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Abstract—Sketching consists of reducing the dimensionality of
data samples by retaining a small number of their moments. In
this paper, a Preconditioned Gradient Descent algorithm (PGD)
is proposed to estimate the parameter of mixture models (MM) in
arbitrary dimensions by minimizing the non-convex quadratic loss
between the sketch and the characteristic function of an MM of
varying parameters. Preconditioning is introduced to dynamically
adapt the descent direction to the local landspace of the objective
function, fastening convergence, with no computational overhead
per iteration compared to vanilla GD. An analysis of the linear
convergence rate of PGD is conducted, and numerical simulations
showcase the method’s effectiveness, particularly when the weight
of the classes is unbalanced or when a substantial number of
data samples are available.

I. INTRODUCTION

Clustering is a fundamental task in unsupervised machine
learning. It aims to segment data into homogeneous classes,
revealing intrinsic structures, patterns, or hidden relationships
in data without prior knowledge of class labels or expected
outcomes. Clustering is ubiquitous in applied science and
engineering, with applications in areas like image segmentation,
biological data analysis [1], content recommendations, and
anomaly detection. Due to its flexibility in capturing various
data shapes, the mixture model (MM) is commonly assumed to
model clusters. It is a well-studied statistical prior in statistics
and machine learning. When the class distribution is known,
specific numerical methods are known to estimate the parame-
ters of an MM from its empirical samples, such as expectation-
maximization [2], [3], or hierarchical clustering [4]. However,
alternative methods can provide comparative advantages such
as a more comprehensive theoretical understanding or a better
scaling with the ambient dimension and the dynamic range of
the prior distribution [5].

More recently, estimating MM has been approached through
sketching [6], [7], a scalable method, which retains in the
first few empirical moments of the data distribution to reduce
the ambient dimensionality. Then, the mixture parameters are
estimated by minimizing the non-convex quadratic loss between
the sketch and the characteristic function of an MM.

A. Contributions and Organization of the Paper
In this study, we consider the sketching framework proposed

in [6], and provide novel guarantees on the local geometry of
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the optimization landscape around the ground truth parameter.
Furthermore, we adapt the Preconditioned Gradient Descent
(PGD) algorithm [8] into sketching context and prove its linear
convergence rate towards the ground truth under sufficiently
provided a large number of samples. Additionally, the conver-
gence guarantees are extended to the multidimensional case
and to a broad class of convolution kernels.

The rest of the paper is organized as follows. The sketching
method and the PGD algorithm are presented in Section II.
Section III presents our main results. First, convergence
guarantees are provided under infinitely many samples in
Theorem 1, then the scaling law of the loss function is discussed
under finitely many data samples. Section IV proposes a
proof of Theorem 1. Numerical experiments are conducted
in Section V, and a conclusion is drawn in Section VI.

B. Notation and Definitions

Vectors and matrices are denoted by boldface and capital
boldface letters, respectively. Vectors x ∈ CN with odd
dimension N = 2n+1 are indexed between −n and n, so that
x = [x−n, . . . , xn]

⊤ for convenience. Transpose and Hermitian
transpose of a vector or a matrix A are denoted by A⊤ and
AH, respectively. We denoted by 1d the all-one vector in Rd.
With a slight abuse of notation, we denote by |a|, |a|p, the
vector with entries equal the modulus, the pth power of the
entries of vector a, respectively. The Schur product is denoted
a⊙ a′, and the d-dimensional torus is written Td = (R/Z)d.

II. SKETCHED MIXTURE LEARNING

A. Problem Formulation

Given a d-dimension probability distribution with probability
density function (PDF) g, we write µ(θ⋆) a g-mixture of r
components parameterized by θ⋆ = [a⋆, τ ⋆]

T, where a⋆ =
[a⋆1, . . . , a

⋆
r ]

T ∈ [0, 1]
r is the weight vector of the classes

and τ ⋆ = [τ⋆1,1, . . . , τ
⋆
1,d, τ

⋆
2,1 . . . , τ

⋆
r,d]

T ∈ Rdr encodes the
locations of the centroids. Thus the PDF µ(θ) is given by

µ(θ⋆)(τ ) =

r∑
j=1

a⋆jg(τ − τ ⋆
j ), τ ∈ Rd. (1)

In this work, the mixture density function g is assumed
to be known. Mixture learning is the task of inferring the
parameter θ⋆ from m i.i.d. samples X = {x1, . . . ,xm} of the
distribution µ(θ⋆).



In the paper, rather than directly relying on the empirical
probability distribution to recover the mixture parameter θ⋆, we
propose to minimize the Euclidean loss of n discrete samples
of the empirical characteristic function of the observation X .
This sketching technique [6] maps the ambient dimension from
Rmd → RN , which allows fine control of the dimensionality
of the optimization space, and yields substantial computational
benefits when md ≫ n. The empirical multidimensional
characteristic function (ECF) Φ{X} : Rd → C of X reads

Φ{X}(u) = 1

m

m∑
i=1

e−2iπ⟨u,xi⟩, u ∈ Rd, (2)

which is an unbiased estimator for the characteristic function
of the ground truth MM [9], that we denote Φ{µ(θ⋆)}.
Furthermore, the characteristic function ĝ of the PDF g, the
expression for a MM µ(θ) is given for all θ by

Φ{µ(θ)}(u) = ĝ(u)⊙
r∑

j=1

aje
−2iπ⟨u,τj⟩, u ∈ Rd. (3)

For the purpose of data processing, one must evaluate the
ECF for a finite number of moments according to a sketching
scheme. Different sketching schemes have been studied in
the literature to discriminate best the classes of the MM,
such as uniform sampling and random sampling [6], [10].
For conciseness, we restrict our setup to uniform sampling
schemes and let N = 2n+ 1 be an odd number. We consider
the acquisition of Nd samples of the ECF (2) taken over the
centrally symmetric uniform sampling set Ω = J− n

N , n
N Kd.

In the sequel, the number of classes r is assumed to be
known. The parameters θ⋆ are estimated by minimizing the
quadratic loss L(·) between the sketch and the characteristic
function of a mixture parameterized by θ. That is

L(θ) = 1

2

∥∥∥[Φ{X}(u)]u∈Ω −
[
Φ{µ(θ)}(u)

]
u∈Ω

∥∥∥2
2
. (4)

Given the expression (3) of the characteristic function,
Equation (4) amounts to finding a r-sparse combination of
complex exponentials weighted by the moments of the shape
function g that explains best in the quadratic sense the
observations [Φ{X}(u)]u∈Ω. This problem is also known
as line spectral estimation or sparse super-resolution [11] in
signal processing, and various methods exist to solve it (see
e.g. [12]–[17], and reference therein). Of particular to the
context of this paper, greedy approaches such as Orthogonal
Matching Pursuit (OMP) algorithms [18], [19] provide a fast
and scalable family of numerical methods for solving sparse
inverse problems such as line spectral estimation. However,
those methods rely on discretizing the parameter space, yielding
a basis mismatch [20] and imperfect reconstruction, even with
infinitely many distribution samples (m = +∞).

To circumvent the limitations of greedy algorithms, we pro-
pose instead to study the refinement of first-order optimization
iterates initialized at the output of the OMP algorithm. As the
optimization landscape of the loss L(θ) given in (4) is non-
convex, global convergence guarantees could hardly be derived.

Algorithm 1 Preconditioned Gradient Descent
1: Initialize θ0 using OMP; k ← 0.
2: while stopping criterion is not met do
3: Compute Pk as in (7)
4: θk+1 ← θk − Pk

∂L(θk)
∂θ .

5: k ← k + 1

6: Return θk

Herein, we rely instead on a study of the local geometry of
the loss around the ground truth θ⋆ to determine the width of
its basin of attraction and the contraction rate to this minimum
from an adaptive preconditioning of the descent direction.
Further global convergence guarantees demand ensuring an
initialization within the basin of attraction.

B. Learning with Preconditioning

We propose refinements and new associated theoretical
guarantees to pre-existing work. Given the heterogeneous nature
of vector θ—it contains both locations and weights information
which scale differently with N—, we use preconditioning to
adapt the direction of descent of the first-order method to
the local landscape of the cost function [8]. This is done
by multiplying at step k the gradient by a matrix Pk, which
depends on the current estimate θk. The optimization procedure
is detailed in Algorithm 1. We note that the algorithm doesn’t
leverage the implicit constraints

∑r
j=1 aj = 1 and aj ≥ 0,

which are unnecessary to establish the local convergence results.
As the computational complexity of Algorithm 1 is driven

by that of the matrix-vector multiplication in the fourth line,
we restrict our analysis to diagonal preconditioning matrices
so that computing the preconditioned descent direction comes
with a marginal additional computational cost compared with
vanilla gradient descent.

In the sequel, we write K : Rd → R the discrete
autocorrelation of g(·) defined by

K(τ ) =
∑
k∈Ω

|ĝ(k)|2e2iπ⟨k;τ⟩, (5)

which is real-valued since g(·) is real, 1-periodic in every
variable, infinitely differentiable.

For convenience, we present the expression of both gradients
of the loss (4) with respect to amplitudes and positions,
that on direct observations in the frequency domain, x =
[Φ{X}(u)]u∈Ω,

dL(θ)
daj

=

r∑
l=1

alK(τj − τl)−
∑
k∈Ω

ĝ(k)xke
2iπ⟨τj ,k⟩ (6a)

dL(θ)
dτj,d1

= aj

r∑
l=1

al
∂K

∂τ·,d1

(τj − τl)

−R

(∑
k∈Ω

ĝ(k)xk2iπkd1
e2iπ⟨τj ,k⟩

)
. (6b)



Furthermore, we select the preconditionner,

Pk = diag


1r

[−∇2K(0)]−1
1,1|ak|−2

...
[−∇2K(0)]−1

d,d|ak|−2

 . (7)

III. ANALYSIS OF ALGORITHM 1

A. Metrics of Analysis

The dynamic range of the problem κ > a⋆max/a
⋆
min > 1

is defined as the ratio between the largest weight amax and
the smallest weight amin of the classes of the ground truth
MM µ(θ⋆). Additionally, the minimal separation between the
classes, denoted ∆(τ ⋆), is defined as the smallest possible ℓ∞
distance over the torus Td between two distinct centroids. That
is ∆(τ ⋆) = mink∈Zd minj ̸=j′ ∥τj − τj′ − k∥∞ . The dynamic
range and the minimal separation are known to be quantities
of interest to assess the stability of the line spectral estimation
problem [21], [22].

Furthermore, we measure the contraction rate in terms of
worst relative distance of any parameter to the ground truth.
This allows a homogeneous control of the parameter estimate
across all the classes and transcends certain properties of the
problem at hand, such as the number of source points or the
dynamic range. Mathematically, we define the diagonal matrix
S as

S = diag


a⋆−1√

[−∇2K(0)]1,11r

...√
[−∇2K(0)]d,d1r

 ,

and study the contraction rate of the sequence ∥S (θk − θ⋆)∥∞.
Specifically, in one-dimensional settings, the error metric reads

∥S(θk−θ⋆)∥∞ = max
j

{
|ak,j − a⋆j |
|a⋆j |

;
√
−K ′′(0)|τk,j − τ⋆k |

}
.

B. Asymptotic Convergence Guarantees

In this section, we study the convergence of Algorithm 1
towards the global minimum of the loss function (4) when the
characteristic function of µ(θ⋆) is observed, that is m→∞.
To that end, we introduce the notion of admissible density, for
which we will establish a guarantee of convergence.

Definition 1 (Admissible density): A density g is said
to be admissible if there exist functions h0, {hi

1}1≤i≤d,
{hi,j

2 }1≤i,j≤d of Td → R, that are positive, summable, and
– decreasing by positive coordinates : 0 ≤ x ≤ y =⇒
h(x) ≥ h(y);

– absolutely dominating the derivatives: ∀u, h0(u) ≥
|K(u)|, hi

1(u) ≥ |
∂K(u)
∂ui
|, hi,j

2 (u) ≥ | ∂K(u)
∂ui∂uj

|,
and if there exists a constant Cg > 0, depending
only on g and independent on N such that

∫
Td h0 ≤

Cg,
∫
Td h

i
1 ≤

(
−[∇2K(0)]i,i

) 1
2 Cg, and

∫
Td h

i,j
2 ≤(

[∇2K(0)]i,i[∇2K(0)]j,j
) 1

2 Cg .

Note the admissibility conditions in Definition 1 are mild
and satisfied by most densities of interest, such as the
Gaussian. The next theorem, whose proof is presented in
Section IV, guarantees the linear convergence of Algorithm 1
as a function of the dynamic range and the minimal separation,
provided a close enough initialization and under an admissibility
assumption of the mixture shape g.

Theorem 1 (Asymptotic convergence of PGD): Suppose that
g is admissible in the sense of Definition 1. Assume n ≥ 2,
an infinite number of samples (m = +∞), then there exists a
constant Cg > 0, depending only on g, such that if

γ := Cg

(
N∆(τ ⋆)

2

)−d
a⋆max

a⋆min

<
1

2
(8a)

4 ≤ max
1≤p≤d

{√
[−∇2K(0)]p,p

}
∆(τ ⋆), (8b)

and if the initial point satisfies

∥S(θ0 − θ⋆)∥∞ ≤ 1−
√

2

3
(8c)

then {θk}k∈N converges towards θ⋆ and

∥S(θk − θ⋆)∥∞ ≤
(
1

2
+ γ

)k

∥S(θ0 − θ⋆)∥∞. (9)

C. Scaling Law under a Finite Number of Samples
In practice, the characteristic function is estimated from

finite samples m < +∞, and the ECF is subject to stochastic
noise. A benefit of stretching from finite many samples resides
in the boundness of the ECF, which allows the control of its
pointwise deviation from the characteristic function as follows.

Theorem 2 (Pointwise concentration of the ECF):

∀u ∈ Rd, P
(∣∣∣Φ{X}(u)− E

(
e−2iπ⟨u,X⟩

)∣∣∣ ≥ t
)
≤ 2e

−t2m
4

(10)
The demonstration of (2) is a direct consequence of Hoeffding’s
inequality [23] applied to the real and imaginary part of the
difference in (10). The deviation between the ECF and the
ground truth characteristic function can be uniformly controlled
via the union bound, yielding for any t ≥ 0

P
(∥∥∥[Φ{X}(u)]u∈Ω −

[
Φ{µ(θ)}(u)

]
u∈Ω

∥∥∥
∞
≥ t
)

≤ 2Nde
−t2m

4 . (11)

Equation (10) suggests m = Ω(d log(N)) samples are for the
stochastic noise to vanish in the asymptotic N →∞.

IV. PROOF OF THEOREM 1
We start the proof with the following lemma, which relates

the contraction of the iterates sequence with the conditioning
of the Hessian over the segment between θ⋆ and θk.

Lemma 1 (Contraction of the iterates):
Let Sk = {θ⋆ + u(θk − θ⋆) | u ∈ [0, 1]}, we have

∥S(θk+1−θ⋆)∥∞ ≤ max
θ∈Sk

{∥I−SPkH(θ)S−1∥∞}∥S(θk−θ⋆)∥∞.

(12)
The rest of the proof focuses on bounding the quantity ∥I −
SPkH(θ)S−1∥∞.



A. Hessian Decomposition

Starting from the expression (6) of the gradient of the loss,
the Hessian matrix H(θ) = ∇2L(θ) is given by (c.f. [24])

H(θ) = M(a)HD(τ )M(a) +E(θ), (13)

where the matrices M(a) and D(τ ) are given by

M(a) = diag


1r√

−[∇2K(0)]1,1a
...√

−[∇2K(0)]d,da

 (14)

D(τ ) =


D0(τ ) D1

1(τ ) . . . Dd
1(τ )

D1
1(τ )

H D1,1
2 (τ ) . . . D1,d

2 (τ )
...

...
. . .

...
Dd

1(τ )
H D1,d

2 (τ )H . . . Dd,d
2 (τ )

 , (15)

and where the generic term of each block Dp(τ ) is given by

[D0(τ )]i,j = K(τi − τj) (16a)

[Dd1
1 (τ )]i,j =

(
−[∇2K(0)]d1

)− 1
2
∂K(τi − τj)

∂wd1

(16b)

[Dd1,d2

2 (τ )]i,j =
(
∇2K(0)d1∇2K(0)d2

)− 1
2
∂2K(τi − τj)

∂wd1
∂wd2

.

(16c)

The term E(θ) can be interpreted as a perturbation term
that vanishes at θ = θ⋆. By the triangle inequality, we have
∥SPkH(θ)S−1 − I∥∞ ≤ ∥SPkM(a)HD(τ )M(a)S−1 −
I∥∞ + ∥SPkE(θ)S−1 − I∥∞. We provide the following
lemma on ∥SPkE(θ)S−1 − I∥∞, and skip its proof of
conciseness, and focus on the sequel by bounding the remaining
term.

Lemma 2: If g is admissible in the sense of Definition 1, and
if ∥S(θ − θ⋆)∥∞ < 1, then there exists a constant C ′

g > 0,
depending only on g such that

∥SPkE(θ)S−1 − I∥∞

≤ C ′
g (N∆(τ ))

−d ∥a⋆∥∞
amin

∥S(θ − θ⋆)∥∞
(1− ∥S(θ − θ⋆)∥∞)

2 . (17)

B. Bound on ∥SPkM(a)HD(τ )M(a)S−1 − I∥∞
For all j, we have the identities [8]

|a⋆j |
|ak,j |

≤
|a⋆j |

|a⋆j | − |ak,j − a⋆j |
≤ 1

1− ∥S(θ − θ⋆)∥∞
(18a)

max{|a⋆j |, |aj |} ≤ 1 + ∥S(θ − θ⋆)∥∞ (18b)

From a direct calculation, exploiting the diagonal structure of
the matrices S and M(a), and Equations (18), we have

∥SPkM(a)HD(τ )M(a)S−1 − I∥∞

≤ max
j

{
1

a⋆j
;
|aj |
|ak,j |2

}
∥D(τ )− I∥∞ max

j

{
|a⋆j |; |aj |

}
+max

j

{∣∣∣∣∣1− a2j
|ak,j |2

∣∣∣∣∣
}

≤ a⋆max

a⋆min

1 + ∥S(θk − θ⋆)∥∞
(1− ∥S(θk − θ⋆)∥∞)2

∥D(τ )− I∥∞

+
1

(1− ∥S(θk − θ⋆)∥∞)2
− 1. (19)

We now aim at bounding ∥D(τ )−I∥∞. To proceed, we exploit
the block decomposition (15) and the Hermitian structure of
sub-blocks (16) to obtain

∥D(τ )− I∥∞ ≤ max
i

{
∥D0(τ )− I∥∞ +

d∑
j=1

∥Dj
1(τ )∥∞,

∥Di
1(τ )∥∞ + ∥Di,i

2 (τ )− I∥∞ +
∑

1≤j≤d
i ̸=j

∥Di,j
2 (τ )∥∞

}
.

(20)

A key element to control the right-hand side of (20) via
the generic terms (16) is to bound the summation of the
autocorrelation function K and its derivatives at the points
{τi − τj}, which the following lemma proposes.

Lemma 3 (Summation bounds on the autocorrelation):
If g is admissible in the sense of Definition 1 then

max
i,j

{
∥D0(τ )− I∥∞, ∥Di

1(τ )∥∞,

∥Di,j
2 (τ )− I∥∞, ∥Di,j

2 (τ )− I∥∞
}
≤ (N∆(τ ))

−d
Cg.

(21)

Equation (20) and Lemma 3 immediately imply
∥D(τ )− I∥∞ ≤ (d+ 1) (N∆(τ ))

−d
Cg .

C. End of the proof

First of all, Lemma 2, Equation 19 and Lemma 3 yield

∥SPkH(θ)S−1 − I∥∞ ≤
1

(1− ∥S(θk − θ⋆)∥∞)2
− 1

+ C ′′
g (N∆(τ ))

−d a⋆max

a⋆min

(1 + ∥S(θ − θ⋆)∥∞)2. (22)

We conclude on Theorem 1 by induction. Assume the con-
ditions (8b) and (8c) hold, which is true of k = 0. This
ensures ∥τ0 − τ ⋆∥ ≤ ∆(τ⋆)

4 , thus ∆(τ ) ≥ 1
2∆(τ ⋆). Thus, the

inequality (22) becomes

max
θ∈Sk

∥SPkH(θ)S−1 − I∥∞

≤ 1

2
+ Cg

(
N∆(τ ⋆)

2

)−d
a⋆max

a⋆min

(23)

≤ 1

2
+ γ < 1, (24)

with Cg = C ′′
g

(
2−

√
2
3

)2
. We conclude with Lemma 1 that

∥S(θk+1 − θ⋆)∥∞ ≤
(
1
2 + γ

)
∥S(θk − θ⋆)∥∞ concluding on

the desired statement.
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Figure 1. Convergence rates of the iterate sequence of preconditioned GD
with fixed step size (left) and adaptive step size (right) towards the ground
truth for a 1D Gaussian mixture with variance 1 and centers -2 and 2. The
amplitudes are generated to satisfy different values of κ.

102 103 104 105 106

Number of data

10 5

10 4

10 3

10 2

10 1

100

Lo
g-

kl

EM
OMP
OMP + PGD

102 103 104 105 106

Number of data

10 1

100

101

102

103

Ex
ec

ut
io

n 
tim

e 
(s

)

EM
OMP
OMP + PGD

Figure 2. Kullback-Leibler divergence (left) and runtime in seconds (right)
per number of samples drawn, displayed in a log-log scale for EM, OMP,
and OMP+PGD methods applied to a 2-component 1D Gaussian mixture
(with variances of 1, centroids at 0 and 3, and proportions of 0.7 and 0.3,
respectively). The results are averaged over 10 random trials.

V. EXPERIMENTAL RESULTS

A. Linear convergence rate

This section conducts a numerical study of the convergence
rate of Algorithm 1 compared to a vanilla gradient descent
algorithm, where the preconditioning matrix P doesn’t vary
with the iterate k. A one-dimensional homoscedastic Gaussian
mixture with sufficient separation is considered, while the
dynamic range κ =

a⋆
max

a⋆
min

varies. Figure 1 pictures the error
sequence of the iterates ∥S(θk − θ⋆)∥∞ as k varies. Figure 1
confirms linear convergence of Algorithm 1. Furthermore, we
note that adaptive preconditioning remains unaffected by the
dynamic scale, in contrast to the fixed step where performance
degrades under similar conditions, which corroborates with
Theorem 1 for a large enough minimal separation N∆(τ ), and
reinforces the theoretical underpinnings of our approach.

B. Stochastic noise recovery

We evaluate the performance of our proposed approach,
which combines Orthogonal Matching Pursuit (OMP) with Pre-
conditioned Gradient Descent (PGD), denoted as OMP+PGD,
against two other clustering methods: OMP alone, and
Expectation-Maximization (EM) [3].

We select a Gaussian convolution kernel, the left-hand side
graph of Figure 2, shows the Kullback-Leibler divergence
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Figure 3. Error ∥S(θ∞−θ⋆)∥∞ of Algorithm 1 at convergence as a function
of the SNR. g is the Gaussian kernel with r = 2 classes. The dynamic range
is set to κ = 3, and the results are averaged over 100 random trials.

(KL) between the reconstructing mixture and the ground
truth as a function of the number of samples m for all the
considered algorithms. OMP + PGD appears to achieve similar
performance as EM and converges as m increases, while
OMP is not able to converge to the ground truth due to
the mismatch introduced by the discretization. The right-side
graph presents the algorithms’ execution time. As expected,
the execution time increases polynomially with m for all
three algorithms. However, sketching in OMP+PDG allows
a reduction in the ambient dimension before optimization,
yielding better scalability.

C. Signal noise recovery

Finally, we assess the robustness of Algorithm 1 to the
stochastic noise caused by the finite number of samples
m. Let w = [Φ{X}(u)]u∈Ω −

[
Φ{µ(θ⋆)}(u)

]
u∈Ω

be the
stochastic noise, which is controlled with high-probability
in ℓ∞-norm in Equation 11. We define the signal-to-noise
ratio as SNR = ∥Φ{µ(θ⋆)}∥22/∥w∥22. Figure 3 shows the
error estimate on the parameters of OMP+PDG to estimate a
Gaussian mixture with two classes as a function of the SNR.
The results are benchmarked against the statistical Cramér-
Rao lower bound [25]. Although the empirical error does not
achieve the CRB, the statistical error is of the same decay rate.
Thus, the proposed method is robust to the stochastic noise
induced by finite empirical samples.

VI. CONCLUSION

We have presented a preconditioned gradient descent algo-
rithm to identify the components of a mixture model from the
empirical moments of the observation through a sketching
technique. Local convergence guarantees are provided in
arbitrary dimensions and for a very broad class of kernels
in Theorem 1, under a good enough initial point, and in the
asymptotic number of distribution samples. In particular, we
prove the linear contraction rate of the iterate sequence. The
analysis amounts to line spectral estimation, bridging classical
learning and signal processing.

Future research directions include a study of the convergence
in a stochastic framework, where a limited number of samples
is assumed.
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