N

N
N

HAL

open science

Qualitative Reasoning and Design Space Exploration

Baptiste Gueuziec, Jean-Pierre Gallois, Frédéric Boulanger

» To cite this version:

Baptiste Gueuziec, Jean-Pierre Gallois, Frédéric Boulanger. Qualitative Reasoning and Design Space

Exploration. MODELSWARD 2024, INSTICC, Feb 2024, Rome, Italy. hal-04452208

HAL Id: hal-04452208
https://centralesupelec.hal.science/hal-04452208
Submitted on 12 Feb 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - ShareAlike 4.0 International License

https://centralesupelec.hal.science/hal-04452208
http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/
https://hal.archives-ouvertes.fr

Qualitative Reasoning and Design Space Exploration

Baptiste Gueuziec'

2 Jean-Pierre Gallois' ©° and Frédéric Boulanger?

C

YWniversité Paris-Saclay, CEA List, F-91120 Palaiseau, France

2Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire Méthodes Formelles, F-91190, Gif-sur-Yvette, France
{baptiste.gueuziec, jean-pierre.gallois} @cea.fr, frederic.boulanger@centralesupelec.fr

Keywords:

Abstract:

Design Space Exploration, Qualitative reasoning, Constraint solving.

The design of complex systems is a challenging task, combining optimization and testing techniques. Design

space exploration allows the designer to optimize the parameters of the system, but is usually very costly
and induces many inherent difficulties that require specific computation techniques to be solved. Qualitative
reasoning was first introduced to describe system structures and causality, and developed to study the behavior
of the system and discretize its state space into qualitative states. It is now used in diagnosis and verification
to reduce computation time and precision while still preserving major properties of the behavior. This article
presents how we think that qualitative reasoning can be applied to design space exploration in addition to
state space discretization, i.e. how it may help in the choice of parameters for a system, by reducing the

computational cost of this exploration.

1 INTRODUCTION

Qualitative reasoning is the area of computer science
and engineering that focuses on the representation and
reasoning on models with very little and imprecise in-
formation (Forbus, 2014). Our previous works on this
topic were applied to the study of hybrid systems and
allowed us to study the system’s state space based on
its dynamics, constraints, and discrete controller. We
obtained an entirely qualitative model of the behavior
of a system, discretizing the state space into qualita-
tive states that represent phases of the system’s be-
havior. This discretization allows us to abstract both
the state of the system and its behavior. The computa-
tion of the qualitative behavior generates path condi-
tions requiring to be solved by symbolic solvers such
as Sympy and Z3. In the instantiated systems, we
obtained very satisfying results to study and antici-
pate the possible trajectories of the system. However,
when we try to generalize our approach to the study
of the design space, we meet the limits of these tools
when computing the transitions. The design space
of a system is the space of the possible values of
its constant parameters, and its exploration requires
more generality and abstraction than the exploration
of the state space. Very few computational tools allow

https://orcid.org/0000-0002-4596-9769
@ https://orcid.org/0000-0001-6982-6247
¢ https://orcid.org/0000-0003-3185-2807

for the symbolic resolution of multivariate inequali-
ties with variables of multiple orders. The difficulty
comes from the fact that SMT solvers only find one
solution that respects the given constraints, while the
exploration of the design space would require finding
all the values of the parameters for which there exists
a solution in the variable space that satisfies the con-
straint. For a system with parameters P and variables
X, exploring the state space amounts to seeking a val-
uation (A,x) of (P,X) satisfying a predicate R(A,x).
When exploring the design space, we instead look for
Vp C Dp such that VA € Vp, then dx € Dy verifying
R(A,x) where Dp and Dy are the domains of the pa-
rameter P and the variable X. This logic problem can-
not be solved generally by simply using classic SMT
solvers.

Design Space Exploration (DSE) is a critical do-
main of the conception of complex systems. It con-
sists in choosing, testing, and comparing different
configurations of values for the parameters of the sys-
tem before its construction to verify some property or
optimize some utility function (Aiguier et al., 2010).
High-level DSE can be considered as multi-objective
optimization (Schafer and Wang, 2019) as we may
want to optimize a set of conflicting constraints and
utility functions. The solutions of the parameters are
often searched in a finite space of authorized values
(Lattmann et al., 2014), and the arising problem con-
sists both in the explosion of the number of possible

solutions when taking into account all the parameters
and in the critical time needed to test the validity of
all of these solutions. To this extent, an effective DSE
requires three elements: a representation, an analy-
sis, and an exploration method (Kang et al., 2011).
The representation of the system must be designed to
optimize the research, the test, and the comparison
of solutions. The analysis requires a metric, a utility
function, or a set of logic predicates to evaluate and
compare the different valuations of the parameters of
the system. It also requires the choice of a verification
method. For this verification task, various methodolo-
gies are employed, with different levels of reliability,
depending on the complexity of the system and the
number of solutions to test. These methods mainly
consist of simulating the system to verify a property,
measuring an output value, or using some verification
process to check the validity of a specific property. Fi-
nally, the exploration method is necessary to choose
the valuations to test and will strongly depend on the
nature of the design space. For example, some contri-
butions have studied the possibility of searching the
design space using machine learning methods (Blan-
chard et al., 2018; Kim et al., 2018; Mudgal et al.,
2018), others use brute force search in discrete sets,
and others use gradient descent methods in the case
of continuous spaces (Blanchard et al., 2018).

2 CONTEXT AND INITIAL
PROBLEM

2.1 Hybrid Systems and Qualitative
Modeling

We place ourselves in the context of hybrid cyber-
physical systems, represented as:

Q the current mode of the system (discrete),

X a set of n continuous variables,

I a function mapping each mode to
its invariant conditions,

F a function mapping each mode to
its flow conditions,

T a set of discrete transitions, each described
by their starting mode, their condition,
their target mode, and their reset function

P a set of m parameters

Q takes values on Dy, the finite set of modes of the
system, X is valuated on K" with K =R in the general
case, and P takes values on Dp a set of dimension m.
Dp can be either continuous or discrete. We make the
realistic hypothesis that Dp is at least bounded to fa-

cilitate its exploration. We consider that the flow con-
ditions are represented as ordinary differential equa-
tions (ODE), i.e., X = f(X,t) with ¢ the time param-
eter. For example, an autonomous car running on a
straight road on the axis x can be represented as:

Dy = {Stop, Accelerate, StableSpeed, Decelerate,
Reverse},

X = (x,x) with x the coordinate of the car on the
variation axis and X its speed on this axis,

X =K>=R?,

I = {Stop: X 0; Accelerate: x >0 ;
StableSpeed : x > 0 ; Decelerate : X >0 ;
Reverse : x < 0},

= {Stop:X =0;

Accelerate : X =X (0 O) (O a)

StableSpeed : X = X () +(0 0);

Decelerate : X =X (1) 8) (O b)
Reverse : X =X (1) 8 +(0 0)}

witha >0,and b <0
= {(Stop, % > €, Accelerate, X — X),
(Accelerate, = vy, StableSpeed, X — X),
(StableSpeed, x > Xyqx — v, Decelerate,
X —X),
(Decelerate, % < €, Stop, X — (x,0)),
(Stop, x < —¢, Reverse, X — X),
(Reverse, % > —¢, Stop, X — (x,0))}
with € > 0 a negligibility criterion under
which a value is considered as null, y a
security distance from the objective point
Xmax and vy, the maximal speed allowed.
P = {a7b7cveayvxmamvmax}

Qualitative modeling consists in the creation of
a model adapted to support qualitative reasoning
(Sugeno and Yasukawa, 1993). As this reasoning
paradigm has the ambition to avoid numerical ele-
ments, the stake of qualitative modeling is to de-
sign models of Cyber-Phyical-Systems that integrate
enough information from the system to perform ef-
ficient reasoning without using numerical knowledge
or computation. We call qualitative model the model
resulting from this design. A qualitative model must
not consider variables as numerical valuations but as
sets of values. For example, the autonomous car rep-
resented in subsection 2.1 can be qualitatively repre-
sented by imposing:
X = {-.0+}h
F = {Stop X=0;
Accelerate : X = (—H—) ;
StableSpeed : X = (+0) ;

Decelerate : X = (+*) ;
Reverse : X = (—0)}

In our previous works (Gueuziec et al., 2023),
we studied the suitability of qualitative reasoning
(Kuipers, 1986; Tiwari and Khanna, 2002) to repre-
sent, study, and refine the state space of hybrid sys-
tems. We used polynomial solving to create a qual-
itative map of this state space and SMT solvers to
determine all the possible transitions between the ob-
tained qualitative states. This computation allowed us
to generate a complete behavioral tree of the system
between its modes and qualitative states. However,
the limit of this approach is that it requires all the pa-
rameters of P to be known. Considering that one of
the main causes of interest in qualitative reasoning is
its high level of abstraction, its use in a context where
all the values of P are not entirely defined seems ap-
propriate. However, since the computation of the
transitions in the state space of the system requires
solving symbolic inequalities with a SMT solver (we
use Z3 in our model), the presence of symbolic con-
stants in the equations of the system creates signifi-
cant problems. These symbolic constants should not
be treated on the same logic level, and using a sim-
ple SMT solver as previously done is not sufficient
anymore because we are now searching for a subset
Vp C Dp of parameter values such that for any set p
of parameters in Vp, there exists x € K" that satisfies a
predicate R(p,x). For example, if we consider a Van
der Pol oscillator system whose dynamics is given by
the equation system :

{ £=10(y+x—%) "
. 3y

Y=p—X—7%

with p a positive parameter, we can look for a value of
p such that the system is convergent. To this extent,
the expression of the predicate R(p,X) would be: x =
y=0,ie. 10(y+x— %) =p—x— % = 0. The DSE
implies to look for a value of p > 0 such that 3(x,y)
such that 10(y +x— %) =p—x— %y =0.

SMT solvers require well-designed predicates on
the qualitative states and frontiers and allow us to
check composed properties containing conjunctions
and disjunctions, meaning that it is either possible to
operate on the state space by giving the satisfiability
for a valuation (complete or partial) of P, or on the
design space to evaluate the pertinence of a choice of
P. Our motivation in this work was to apply qualita-
tive reasoning and analysis to the simulation of cyber-
physical systems. Therefore, our motivation is to de-
velop our methodology to be able to use qualitative
reasoning for DSE to choose or optimize the values
of the parameters P to satisfy some constraints.

2.2 Design Space Exploration

Design Space Exploration aims to find a design sat-
isfying a set of constraints Const or optimizing some
utility function f. Depending on the situation, the for-
mulation will have the form of a satisfiability prob-
lem or an optimization problem. Since we want to
explore the possibility of using qualitative reasoning,
we mainly focused on the satisfiability case. There-
fore, the problem takes the form:
{ max(V, = (V1,Va,...,V,x) C Dp)
s.t. Const(V,) = True

where Const(Vp) represents the complete set of con-
straints that the parameters must satisfy. As qualita-
tive reasoning is based on the loss of numerical val-
ues, optimization problems are not adapted for this
modeling paradigm.

The sought maximum of the subspace Vp is a
maximum regarding inclusion. Getting the maximum
valid set regarding the design constraints is essential
to compare the allowed values on other criteria after-
ward. This comparison is at the base of the design op-
timization (Fuchs and Neumaier, 2010) and requires
further analysis steps. They will not be treated in this
article.

The contribution presented here aims to study the
possibility of linking the DSE problem with quali-
tative reasoning, as already mentioned in (Lattmann
et al.,, 2014). Our goal is to open the capabilities
of qualitative reasoning to broader perspectives and
to present a hint at its possible use for more com-
plex applications than state space partitioning. More-
over, since DSE as presented in (Kang et al., 2011)
is mainly limited to structural considerations, the ad-
dition of qualitative reasoning to the DSE tools may
increase the field of resolution with dynamic and be-
havioral considerations.

3 QUALITATIVE REASONING

As explained in the introduction, the first signifi-
cant element required to process the exploration of
the design space is an adapted representation of the
model. Using a discretization process, we get a qual-
itative representation of the system corresponding to
OM = (Q,X,B,F,I,T,P) with Bamapping from each
mode g in Q to a set of qualitative borders defining the
qualitative state they separate.

Definition: We call qualitative state of a system
the pair (m, gs) associated with a list of polynomials P
with m € Dg the current mode and ¢s € {+,0, —}|P| a
vector such that Vi € [1, |P|], gs[i] = — if P[{](X) <
0, 0if P[i](X) = 0, and + otherwise.

The qualitative states are then represented as an
array of {—,0,+}, showing the position of the corre-
sponding state with respect to each frontier in B. This
representation can be applied to fully designed sys-
tems or more abstract ones with non-valuated parame-
ters of P. The second case implies the impossibility of
computing the transitions between qualitative states,
as this knowledge requires the computation of the sign
of the Lie derivative (Tiwari and Khanna, 2002) to de-
duce the allowed transition directions.

The Lie derivative (Yano, 2020) consists in a
vector field differentiation method enabling the di-
rectional derivation of a function. For a polyno-
mial p whose zeros define borders of the system, the
Lie derivative corresponding to p can be written as
Lx(p) = Yxex g—g% where the X; are the compo-
nents of X and ¢ is the time parameter. Determining
the sign of this expression requires the ability to fully
evaluate p and the derivatives of all the variables X;.

This computation allows the creation of a quali-
tative model, where the states and evolution are not
represented with numerical values but with variable
signs (+,0,—) and variation directions (correspond-
ing to the sign of the associated derivative).

As the DSE requires optimization criteria or nec-
essary constraints, it is possible to integrate these el-
ements in the construction of the frontiers during the
abstraction process. If R(P,X) € K"™ is a predicate
on X and P that should be satisfied by the system,
then the equations composing R(P,X) can be consid-
ered individually to define new borders. We anticipate
that qualitative reasoning may improve the DSE effi-
ciency and applicability to complex systems as quali-
tative reasoning applied on early stages of the design
of a system can link the found solutions to non val-
uated variables by applying purely symbolic solving
to estimate adapted values of P to different use cases
of a same system depending on the anticipated vari-
ations in the state space evolution between different
case studies. Moreover, the abstraction of the state
space may allow to propose local solutions to adapt
the design of the required qualitative behaviors.

4 PARAMETERS EVALUATION

The second important aspect that is necessary for
DSE is an analysis method. When a value or a subset
of values is available for P, it is essential to test its per-
tinence using a solver adapted for the equation struc-
tures. Here, as we made the hypothesis of systems
defined with polynomial equations and predicates, we
use a symbolic polynomial solver. Many behavioral
properties of a dynamic system can be conveniently

represented using temporal logic (Han and Sanfelice,
2020). However, predicate satisfiability for tempo-
ral logic is more complex and costly than first-order
logic (FOL) evaluation. Moreover, qualitative reason-
ing gives us an adapted support to reason on first-
order logic predicates. We will limit ourselves to the
properties expressible as FOL predicates to apply the
possibilities of qualitative reasoning. This choice im-
plies representing the behavioral constraint we want
to express as predicates.

For example, let us suppose we want a determin-
istic behavior for the system modeled through its dis-
cretization in qualitative states. In that case, we may
wish to have a direct transition from the qualitative
state (my,s1) to (mj,s2). In temporal logic and con-
sidering a temporal structure T, <, we could write
the predicate corresponding to a necessary transition
qs = (m1,s1) U g5 = (m1,s2) with s; and s, quali-
tative states of the system in mode m, i.e., abstrac-
tions of values of X following an abstraction function
adapted to the system. In FOL, we could write it us-
ing the Lie derivative such that (m;,s;) = Vb €
B(my,s1)\B(mi,s2), Lx(pp) * pp(s1) >0 A for by €
B(my,s1) N B(mi,s2), Lx(ps,) * pp,(s1) < O where
B(my,s;) is the set of borders defining the qualitative
state s; and pp the polynomial function whose zero
corresponds to b. This predicate corresponds to the
evaluation of the sign of each Ly (pj,) and its compar-
ison to the evolution of p;, after crossing the corre-
sponding qualitative frontier. A qualitative descrip-
tion of the system gives us a convenient toolbox to
express the dynamic logic of the system as first-order
logic predicates.

In our case, we keep using Z3 as it perfectly han-
dles property verification on parameter values. We
use it as a Python library and create a solver s to
which we add the constraints on the system’s design,
as will be shown later in the algorithms we use for
design space exploration. The command s.check() re-
turns the satisfiability of the created problem under
the given constraints. Compared to constraint solving
on the state space, the main difficulty here is that there
must be many calls to the solver to fix a value or a set
of values of P that verify the constraints.

S DESIGN SPACE EXPLORATION

The last element of an efficient DSE is an optimized
research method to choose the values or the sets of
values of P. As already mentioned, we assume that
the design space is bounded. To develop a research
method, we have to separate two prominent cases de-
pending on the nature of the Design space.

5.1 Finite Design Space

In the literature, DSE methods are mainly adapted
to optimize the search for solutions in finite design
spaces. Many practices have emerged, including ge-
netic algorithms (Palesi and Givargis, 2002), ma-
chine learning methods (Motamedi et al., 2016), and
other discrete optimization methods. We chose to ex-
ploit the permissiveness of the SMT solver Z3 to use
branch-and-bound to specify the different parameters
of P sequentially without dealing with every possi-
bility. In branch-and-bound, we compute for each
parameter p; of P the satisfiability of the constraints
set for every proposed value v; ; associated with ev-
ery satisfiable combination of vy ; for k < i. Here, v; ;
corresponds to the j* authorised value of the i ele-
ment of P. By cutting the branch of the non-satisfiable
partial combinations of P;_;, we save the computa-
tion time that could be lost to test trivially impossible
solutions. This algorithm is detailed in algorithm 1,
where possibleConfig retains the authorized partial
evaluation allowing the constraints Constr to be sat-
isfiable. The function toConstr transforms the instan-
tiation of the current parameter p; to a constraint ex-
pressed as an equality. This new constraint is noted
newConstr, and its conjunction with Constr is noted
compConstr. Dp[p;] contains all the authorized val-
ues v; ; of the component p; of P. The operation
pre + v corresponds to the association of the autho-
rized partial configuration pre of the py, k < i with
the considered value v of p;.

5.2 Infinite Design Space

Although the exploration of discrete design space is
often practiced on finite discrete sets, developing the
same techniques for continuous or infinite research
spaces can be crucial. We develop an approach based
on dichotomy, i.e., a successive partition of the search
space in two distinct parts. For a single parame-
ter p, we define a minimum width of the remain-
ing definition set, and we subdivide it until we find
that there is no solution in the set or that the cur-
rent width of the set is smaller than the minimum
width. The algorithm is shown in algorithm 2, where
DichotomialCut(S,) proceeds to a split of the set S,,.
In the general case, if S, is an interval on R, noted
[a,b], the separation is completed by computing the
center of the interval ¢ = “—;b. Otherwise, if §), is
composed of many convex non-contiguous sets, the
separation is done by splitting S, between two non-
contiguous components. minSize corresponds to the
criteria on max(||a — b||)apeser to stop the splitting
process. As in algorithm 1, Constr represents the set

Data: P, Dp, Constr
Result: Possible values of the parameters in P

possibleConfig = [[]] * length(P)

for i € (0,length(P) — 1) do

p=Pli]

for pre € possibleConfig do

for v e Dp[p] do

newConstrs = toConstr(pre+v)

compConstr =

newConstr A\ Constr

s = SMTsolver

s.addConstraints(compConstr)

an = s.Check()

if an == SAT then
possibleConfig[i+ 1].append(

pre+v)

)

end
if
isEmpty(possibleConfigli+ 1))
N i< length(P)—1 then
| Stop
end

end

end

end
return possibleConfig

Algorithm 1: Branch-and-Bound.

of constraints on the design parameters. allowedSets
contains all the explored sets and Boolean values cor-
responding to the satisfiability of the design constraint
on each of these sets.

To deal with multi-dimensional P, we can com-
bine algorithm 2 and algorithm 1 to use dichotomy on
every p; € P sequentially and to divide the different
combinations with a disjunction of cases.

Interestingly, we process once again to a dis-
cretization of a continuous space just as in the state
space partitioning. The obtained partition of Dp is
based on the respect of the design constraints. Using
an optimization function could also give more tools
to refine such a partition based on its magnitude and
variation. Moreover, the computation of its deriva-
tive would allow us to compute its critical points and,
therefore, its maximums.

5.3 Non-Uniform Probabilistic
Distribution

In the main part of the cases, Dp is a subset of R and
often takes the form of an interval. However, in some
situations, it may appear that the design space does

Data: p, S,, Constr, minSize
Result: Domain of possible values for p
allowedSets = [|
Sb, Su = DichotomialCut(Sy)
for set € {Sp,S,} do
newConstr = toConstr(p € set)
ConstrTot = newConstr N\ Constr
s = SMTsolver
s.addConstraint(ConstrTot)
an = s.Check()
if an == Unsat then
| allowedSets.append((set,False))
else
if max(abs(a— b)) g peser < minSize
then
| allowedSets.append((set,True))
else
allowedSets.concatenate(
Dichotomial search(
p,set,Constr,minSize

)
)

end

end
end
return allowedSets

Algorithm 2: Dichotomial search

not take this form. For example, if prior knowledge
is available regarding the probability of the different
possible values, the set can no longer be represented
using a simple interval. Some works, such as (Blan-
chard et al., 2018), proposed solutions using proba-
bility density functions to represent this irregular dis-
tribution. This can be seen as a generalization of the
non-probabilistic case considering that V(a,b) € R?
such that a < b, the interval [a,b] can be represented
by a probability distribution following the uniform
probability density law U (a,b) on the same interval.

One can also represent discrete sets using discrete
probability laws. Therefore, it is possible to model
many design spaces using probability functions. Us-
ing the expression of the probability density function
for each p € P, it is possible to pick values of P ac-
cording to these density functions and combine this
biased selection with the previously presented meth-
ods. However, this way of exploring the design space
better fits the classical numerical simulation verifica-
tion as it also applies gradient descent to orient the
choice of new values for the next simulation. It con-
strains the differentiability of the utility function ac-
cording to the researched element. This also better
corresponds to the selection of the variable’s initial
values than to parameters valuation.

6 EXPERIMENTATION

At this stage of our research, we have not been able to
apply the presented algorithm to concrete cases, and
we did not set up a test benchmark either. We in-
tend to implement this in the following weeks to put
our propositions to the test. Specifically, we plan to
test these algorithms on both simple systems such as
a Brusselator system, with positive parameters a and
b and state variables x and y, whose dynamics is given
by Equation 2, and on more complex ones such as the
Lorenz system, with positive parameters ¢, p and B
and state variables x, y, and z, whose dynamics are
given by Equation 1.

¥=1—(b+)x+ax?y
{ y = bx —ax’y 2)
x=0(y—x)
y=x(p—2z)—y)
z=xy—PBz

Both systems exhibit different behaviors depend-
ing on the value of their parameters. The convergence
or periodicity of such systems being an essential ele-
ment in the trace of a system, we will try to express
the sets of validity of the convergence of each one
for finite and continuous sets of allowed values. If
our method allows to obtain sufficiently precise re-
sults corresponding to theoretical calculations, it will
be possible to consider further analysis and compu-
tation to improve the efficiency and the generality of
the process. However, to consider the result interest-
ing, it will be necessary to measure the computation
time of our tests to ensure that there is either a gain in
complexity, permissiveness, or generalization.

7 PERSPECTIVES AND FUTURE
WORKS

The next step to perfectly combine our different sub-
jects would be to express the properties of the state
space and the solution of the various constraints on
the variable X depending on the chosen value of the
parameters P. The validity of a predicate would be ex-
pressed as X = f(P) for the subset of Dp that allows
these predicates to have a solution. To achieve this
goal, we searched many different methods and looked
at other tools, such as modal solvers or Wolfram Al-
pha, which give encouraging solutions in that direc-
tion. However, it does not generalize well for systems
with too many variables. Other studied tools allowed
this type of resolution but only for low-degree poly-
nomial functions. There is no possible generalization
for now.

8 RELATED WORKS

Some works have studied the different possibilities
offered by qualitative reasoning. (Medimegh et al.,
2018) focused on the description and the prediction
of the behavior of systems at a high level of abstrac-
tion, while (Zaatiti et al., 2018) developed the diagno-
sis aspect of qualitative reasoning using more numeri-
cal methods. (Gueuziec et al., 2023) proposed a tech-
nique to automatize system abstraction and the cre-
ation of hybrid automata. All these projects focused
on the state space study and did not delve into state
space partitioning but showed the advantages and
the limits of the different approaches. Many works
proposed very different approaches regarding design
space exploration, from the classic search in a finite
design space (Lattmann et al., 2014) to works present-
ing deep-learning-based strategies (Motamedi et al.,
2016). Methods also exist to deal with continuous sets
using probability density functions (Blanchard et al.,
2018) to represent the design space based on previous
knowledge and more qualitative constraints regarding
the expected value of parameters. However, this ap-
proach is more appropriate to deal with the choice
of the initial value of variables and is, therefore, at
the edge between state and design space exploration.
Also, many works regarding the solving of tempo-
ral logic constraints and its use for optimization have
been led (Wolff et al., 2014) and may allow signifi-
cant progress in the resolution of temporal and modal
predicates. DSE, in its aspect of design optimiza-
tion, has been more significantly treated in (Fuchs and
Neumaier, 2010; Wang and Shan, 2006).

9 CONCLUSION

Theoretically, qualitative reasoning should have an in-
teresting relation with DSE, and we can take advan-
tage of it to optimize performances and computation
time. Qualitative abstraction allows a permissive rep-
resentation of models and a satisfying logical expres-
sion of essential system properties. Using an SMT
solver on these first-order logic predicates is a relevant
method to test the constraints’ validity for a specific
valuation of the parameter list P.

REFERENCES

Aiguier, M., Bretaudeau, F., and Krob, D. (2010). Com-
plex Systems Design & Management: Proceedings of
the First International Conference on Complex Sys-
tems Design & Management CSDM 2010. Springer
Science & Business Media.

Blanchard, J.-B., Damblin, G., Martinez, J.-M., Arnaud,
G., and Gaudier, E. (2018). The uranie plat-
form: an open-source software for optimisation, meta-
modelling and uncertainty analysis. arXiv preprint
arXiv:1803.10656.

Forbus, K. D. (2014). Qualitative reasoning.

Fuchs, M. and Neumaier, A. (2010). Discrete search in
design optimization. In Complex Systems Design &
Management: Proceedings of the First International
Conference on Complex System Design & Manage-
ment CSDM 2010, pages 113—122. Springer.

Gueuziec, B., Gallois, J.-P., and Boulanger, F. (2023). Qual-
itative reasoning and cyber-physical systems: abstrac-
tion, modeling, and optimized simulation. In MoD-
eVVa 2023-20th workshop on model driven engineer-
ing, verification and validation.

Han, H. and Sanfelice, R. G. (2020). Linear temporal logic
for hybrid dynamical systems: Characterizations and
sufficient conditions. Nonlinear Analysis: Hybrid Sys-
tems, 36:100865.

Kang, E., Jackson, E., and Schulte, W. (2011). An approach
for effective design space exploration. In Founda-
tions of Computer Software. Modeling, Development,
and Verification of Adaptive Systems: 16th Monterey
Workshop 2010, Redmond, WA, USA, March 31-April
2, 2010, Revised Selected Papers 16, pages 33-54.
Springer.

Kim, R. G., Doppa, J. R., and Pande, P. P. (2018). Ma-
chine learning for design space exploration and opti-
mization of manycore systems. In 2018 IEEE/ACM
International Conference on Computer-Aided Design
(ICCAD), pages 1-6. IEEE.

Kuipers, B. (1986). Qualitative simulation. Artificial intel-
ligence, 29(3):289-338.

Lattmann, Z., Pop, A., De Kleer, J., Fritzson, P., Janssen, B.,
Neema, S., Bapty, T., Koutsoukos, X., Klenk, M., Bo-
brow, D., et al. (2014). Verification and design explo-
ration through meta tool integration with openmodel-
ica. In Proceedings of the 10th International Modelica
Conference, pages 353-362.

Medimegh, S., Pierron, J.-Y., and Boulanger, F. (2018).
Qualitative simulation of hybrid systems with an ap-
plication to sysml models. In MODELSWARD, pages
279-286.

Motamedi, M., Gysel, P., Akella, V., and Ghiasi, S. (2016).
Design space exploration of fpga-based deep convolu-
tional neural networks. In 2016 21st Asia and South
Pacific Design Automation Conference (ASP-DAC),
pages 575-580. IEEE.

Mudgal, S., Li, H., Rekatsinas, T., Doan, A., Park, Y., Kr-
ishnan, G., Deep, R., Arcaute, E., and Raghavendra,
V. (2018). Deep learning for entity matching: A de-
sign space exploration. In Proceedings of the 2018
International Conference on Management of Data,
pages 19-34.

Palesi, M. and Givargis, T. (2002). Multi-objective de-
sign space exploration using genetic algorithms. In
Proceedings of the tenth international symposium on
Hardware/software codesign, pages 67-72.

Schafer, B. C. and Wang, Z. (2019). High-level synthe-
sis design space exploration: Past, present, and future.
IEEE Transactions on Computer-Aided Design of In-
tegrated Circuits and Systems, 39(10):2628-2639.

Sugeno, M. and Yasukawa, T. (1993). A fuzzy-logic-based
approach to qualitative modeling. IEEE Transactions
on fuzzy systems, 1(1):7.

Tiwari, A. and Khanna, G. (2002). Series of abstractions for
hybrid automata. In International Workshop on Hy-
brid Systems: Computation and Control, pages 465—
478. Springer.

Wang, G. G. and Shan, S. (2006). Review of metamodeling
techniques in support of engineering design optimiza-
tion. In International Design Engineering Technical
Conferences and Computers and Information in Engi-
neering Conference, volume 4255, pages 415-426.

Wolff, E. M., Topcu, U., and Murray, R. M. (2014).
Optimization-based trajectory generation with linear
temporal logic specifications. In 2014 IEEE In-
ternational Conference on Robotics and Automation
(ICRA), pages 5319-5325. IEEE.

Yano, K. (2020). The theory of Lie derivatives and its ap-
plications. Courier Dover Publications.

Zaatiti, H., Ye, L., Dague, P, Gallois, J.-P., and Travé-
Massuyes, L. (2018). Abstractions refinement for hy-
brid systems diagnosability analysis. In Diagnosabil-
ity, Security and Safety of Hybrid Dynamic and Cyber-
Physical Systems, pages 279-318. Springer.

