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For time-invariant delay systems, global asymptotic stability
does not imply uniform global attractivity

Antoine Chaillet, Fabian Wirth, Andrii Mironchenko and Lucas Brivadis

Abstract— Adapting a counter-example recently proposed by
J.L. Mancilla-Aguilar and H. Haimovich, we show here that, for
time-delay systems, global asymptotic stability does not ensure
that solutions converge uniformly to zero over bounded sets of
initial states. Hence, the convergence might be arbitrarily slow
even if initial states are confined to a bounded set.

I. INTRODUCTION

While ubiquitous in physics, engineering, biology or eco-
nomics [18], [4], [6], time-delay systems (TDS) are be more
challenging to analyze than ordinary differential equation
(ODE) models. This mathematical complexity arises from the
infinite-dimensional nature of the state, which is no longer a
vector of a Euclidean space, but rather a signal defined over
an interval of length equal to the maximal delay involved.

As recently reviewed in [3], despite this infinite-
dimensionality, a lot of tools valid for ODE models, in-
cluding Lyapunov analysis, extend rather naturally to TDS.
Yet, some fundamental differences remain. For instance, it
was not clear until very recently whether the combination of
global attractivity of an equilibrium combined with its Lya-
punov stability (meaning global asymptotic stability (GAS))
is enough to guarantee uniform global asymptotic stability
(UGAS), which additionally imposes that the rate at which
solutions converge and their maximal transient overshoot are
uniform over bounded sets of initial states [9].

Similarly, it was not known until recently whether the
existence of solutions at all positive times (forward com-
pleteness (FC)) ensures that the trajectories starting from a
bounded set remain in a bounded set on any bounded time
interval. This property is referred to in the literature as the
bounded reachability set property (BRS, [14], [15]) or as
robust forward completeness (RFC, [8], [9]).

The answer to the two above questions is positive for
finite-dimensional systems. Namely, for systems described
by an ODE with locally Lipschitz right-hand side, GAS
is equivalent to UGAS [19], [21] and FC is equivalent to
BRS [10]. These features turned out to be instrumental
in the development of stability theory for ODE systems,
particularly for converse Lyapunov results [20], [10], [1].
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In contrast, it was shown in [16, Example 2] that these
equivalences do not extend to infinite-dimensional systems.
More recently, the example given in [12] shows that these
equivalences do not hold even when focusing on TDS. More
precisely, in [12], a TDS with three state variables and a
single discrete delay is given, which is GAS (hence, FC)
and whose origin is locally exponentially stable but which is
neither UGAS nor even BRS. The solutions of that system
may exhibit arbitrarily large transients even when initial
states are constrained to the unit ball.

Surprisingly, despite these arbitrarily large transients, the
origin of the example in [12] remains uniformly globally
attractive (UGA), meaning that the time needed to reach a
given neighborhood of the origin is uniform over bounded
sets of initial states. Hence, it is not clear yet whether GAS
implies UGA. This question is not motivated by mathemat-
ical curiosity only, but is also of practical significance as
a positive answer would ensure that a TDS cannot have
arbitrarily slow transients for initial states in a bounded set.

In this paper, we give a negative answer to this question.
By modifying the example in [12], we show that GAS does
not imply UGA for TDS, even when combined with local
exponential stability of the origin. We even show that the
time needed to first touch a given neighborhood of the origin
can be arbitrarily large even from a bounded set of initial
conditions. The proposed example is made of four state
variables and two discrete delays, which shows that this lack
of relation between GAS and UGA is not a feature of a
particularly weird class of TDS.

After introducing the necessary background and defini-
tions in Section II, we present the counter-example in Section
III. All proofs are provided in Section IV.

II. PRELIMINARIES

A. Notation

Given x ∈ Rn, |x| denotes its Euclidean norm and |A|
denotes the induced matrix norm of A ∈ Rn×n. Given
intervals I,J ⊂ R, C(I,J ) denotes the set of continuous
functions from I to J . Given θ > 0, X := C([−θ, 0],R).
U denotes the set of all signals u : R≥0 → R that are
Lebesgue measurable and locally essentially bounded. Given
an interval I ⊂ R≥0 and a locally essentially bounded signal
u : I → Rm, ∥u∥ := ess supt∈I |u(t)|. Given u ∈ Um,
uI : I → Rm denotes its restriction to the interval I, in
particular ∥uI∥ = ess supt∈I |u(t)|. Given T ∈ R≥0∪{+∞},
θ > 0, x ∈ C([−θ, T ),Rn) and t ∈ [0, T ), xt ∈ Xn is
the history function defined as xt(τ) := x(t + τ) for all
τ ∈ [−θ, 0].



B. Definitions

Consider a time-delay system defined by

ẋ(t) = f(xt), (1)

where f : Xn → Rn is assumed to be Lipschitz on bounded
sets and to satisfy f(0) = 0. Given x0 ∈ Xn, we denote by
x(·;x0) : Imax(x0) → Rn (or simply x(·) when the initial
state is clear from the context) the maximal solution of (1).
We recall below some classical notions [3].

Definition 1 (FC, BRS) The system (1) is said to be for-
ward complete (FC) if for all initial states x0 ∈ Xn the
corresponding solution exists for all positive times.

It is said to have bounded reachability sets (be BRS) if, in
addition, given any ∆, T > 0, there exists R > 0 such that,
for all x0 ∈ Xn with ∥x0∥ ≤ ∆, the corresponding solution
satisfies |x(t;x0)| ≤ R for all t ∈ [0, T ].

FC imposes the existence of all solutions at all positive
times, which means that no solution can explode in finite
time: see [3, Theorem 2] or [7, Theorem 3.2, p. 43]. BRS
additionally imposes that, over bounded time intervals, any
solution starting with an initial state in a prescribed ball
of radius ∆ remains inside a ball of radius R. It is worth
stressing that BRS is sometimes referred to as robust forward
completeness (RFC) in the literature [8], [9], [3], [12].

It was recently proved in [12] that, unlike for ODE systems
[10], FC does not imply BRS for time-delay systems.

The next definition characterizes attractivity of the origin1.

Definition 2 (GA, UGA) The origin of (1) is called glob-
ally attractive (GA) if limt→∞ x(t;x0) = 0 for all x0 ∈ Xn.

It is called uniformly globally attractive (UGA) if, given
any ε,∆ > 0, there exists T ≥ 0 such that, for all x0 ∈ Xn

with ∥x0∥ ≤ ∆, it holds that |x(t;x0)| ≤ ε for all t ≥ T .

Both GA and UGA impose that all solutions of (1) asymp-
totically converge to the origin. In UGA, the convergence rate
is additionally uniform over bounded sets of initial states.

We may weaken these properties by considering the case
when solutions approach any arbitrarily small neighborhood
of the origin, without being necessarily trapped in it after-
wards. This leads to the notion of weak attractivity [17].

Definition 3 (WGA, WUGA) The origin of (1) is called
weakly globally attractive (WGA) if inft≥0 |x(t;x0)| = 0
for all x0 ∈ Xn.

It is called weakly uniformly globally attractive (WUGA)
if, for all ε,∆ > 0, there exists T ≥ 0 such that, for all
x0 ∈ Xn with ∥x0∥ ≤ ∆, |x(t;x0)| ≤ ε for some t ∈ [0, T ].

The key difference with the two lies in the fact that, for
WUGA, the time needed to touch a given neighborhood of
the origin is uniform over bounded sets of initial states.

When global attractivity is combined with stability, we get
the following concepts.

1Note that we tacitly assume that the system (1) is FC in Definitions 2-5.

Definition 4 (GAS, UGAS) The system (1) is said to be
globally asymptotically stable (GAS) if its origin is stable (in
the sense that, given any ε > 0, there exists δ > 0 such that,
for all x0 ∈ Xn with ∥x0∥ ≤ δ it holds that |x(t;x0)| ≤ ε
for all t ≥ 0) and globally attractive.

The system (1) is said to be uniformly globally asymptoti-
cally stable (UGAS) if there exists β ∈ KL such that, for all
x0 ∈ Xn, it holds that |x(t;x0)| ≤ β(∥x0∥, t) for all t ≥ 0.

While GAS guarantees Lyapunov stability and conver-
gence of all solutions to the origin, the KL state estimate
given by UGAS additionally imposes that both the conver-
gence rate and the size of transient overshoots be uniform
over bounded sets of initial states. In other words, for a
UGAS system, it is not possible to have arbitrarily slow
convergence or arbitrarily large transients when considering a
bounded set of initial states, which constitutes an interesting
feature in practice. But the interest of this KL estimate goes
beyond this. In particular, it was instrumental in deriving
converse Lyapunov results for ODE systems [20], [10].

Here again, the example proposed in [12] shows that,
unlike for ODE systems [19], [21], GAS does not necessarily
guarantee UGAS for TDS.

We finally recall the notion of exponential stability.

Definition 5 (LES) The origin of (1) is said to be locally
exponentially stable (LES) if there exist ∆, k, µ > 0 such
that for all x0 ∈ Xn with ∥x0∥ ≤ ∆ the solution satisfies
|x(t;x0)| ≤ k∥x0∥e−µt for all t ≥ 0.

III. THE COUNTER-EXAMPLE

A. Main statement

In [12], the example of a GAS system that is not UGAS
violates a particular feature of UGAS, namely that no arbi-
trarily large transients can occur from bounded sets of initial
states. Yet, the system in [12] surprisingly happens to be
UGA, meaning that the convergence rate to the origin is
uniform over bounded sets of initial states. Here, we modify
that example to show that GAS does not imply UGA, even
when combined to LES. Recall that the example in [12] reads

ẋ(t) = g(x(t), z1(t− θ)), (2a)
ż1(t) = − z1(t), (2b)

where θ > 0, x(t) ∈ R2, z1(t) ∈ R and g : R3 → R2 is
defined for all x ∈ R2 and all u ∈ R as

g(x, u) := (1 + |x|2)
(
φ(u)A1 + (1− φ(u))A0

)
x,

with the function φ : R → [0, 1] defined as

φ(s) :=

 0 if s < 0,
s if s ∈ [0, 1],
1 if s > 1,

and the matrices

A0 :=

(
−0.1 0.5
−2 0

)
, A1 :=

(
0 2

−0.5 −0.1

)
.



Given c > 0, consider the time-delay system defined as

ẋ(t) = cφ(z2(t− 2))g(x(t), z1(t− 1))

+ c(1− φ(z2(t− 2)))A0x(t), (3a)
ż1(t) = − z1(t), (3b)
ż2(t) = − z2(t). (3c)

As the system has two delays (1 and 2), we now consider
X := C([−2, 0],R). We indicate by X := (x, z1, z2)

⊤ ∈ X 4

the state (3) and by X0 := (x0, z10, z20)
⊤ ∈ X 4 the corre-

sponding initial state. Accordingly, we denote by X(·;X0) :
Imax(X0) → R4 (or simply X(·)) its solution starting from
X0 ∈ X 4 over its maximal interval of existence.

As compared to (2), this example adds the extra dynamics
z2. It also picks the delay θ = 1 in (2a) but adds a further
delay term to the system, so that the overall delay is 2. Also
there is an extra parameter c > 0, which will be used to
adapt the evolution speed of the x-solutions. We establish
the following in Sections IV-B to IV-G.

Proposition 1 (GAS & LES ⇏ WUGA) Given any c >
0, the time-delay system (3)

1) is FC,
2) is LES,
3) is GAS.

However, there exists c > 0 such that the TDS (3)
4) is not BRS,
5) is not UGA: more precisely, given any T > 0, there

exists an initial state X0 ∈ X 4 with ∥X0∥ ≤ 2 such
that the solution of (3) satisfies |X(T ;X0)| ≥ 1,

6) is not WUGA.

B. Rationale behind this example

We informally present the rationale behind this result.
In view of (3b)-(3c), both z1 and z2 converge exponen-

tially fast to zero and remain small at all times if they
are small at time t = 0. In particular, for small enough
initial states, (3a) essentially behaves as ẋ(t) = A0x(t) and
exponential convergence of x follows from the fact that A0

is Hurwitz. This explains intuitively why (3) is LES.
For GAS, since we already have Lyapunov stability of the

origin, it is sufficient to show that all solutions eventually
vanish. This is done by observing that, since both z1 and z2
tend to zero, (3a) behaves asymptotically like ẋ(t) = A0x(t),
thus showing that x also converges to zero.

The fact that (3) is FC but not BRS was the main contribu-
tion of [12]. It exploits the fact that, if z1 were able to switch
discontinuously between 0 and 1, then (2a) would exhibit
finite escape times [11]. For continuous switching signals
z1, finite escape times no longer occur, but the solutions
of (2) can reach any arbitrarily large state norm values by
conveniently choosing the initial state z10 in the ball of radius
1, which contradicts BRS. By adjusting the value of the
parameter c and by choosing z20 identically equal to 1 on
[−2,−1], we have that (3a) behaves qualitatively like (2a) on
[0, 1] and its state reaches arbitrarily large values over this
time interval, thus contradicting BRS.

The absence of uniform attractivity is the result of the
additional z2 dynamics (recall that (2) is UGA). The idea is
that, at t = 1, |x(t)| has reached an arbitrarily large value. By
choosing z20 conveniently over the interval [−1, 0], we can
show that the convergence of x to zero is at most exponential.
So the time needed to reach any given neighborhood of the
origin is arbitrarily long, which is incompatible with UGA.
The lack of WUGA follows along the same ideas, but is
formally established by recalling that if (3) were WUGA,
then stability (Item 2) would guarantee UGA.

The proofs of Items 4) and 5) rely on the following
observation, which is established in Section IV-A. It was
shown in [12] that the system (2) is not BRS. The proof
employed there consisted in seeing z1 as a generic input
and in showing that the corresponding system with input is
not forward complete by relying on [11, Example 3.5]. The
conclusion followed implicitly by showing that such forward
completeness was a necessary and sufficient condition for
the BRS of the corresponding TDS. Here, we provide a
more constructive proof by building a solution whose norm
overpasses any prescribed value over a bounded time interval.

Lemma 1 (Arbitrarily large transients) There exists a
constant c > 0 such that, given any M > 0, there exists
an initial condition z10 ∈ X satisfying

∥z10∥ ≤ 1, z10(0) = 0

and some x0 ∈ X 2 with ∥x0∥ ≤ 1 such that, given any
z20 ∈ X satisfying z20(t) = 1 for all t ∈ [−2,−1], the
corresponding solution of (3) satisfies

|x(1)| ≥ 2M.

Not that the absence of BRS is in line with [9, Theorem 1],
where it is shown that GAS & BRS is equivalent to UGAS.

IV. PROOFS

A. Proof of Lemma 1

Consider any c > 0 and any initial state X0 =
(x0, z10, z20)

⊤ ∈ X 4 as in the statement, namely with
z20(t) = 1 for all t ∈ [−2,−1]. The solution of (3) then
satisfies, for all t ∈ [0, 1],

ẋ(t) = c(1 + |x(t)|2)
(
φ(z1(t− 1))A1

+ (1− φ(z1(t− 1))A0

)
x(t),

which coincides with the dynamics of (2) when c = 1.
Consider the corresponding ODE system with inputs:

ẇ = c(1 + |w|2) (uA1 + (1− u)A0)w. (4)

Given u ∈ U and w0 ∈ R2, denote by w(·;w0, u) the
corresponding solution over its maximal interval of existence.
It was shown in [11, Example 3.5] that system (4) with c = 1
is not forward complete. In particular, for w0 = (0, 1/2)⊤,
there exists a piecewise constant signal u : R≥0 → {0, 1}
and a time T > 0 such that the corresponding solution of



(4) with c = 1 satisfies limt→T− |w(t;w0, u)| = +∞. As a
consequence, by picking c = T , the solution of (4) satisfies

lim
t→1−

|w(t;w0, u)| = +∞. (5)

As the vector field in (4) is locally Lipschitz, its solutions
exist in backward time. More precisely, extending the signal
u over (−∞, 0) by letting u(t) = 1 for all t < 0, there
exists τ̄ > 0 such that w(·;w0, u) exists on [−τ̄ , 1). With no
loss of generality, we can pick τ̄ ∈ (0, 1) small enough that
|w(t)| ≤ 1 for all t ∈ [−τ̄ , 0]. Due to (5), given any M > 0,
there exists τM ∈ (0, τ̄ ] such that

|w(1− τM ;x0, u)| ≥ 3M.

We now proceed to providing a continuous approximation of
this piecewise-constant signal u. Over the interval [−τ̄ , 1−
τM ], the solution w(·;w0, u) is bounded. As the system (4)
is affine in the input, its flow has continuous dependence
with respect to u in the weak-∗ topology over [−τ̄ , 1− τM ]:
see [5, Theorem 3.1]. Pick any sequence2 {uk}k∈N ⊂
C([−τ̄ , 1 − τM ], [0, 1]) that converges to u[−τ̄ ,1−τM ] in the
weak-∗ topology and that satisfies uk(−τ̄) = 1 and uk(1−
τM ) = 0. By continuous dependence, we then have that
limk→+∞ w(1 − τM ;w0, uk) = w(1 − τM ;w0, u). Extend
uk to [−τ̄ ,+∞) by letting uk(t) = 1 for all t ∈ [−τ̄ , 0] and
uk(t) = 0 for all t ≥ 1 − τM . We conclude that for some
K ∈ N large enough,

|w(1− τM ;w0, uK)| ≥ 2M. (6)

Now, consider the initial state X0 = (x0, z10, z20)
⊤ ∈ X 4

where x0(t) := w(−τM ;w0, uK) for all t ∈ [−2, 0], z20 ∈ X
is any signal satisfying z20(t) = 1 for all t ∈ [−2, 1], and

z10(t) :=

{
1 if t ∈ [−2,−1)

uK(t+ 1− τM ) if t ∈ [−1, 0],

as depicted by Figure 1. Then, as claimed, ∥z10∥ = 1 and
z10(0) = uK(1− τM ) = 0. Furthermore, the corresponding
solution of (3) satisfies

ẋ(t) = c(1 + |x(t)|2)uK(t− τM )A1x(t)

+ (1− uK(t− τM ))A0x(t), ∀t ∈ [0, 1].

Consequently, x(t) = w(t;x0(0), uK(· − τM )) =
w(t;w(−τM ), uK(· − τM )) for all t ∈ [0, 1], where
w(−τM ) := w(−τM ;w0, uK(· − τM )). By the cocycle
property, it holds that w(t;w(−τM ), uK(· − τM )) = w(t −
τM ;w0, uK). We conclude from (6) that |x(1)| ≥ 2M .

The following subsections present the proof for the differ-
ent statements of Proposition 1.

B. Proof of 1): forward completeness

The proof of FC uses the same arguments as those in [12]:
we report it here for completeness. Consider any c > 0. In
view of (3b)-(3c), given any z10, z20 ∈ X , z1(·) and z2(·)

2Recall that C([−τ̄ , 1 − τM ],R) is weak-∗ dense in L∞([−τ̄ , 1 −
τM ],R).

exist at all positive times and are continuous on [−2,+∞).
Consequently, it is sufficient to show that the system

ẋ = cφ(u2)g(x, u1) + c(1− φ(u2))A0x (7)

is forward complete with respect to continuous inputs,
meaning that its solutions exist at all positive times when
u := (u1, u2)

⊤ ∈ C(R≥0,R2). We proceed by contradiction:
assume to the contrary that there exists an input u ∈
C(R≥0,R2), an initial state x0 ∈ R2 and a time T > 0 such
that the solution x(·) of (7) exists on [0, T ) and satisfies

lim
t→T−

|x(t)| = +∞. (8)

Consider the matrices defined as

Aλ := λA1 + (1− λ)A0, ∀λ ∈ [0, 1]. (9)

Each Aλ being Hurwitz [12, Lemma 6], there exists a
symmetric positive definite matrix Pλ ∈ R2×2 such that

A⊤
λ Pλ + PλA

⊤
λ = −I. (10)

For short, let φ̄2(t) := φ(u2(t)), A(t) := Aφ̄2(t) and
P (t) := Pφ̄2(t) for all t ≥ 0. Then we have in particular that
A(T )⊤P (T ) + P (T )A(T ) = −I . Since φ̄2 is continuous,
there exists ∆ > 0 such that, for all t ∈ [T −∆, T ],

A(t)⊤P (T ) + P (T )A(t) ≤ −1

2
I. (11)

Considering the function V : R2 → R≥0 defined as V (x) =
x⊤P (T )x for all x ∈ R2, it follows that, along the solutions
of (7) and for all t ∈ [T −∆, T ),

V̇ = 2x(t)⊤P (T )
(
cφ̄2(t)A0x(t)

+ c(1− φ̄2(t))(1 + |x(t)|2)A(t)x(t)
)

= c(1− φ̄2(t))(1 + |x(t)|2)x(t)⊤
(
P (T )A(t)

+A(t)⊤P (T )
)
x(t) + 2cφ̄2(t)x(t)

⊤P (T )A0x(t)

≤− c

2
(1− φ̄2(t))(1 + |x(t)|2)|x(t)|2

+ 2c|P (T )A0||x(t)|2.

As V is quadratic and positive definite, there exists c̃ > 0
such that 2c|P (T )A0||x|2 ≤ c̃V (x). Since φ̄2(t) ≤ 1, we
conclude that V̇ ≤ c̃V (x(t)) for all t ∈ [T −∆, T ), hence

lim sup
t→T−

V (x(t)) ≤ V (x(T −∆))ec̃∆ < +∞,

in contradiction to (8). Thus, the system (3) is FC.

C. Proof of 2): local exponential stability

Here also, the proof is similar to the one given in [12].
By continuity, we get from (10) that there exists λ̄ ∈ (0, 1)
such that the matrix Aλ defined in (9) satisfies

A⊤
λ P0 + P0Aλ = −1

2
I, ∀λ ∈ [0, λ̄]. (12)

Observe that, from (3b)-(3c), it holds for all i ∈ {1, 2} and
all zi0 ∈ X that

|zi(t)| = |zi0(0)|e−t ≤ ∥zi0∥e−t, ∀t ≥ 0. (13)



Fig. 1. Graphical representation of z10.

Consider any c > 0 and any initial state X0 =
(x0, z10, z20)

⊤ ∈ X 4 with ∥X0∥ ≤ λ̄. Let

Ã(t) := Aφ(z1(t−1)) = φ(z1(t−1))A1+
(
1−φ(z1(t−1))

)
A0

and φ̃2(t) := φ(z2(t− 2)) for all t ≥ 0. Then (3a) reads

ẋ(t) = cφ̃2(t)(1 + |x(t)|2)Ã(t)x(t) + c
(
1− φ̃2(t)

)
A0x(t).

Since φ̃2(t) ≤ λ̄ for all t ≥ 0, it holds from (12) that

Ã(t)⊤P0 + P0Ã(t) ≤ −1

2
I, ∀t ≥ 0.

Consider the function V0 defined as V0(x) := x⊤P0x for all
x ∈ R2. Then there exist α0, α0 > 0 such that

α0|x|2 ≤ V0(x) ≤ α0|x|2, ∀x ∈ R2. (14)

By Item 1), the function v0(·) := V0(x(·)) is well defined
on R≥0 and satisfies, for almost all t ≥ 0,

v̇0(t) = cφ̃2(t)(1 + |x(t)|2)x(t)⊤
(
Ã(t)⊤P0 + P0Ã(t)

)
x(t)

+ c(1− φ̃2(t))x(t)
⊤ (

A⊤
0 P0 + P0A0

)
x(t)

≤ − c

2
φ̃2(t)(1 + |x(t)|2)|x(t)|2 − c(1− φ̃2(t))|x(t)|2

≤ − c (1− φ̃2(t)/2) |x(t)|2

≤ − c

2α0
v0(t). (15)

Consequently, v0(t) ≤ v0(0)e
− ct

2α0 , which gives with (14)

|x(t)| ≤

√
α0

α0

∥x0∥e−
ct

4α0 , t ≥ 0.

Combining this with (13), we conclude that there exist k, µ >
0 such that, given any X0 ∈ X 4 with ∥X0∥ ≤ λ̄, it holds
that |X(t)| ≤ k∥X0∥e−µt for all t ≥ 0. In other words, the
origin of (3) is LES.

D. Proof of 3): global asymptotic stability

Consider any c > 0. We already know by Item 1) that, for
every initial condition X0 ∈ X 4, the corresponding solution
of (3) exists for all positive times. It is clear that

lim
t→+∞

z1(t) = lim
t→+∞

z2(t) = 0, (16)

irrespective of initial conditions (see (13)). Let P0 be a posi-
tive definite symmetric matrix satisfying A⊤

0 P0+P0A0 = −I
and choose ε > 0 sufficiently small that the matrix defined
in (9) satisfies

|z1| ≤ ε ⇒ A⊤
φ(z1)

P0 + P0Aφ(z1) ≤ −1

2
I. (17)

Fix an initial condition X0 = (x0, z10, z20)
⊤ ∈ X 4. Let

T > 0 be sufficiently large that |z1(t−1)| ≤ ε for all t ≥ T .
Consider the Lyapunov function V0(x) = x⊤P0x, and define
v0(·) := V0(x(·)).

Following the arguments in Section IV-C, we have (15)
for almost all t ≥ T . This ensures that limt→+∞ v0(t) = 0
and consequently that limt→+∞ x(t) = 0. Considering (16),
we conclude that the origin of (3) is globally attractive. Since
Item 2) ensures Lyapunov stability of the origin, we conclude
global asymptotic stability.

E. Proof of 4): no boundedness of reachability sets

Lemma 1 states that there exists a constant c > 0
such that, given any M > 0, there exists an initial state
X0 ∈ X 4 with ∥X0∥ ≤ 2 such that the solution of
(3) satisfies |X(T )| ≥ 2M . In particular, it holds that
sup {|X(t)| : ∥X0∥ ≤ 2, t ∈ [0, 1]} = +∞, which is in-
compatible with BRS.

Note that an alternative to the above direct argument is to
invoke [9, Theorem 1], which states that UGAS is equivalent
to GAS when the BRS property holds. Since the system is
GAS (Item 3) and not UGAS (Item 5), it cannot be BRS.

F. Proof of 5): no uniform global attractivity

Choose λ0 > 0 such that 1/2(A⊤
0 +A0) ≥ −λ0I . For all

T > 1, we are going to exhibit an initial state X0 = X0(T ) ∈
X 4, in the ball of radius 2, for which convergence to the ball
of radius 1/2 takes longer than the prescribed T > 1. This
contradicts UGA. To that aim, given any T > 1, consider
any M > 0 satisfying

M ≥ ecλ0T . (18)



For ε ∈ (0, 1] define zε20 ∈ X by

zε20(t) :=

 1 if t ∈ [−2,−1]
1− (t+ 1)/ε if t ∈ (−1,−1 + ε]

0 if t ∈ [−1 + ε, 0].

Consider the initial states x0 ∈ X 2 and z10 ∈ X , with
∥x0∥ ≤ 1 and ∥z10∥ ≤ 1, and the constant c > 0 all
given by Lemma 1 for this particular value of M and let
Xε(·) = (xε(·), z1(·), zε2(·))⊤ denote the solution of (3) with
initial state Xε

0 := (x0, z10, z
ε
20)

⊤. Then ∥Xε
0∥ ≤ 2 and

|xε(1)| ≥ 2M. (19)

Since z10(0) = 0, it follows from (3b) that z1(t) = 0 for all
t ≥ 0. Also φ(zε2(t)) = zε2(t), t ≥ −2. Hence, the solution
satisfies for t ≥ 1:

ẋε(t) = c
[
1 + zε2(t− 2)|xε(t)|2

]
A0x

ε(t). (20)

We obtain for t ≥ 1 along the solutions of (20)
d

dt

1

2
|xε(t)|2 = c

[
1 + zε2(t− 2)|xε(t)|2

]
(xε(t))⊤A0x

ε(t)

≥ −λ0c
[
1 + zε2(t− 2)|xε(t)|2

]
|xε(t)|2

≥ −λ0c
[
1 + z12(t− 2)|xε(t)|2

]
|xε(t)|2.

As the coefficients of the final differential inequality are
independent of ε ∈ (0, 1], it follows from continuity of the
solution and a standard comparison result that there is a
τ ∈ (0, 1) such that, for all ε ∈ (0, 1],

|xε(t)| ≥ M, ∀t ∈ [1, 1 + τ ]. (21)

For ε ∈ (0, τ), the system (20) simplifies on [1 + τ,∞) to
ẋε(t) = cA0x

ε(t). On this interval, we then obtain that
d

dt

1

2
|xε(t)|2 ≥ −λ0c|xε(t)|2.

Thus, using (18) and (21),

|xε(T )| ≥ e−λ0c(T−τ)|xε(1 + τ)| ≥ eλ0cτ > 1.

This completes the proof.

G. Proof of 6): no weak uniform global attractivity
By (a special case of) [13, Proposition 4.1], the combi-

nation of WUGA and ULS implies UGA. As our system is
ULS but not UGA, we infer that it cannot be WUGA either.

V. CONCLUSION

By extending the counter-example recently proposed by
J.L. Mancilla-Aguilar and H. Haimovich, we have shown
that, for time-delay systems, UGAS does not ensure uniform
global attractivity of the origin, even when combined to local
exponential stability. This negative result shows an additional
crucial difference with the stability analysis of ODE systems.

The key point is that, unlike in finite dimension, forward
completeness does not guarantee BRS. This example and
the original one in [12] plead for a careful assessment of
BRS, for which tools exist in the literature: see for instance
[12, Theorem 9] or [3, Theorems 5 & 6]. Alternatively, one
may consider using other state-spaces for the study of TDS,
in which BRS directly results from forward completeness,
such as Hölder or Sobolev spaces [9] or L∞ [2].
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