-based

EWMA with automatic detection index selection

The overall performance of the proposed methodology is

shown in Figure 10. This result highlights that the proposed

methodology can reach good fault detection performance as

the PMD and PFA almost comply with the usual typical

values. The only exception is for fault severity 8 and load

2. In that case, the PFA is slightly higher (PFA = 0.052)

than the typical value without being critical. Most of the False

alarms in our case studies are due to the transient between the

faulty and healthy conditions.
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Fig. 10: Performance of the improved PCA-based

EWMA automatic detection index selection

IV. CONCLUSION

In this paper, a fault detection approach is proposed for

inter-turn short-circuit monitoring in the electrical drive. A

hybrid Finite Element-Analytical model of a PMaSynRM

has been simulated to generate the stator phase currents for

analysis. Three load conditions and seven fault severities are

considered. The proposal is based on PCA and EWMA that

are efficient techniques for fault diagnosis. Nevertheless, these

techniques suffer from two major limitations: (1) the tuning

operation of the control parameters to reach the best perfor-

mance, (2) the selection of the most relevant transformation

subspace with the adequate detection criteria.

This paper proposes solutions to cope with these limitations

and an optimized procedure with the automatic selection of

the most efficient detection criteria. The paper presents how

to optimize the EWMA weighting factor η and control limit

parameter L with the constraint of minimizing the probability

of false alarm. Additionally, we show that the comparison of

the eigenvalues of the test data in the PCA subspace allows to

automatically choose the most efficient subspace framework

and adequate fault index. The simulation results show encour-

aging performance. Compared to the traditional approaches,

the advantage of the proposed optimized PCA-based EWMA

fault detection method is demonstrated whatever the load

condition and for all the inter-turn short-circuit severity levels.

In future works, the application to real data will be stud-

ied, and the influence of disturbances will be included. The

reliability of the decision will also be evaluated in terms of

mean delay for detection and mean time between false alarms.

Moreover, the performance of the proposed approach to detect

other faults in the electrical drive will be investigated.
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